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A B S T R A C T

Quantum computing is rapidly reaching a point in which its application design and engineering aspects must be
seriously considered. However, quantum software engineering is still in its infancy, with numerous challenges,
especially in dealing with the diversity of quantum programming languages and noisy intermediate-scale
quantum (NISQ) systems. To alleviate these challenges, we propose QFaaS, a holistic Quantum Function-
as-a-Service framework, which leverages the advantages of the serverless model, DevOps lifecycle, and the
state-of-the-art software techniques to advance practical quantum computing for next-generation application
development in the NISQ era. Our framework provides essential elements of a serverless quantum system
to streamline service-oriented quantum application development in cloud environments, such as combining
hybrid quantum–classical computation, automating the backend selection, cold start mitigation, and adapting
DevOps techniques. QFaaS offers a full-stack and unified quantum serverless platform by integrating multiple
well-known quantum software development kits (Qiskit, Q#, Cirq, and Braket), quantum simulators, and cloud
providers (IBM Quantum and Amazon Braket). This paper proposes the concept of quantum function-as-a-
service, system design, operation workflows, implementation of QFaaS, and lessons learned on the benefits
and limitations of quantum serverless computing. We also present practical use cases with various quantum
applications on today’s quantum computers and simulators to demonstrate our framework capability to
facilitate the ongoing quantum software transition.
1. Introduction

Recent breakthroughs in quantum hardware development are creat-
ing opportunities for its use in many applications, making it becoming
a critical future technology attracting significant investment at the
global level [1]. The rapid advancements in quantum hardware trig-
ger more investments in quantum software engineering and quantum
algorithms development to maximize the practical use of quantum
computers. Quantum computers have demonstrated their abilities to
solve many complex problems which are challenging to tackle with
classical supercomputers, such as molecule simulations [2], machine
learning [3], cryptography [4], and finances [5]. Some notable algo-
rithms have been proposed in the last few decades, such as Deutsch-
Jozsa’s [6], Shor’s [7], and Grover’s [8]. Some of these algorithms have
been directly applied to problems of practical relevance, albeit at the
proof-of-concept level, due to quantum hardware limitations.

Despite the inevitable prospect of quantum computing for future-
generation computation, quantum software engineering is an early-
emerging domain with numerous open challenges. First, the devel-
opment of quantum applications is complicated and time-consuming
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for software engineers, mainly because of the requirement for prior
quantum knowledge. Indeed, quantum programming is underpinned by
the principles of quantum mechanics, which are quite different from the
traditional models. For example, the basic difference between quantum
and classical computing comes from their fundamental unit: a classical
bit has one state, either 0 or 1, whereas a quantum bit (or qubit) could
also be placed in a superposition state, i.e., a combination state of 0
and 1 [9]. A software engineer must overcome the hurdle of learning
quantum mechanics to develop quantum applications.

Second, quantum computing services are still heavily relying on
classical servers for circuit compilation due to the lack of quantum
data storage methods in a quantum computer. In classical computing,
the compiled binaries of applications can be installed or deployed on
persistent storage mediums, allowing them to remain available for
re-execution without the need to recompile the code for each use.
By contrast, quantum computing services currently do not possess
an analogous capability for persistent storage of quantum programs.
Consequently, when quantum computation is invoked, it necessitates
vailable online 15 January 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.01.018
Received 21 June 2023; Received in revised form 12 January 2024; Accepted 14 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

anuary 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:thanhhoan@student.unimelb.edu.au
mailto:muhammad.usman@data61.csiro.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.future.2024.01.018
https://doi.org/10.1016/j.future.2024.01.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.01.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 154 (2024) 281–300H.T. Nguyen et al.
a classical driver to compile a quantum circuit tailored to the specific
quantum processor [10]. This circuit is then loaded into the quantum
processing unit (QPU) for execution, with the outcome derived from
one or more iterations (shots). Additionally, classical computing re-
sources can be requisitioned for post-processing and storing the results
of the quantum execution.

Besides, the existence of many quantum software development kits
(SDKs) tightly coupled with specific vendor platforms presents chal-
lenges such as data lock-in and limitations in migrating software de-
ployments across various platforms. Each SDK and programming lan-
guage has distinct requirements for environment configuration, syntax,
and interaction methods with their respective quantum simulators and
computers. Additionally, there is no well-known standard or lifecycle
in quantum software engineering similar to practices like Agile and
DevOps in the traditional realm [11]. Although some efforts have been
made to deal with this issue, such as preliminary approximations based
on Model-Driven Engineering (MDE) [12], a comprehensive solution
to establish a unified quantum software platform capable of seamlessly
working with multiple quantum SDKs and providers remains necessary.

Presently, quantum computing resources remain constrained within
the noisy intermediate-scale quantum (NISQ) era [13], characterized
by limitations in both the quantity and quality of available qubits.
Also, access to quantum computing services is exclusively facilitated
through cloud-based platforms, which often incur substantial costs.
Indeed, the most widely adopted way to access today’s quantum com-
puters is through a cloud service from external vendors, such as IBM
Quantum [14], Amazon Braket [15], and Azure Quantum [16]. To
ensure a mutually advantageous relationship between quantum cloud
providers and clients, it is crucial to establish a win-win paradigm
that maximizes the benefits of quantum computing while optimizing
both budgetary and quantum resource considerations. In this context,
the current pay-per-use pricing model offered by cloud vendors must
be complemented by an appropriate computing model that effectively
balances the advantages for both parties involved.

Furthermore, the ongoing evolution of new computational
paradigms raises a strategic decision in the transition towards incor-
porating quantum computing: determining the extent of integration
within existing classical systems. It is currently impractical to envision
an entire replacement of quantum systems for all computational tasks
due to efficiency considerations. For example, basic arithmetic opera-
tions, such as summing two integers, are far more efficiently executed
on classical computers. Thus, the foreseeable future points to a hybrid
approach, where quantum computing is employed for specific, complex
problems that are beyond the capabilities of classical computers, while
routine tasks remain with classical solutions. This integration strategy
is particularly applicable during the NISQ era, where leveraging both
technologies’ strengths is essential for optimizing performance [17].

1.1. Our contributions

To address the research challenges highlighted above, we propose
QFaaS - a novel and versatile Quantum Function-as-a-Service frame-
work without the vendor lock-in problem. The major contributions and
novelty of our proposed work are:

• QFaaS framework represents a holistic serverless framework for
quantum computing, enabling the seamless integration of quan-
tum computation within established classical systems. We tackle
the challenges associated with platform and data lock-in in server-
less quantum computing by incorporating multiple quantum
SDKs, namely Qiskit, Cirq, Q#, and Braket, to perform the hy-
brid computation on classical computers, quantum simulators,
and quantum computers provided by multiple cloud vendors,
including IBM Quantum and Amazon Braket.
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• We introduce the concept of quantum functions, quantum
function-as-a-service, operation workflows, which involve both
classical and quantum computation, and discuss their benefits
for quantum software development. Our framework provides a
comprehensive reference for quantum software engineers and
industries to design and develop their service-oriented quantum
computing platforms.

• We propose the practical quantum serverless system architecture
with six extendable system layers, a core API set, and a quantum
function programming library. In addition to the main frame-
work architecture, we propose an adaptive quantum backend
selection policy that determines the most appropriate quantum
computation system for executing the quantum function. Besides,
we present a caching-based policy to mitigate the cold start
problem, which helps to reduce the latency of quantum function
invocation. We utilize the state-of-the-art software and system
techniques for quantum software development, such as container-
ization and DevOps lifecycle. By leveraging Kubernetes as the
underlying orchestration, our framework is portable and scalable
for further advancement.

• We empirically validate the proposed framework through the
practical implementation of all its components, following an
open-source-oriented approach. Additionally, we showcase two
sample operational workflows within the system, catering to
both quantum software engineers and end-users. These work-
flows demonstrate how our framework can effectively support
the development and utilization of hybrid quantum–classical
applications.

• We conduct thorough experiments using various quantum algo-
rithms on different quantum simulators and quantum computers
to evaluate the performance of our framework. Through this
evaluation, we provide practical insights into the current state of
NISQ devices and discuss the limitations and lessons learned from
the serverless quantum computing model.

The rest of the paper is organized as follows: Section 2 intro-
duces the current state-of-the-art in quantum software engineering,
the quantum computing as a service (QCaaS) model, and serverless
computing. Section 3 proposes the concept of quantum functions and
quantum function-as-a-service. Then, Section 4 presents the details of
the QFaaS framework, including system architecture and main com-
ponents. Section 5 describes the design and implementation of the
QFaaS framework. Then, Section 6 demonstrates the operation and
validation of QFaaS with practical use cases. We discuss the benefits of
using QFaaS for quantum service-oriented application development and
lessons learned on the limitations of the quantum serverless approach
in Section 7. Section 8 discusses the related work and compares our
framework’s advantages with existing work. Finally, we conclude and
present our plan for future work in Section 9.

2. Background

This section outlines the state-of-the-art development of quantum
software engineering, quantum computing service model, and server-
less quantum computing. A brief introduction to quantum computing
and gate-based quantum model for broad readers can be found in
Appendix A and other well-known books such as [9,18]. It is important
to note that our focus in this work is on gate-based quantum computing
SDKs and platforms due to their broad applicability and active devel-
opment by many well-known quantum cloud providers, such as IBM
Quantum [14] and Amazon Braket [15].

2.1. Quantum SDKs and programming languages

Some popular quantum software development kits (SDKs) and pro-
gramming languages that originated from well-known companies are:
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• Qiskit [19] (by IBM) is one of the most popular Python-based
open-source SDKs for developing gate-based quantum programs.
It offers a wide range of additional libraries and support tools,
particularly tailored to the IBM Quantum platform [14].

• Cirq [20] (by Google) is a prevalent open-source SDK for quan-
tum programming. This SDK supports writing, manipulating, and
optimizing quantum gate-based circuits. Cirq programs can run
on built-in simulators and Google’s quantum processors.

• Q# [21] (by Microsoft) is a new programming language from
Microsoft for developing and executing quantum algorithms. It
comes along with Microsoft’s Quantum Development Kit, which
includes a set of toolkits and libraries for quantum software
development.

• Braket [15] (by Amazon) is an emerging Python-based SDK to
interact with Amazon Braket service [15]. This SDK provides mul-
tiple ways to prototype and develop hybrid quantum applications,
then run them on simulators or quantum computers.

Besides, there are numerous quantum languages and SDKs proposed
by research groups over the world, such as Forest and pyQuil by
Rigetti [22], Strawberry Fields [23] and PennyLane [24] by Xanadu,
Quingo [25], QIRO [26], and qcor [27].

2.2. Current state of quantum computing: The NISQ era

John Preskill proposed the ‘‘Noisy Intermediate-Scale Quantum
(NISQ)’’ term in 2018 [13] to describe the current state of quantum
computers. This term indicates two characteristics of today’s quantum
devices, including ‘‘noisy’’, i.e., unstable and error-prone quantum state
ue to the affection of various environmental actions, and ‘‘intermediate
scale’’, i.e., the quantum volume is at the intermediate level, with
about a few tens of qubits [11]. Due to the NISQ nature, the typical
pattern for developing today’s quantum programs combines quantum
and classical parts [11]. In this hybrid model, the classical components
are mainly used to pre-process and post-process the data. In contrast,
the remaining part is sent to quantum computers for computation.
The quantum execution parts are repeated many times and measure
the average values to mitigate the error caused by the noisy quantum
environment. An example of the hybrid quantum–classical model is
Shor’s algorithm [7] to find prime factors of integer numbers. In this
algorithm, we execute the period-finding part, leveraging the Quan-
tum Fourier Transform on quantum computers and then performing
the classical post-process to measure the prime factors based on the
outcome of the quantum part.

2.3. Quantum computing as a service (QCaaS)

Today’s quantum computers are made available to the industry
and research community as a cloud service by a quantum cloud
provider [10]. This scheme is well known as Quantum Computing
as a Service (QCaaS or QaaS) [28], which corresponds with well-
known paradigms in cloud computing such as Platform as a Service
(PaaS) or Infrastructure as a Service (IaaS). In terms of QCaaS, software
engineers can develop quantum programs and send them to quantum
cloud providers to execute those programs on appropriate hardware.
After finishing the computation, the users only need to pay for the
actual execution time of the quantum program (pay-per-use model).
In this way, QCaaS is an efficient way that optimizes the user’s bud-
get for using quantum services and the provider’s resources. Many
popular cloud providers nowadays offer quantum computing services
using their quantum hardware, such as IBM Quantum [14], which is
publicly accessible for everyone in their early phase. Besides, other
quantum computing services (such as Amazon Braket [15], and Azure
Quantum [16]) collaborate with other hardware companies such as
D-Wave, Rigetti, and IonQ to provide commercial services. However,
this paradigm still faces many challenges before solving real-world
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applications due to the limitations of today’s NISQ computers [13].
These devices have a small number of qubits that are error-prone and
limited in capabilities. Therefore, improving the quality and quantity
of qubits for quantum computers will accelerate the QCaaS model and
quantum software development.

2.4. Serverless computing and function as a service (FaaS)

In the classical computing domain, serverless is the state-of-the-
art computing model, which can be considered as a second phase
for cloud computing [29]. This computing model fits with modern
software architecture, especially the microservice applications, where
the overall application is decomposed into multiple small and inde-
pendent modules [30]. The serverless computing concept generally in-
corporates both Function-as-a-Service (FaaS) and Backend-as-a-Service
(BaaS) models. FaaS refers to the stateless ephemeral function model
where a function is a small and single-purpose artifact with few lines
of programming code. BaaS is a concept to describe serverless-based
file storage, database, streaming, and authentication services.

As FaaS is a subset of the serverless model, its main objective
is to provide a concrete and straightforward way to implement soft-
ware compared with traditional monolith architecture. FaaS allows the
software engineer to focus only on coding rather than environmental
setup and infrastructure deployment. A function can be triggered by a
database, object storage, or deployed as a REST API and accessed via
an HTTP connection. Functions also need to be scalable, i.e., automat-
ically scaling in when idle and scaling out when the request demand
increases. In this way, a FaaS platform can be an efficient way to
optimize the resources for providers and reduce costs for customers.
There are numerous open-source FaaS platforms in the cloud-native
landscape, such as OpenFaaS, OpenWhisk, Kubeless, Knative, and many
commercial platforms such as AWS Lambda, Azure Functions, Google
Cloud Functions [31].

3. Quantum serverless and quantum function-as-a-service

3.1. Serverless quantum computing

A serverless quantum computing model is a viable solution for
effectively utilizing contemporary quantum computers. Each quantum
device, characterized by inherently limited resources, is made acces-
sible globally via quantum cloud services. Indeed, by decomposing a
monolith application into multiple single-purpose functions, we can
distribute them to various backend devices. Furthermore, we can im-
plement a hybrid quantum–classical model by combining quantum
functions and classical functions in a unified application. This approach
can leverage the power of existing quantum computers to facilitate
new promising techniques, such as hybrid quantum–classical machine
learning [32].

The adaptation of the serverless model to quantum computing
must account for key differences in deployment and execution when
compared to traditional computing services. In classical computing, a
service can be deployed once to a server, whether physical or virtual,
and then it can be repeatedly invoked by end-users. This permanent
deployment is not yet feasible with current quantum computing tech-
nology., i.e., a quantum program cannot be deployed persistently in
a specific quantum computer [10]. Instead, an appropriate quantum
circuit needs to be built every time we execute a specific task. Then,
that circuit will be transpiled to corresponding quantum system-level
languages (such as QASM [33]) before being sent to a quantum cloud
service for execution. Therefore, an adaptable serverless model for
executing quantum tasks is needed to address this challenge. By lever-
aging the ideas of the serverless model and combining quantum and
classical parts in a single service, we can adapt to the current nature of
quantum cloud services, accelerate the software development process,
and optimize quantum resource consumption. This kind of computing
model could be a potential approach to enable software engineers
to realize the advantages of quantum computing and explore more
complicated quantum computation in the future.
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Fig. 1. Service-Oriented Quantum-Classical Application Model.

3.2. Quantum function-as-a-service (QFaaS)

In serverless computing, the Function-as-a-Service (FaaS) indicates
a service-oriented cloud computing model in that the software engi-
neer only needs to focus on coding without worrying about server
configuration. A function is made by small pieces of programming code
and is deployed as a service, which can be triggered and executed on
demand [34].

By bringing the FaaS model to quantum computing, we propose the
concepts of Quantum FaaS. A quantum function can be considered an
ephemeral, event-triggered, and single-purpose quantum program with
few pieces of quantum code. Due to the limitation of the NISQ devices
and the difference in the software deployment model, we need to lever-
age the classical resources and techniques for developing and executing
the quantum function. Specifically, a software engineer can still focus
solely on coding quantum functions with high-level quantum SDKs
(such as Qiskit, Cirq, Q#, or Braket) without needing to care about the
quantum programming environmental setup or server deployment. The
function code is automatically deployed in a containerized environment
and is published as a service with an API endpoint for invoking.
Whenever that service is triggered, the programming logic defined
in the function will be executed, where both classical and quantum
computation is involved. The classical parts include the pre-processing
of input data, quantum circuit generating, and post-processing, where
the quantum part indicates the circuit execution on quantum backends.

By adopting the FaaS approach and classical resources for creating
a quantum function, we can seamlessly integrate multiple quantum
functions together or with classical ones to construct a service or
microservice in a large application (see Fig. 1). The serverless and
service-oriented application model is a potential approach to bring the
advantages of quantum computation to solve intractable problems of
classical computing without replacing the whole system. For example,
we can replace a classical random number generation function in a
finance microservices application with the quantum counterpart to
yield truly random numbers [35], which we cannot do in classical pro-
gramming. However, the application of serverless computing models
to quantum applications needs to be carefully considered and adjusted,
especially in the current NISQ era, in which quantum hardware limita-
tions can hinder quantum execution. Ultimately, the potential benefits
and challenges of the emerging quantum serverless computing model
motivate us to explore and empirically evaluate in this study.
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4. QFaaS architecture and main components

4.1. Software requirements and design principles

The design of the QFaaS framework is guided by several key re-
quirements and design principles, which contribute to its benefits for
streamlining service-oriented quantum application development and
help software engineers to plan, develop, and improve their quantum
software applications:

• Serverless: Quantum software engineers only need to focus on
developing and improving their functions, while the framework
automatically carries out the rest of other procedures, including
the environmental setup, function deployment, selecting the ap-
propriate quantum computation system for the function execution
(backend selection), managing the function operation and scaling.

• Service-Oriented: Each quantum function can be deployed as
a service, which can be accessed through the cloud-based API
gateway in multiple methods. This approach simplifies further
expansion and maintenance, drawing inspiration from the mi-
croservices architecture and the ‘‘everything-as-a-service’’ (XaaS)
paradigm. Consequently, new functionalities can be easily in-
tegrated into the existing application without disrupting other
services.

• Flexibility: Users can choose their preferred quantum program-
ming languages, libraries, and cloud providers to avoid potential
vendor lock-in situations. The framework needs to support the
current NISQ computers and quantum simulators. Its architec-
ture provides the flexibility to implement possible extensions to
support other quantum technologies as they emerge in the future.

• Seamlessness: The framework needs to support continuous in-
tegration and continuous deployment, which are two of the es-
sential characteristics of DevOps to continuously deliver value
to end-users. Utilization of this model boosts application devel-
opment and becomes more reliable when compared with the
traditional paradigm [36].

• Reliability: The framework implementation should use the state-
of-the-art software technologies to ensure high availability, secu-
rity, fault tolerance, and trustworthiness of the overall system.
The execution results are stored in the database for compari-
son purposes and to optimize the execution parameters of the
quantum function.

• Service Scalability: As one of the critical characteristics of the
serverless model, the quantum service is scalable and adapts to
the actual user requests. However, the scalability of current
quantum devices is limited by the number of qubits, and NISQ
devices cannot execute practical-scale networking and compu-
tational instructions beyond small instances of a few specific
problems [37]. Therefore, it is important to note that within the
context of our framework, this requirement is manifested in the
size scalability (i.e., the ability for a system to effectively expand
its size as more resources or users are added) [38] of the classical
resources, wherein the quantum function is deployed. We pri-
marily focus on horizontally scaling in/out function deployment
by adjusting the replication of function instances, in response to
user requests. This approach provides a practical and adaptable
solution to handle varying workloads depending on the number
of concurrent function invocations.

• Transparency: The operation workflow of the framework needs
to be transparent to both the software engineers and end-users.
The information provided by the framework is sufficient for trou-
bleshooting, logging, and monitoring purposes, and can be used
for further investigations if needed.
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Fig. 2. Overview of QFaaS Architecture Design and Main Components.

4.2. Main components

The architecture design of QFaaS comprises six extendable compo-
nents: the QFaaS APIs and API Gateway, the Application Deployment
Layer, the Classical Cloud Layer, the Quantum Cloud Layer, the Moni-
toring Layer, and the User Interface. Fig. 2 illustrates the overall design,
including the architecture and principal components of our framework.

4.2.1. QFaaS APIs and API gateway
We design two types of APIs that expose to the authenticated user

through a secure HTTPS connection:

• Service APIs are the set of APIs corresponding to the deployed
functions. Each function running on the classical cloud layer
has a unique API endpoint accessible to an authorized end-user.
These APIs can be integrated seamlessly into existing software
workflow.

• Core APIs set is one of the most essential components in the
QFaaS framework. It comprises a set of secure REST APIs, which
provide principal operations and interactions among all compo-
nents of the whole system. These APIs facilitate function de-
velopment, invocation, job monitoring, and interaction with the
external quantum providers and backend management. Core APIs
also facilitate the main functionalities of the QFaaS UI. We ex-
plain the detailed design and implementation of the Core APIs in
Section 5.1.

The API gateway serves as a centralized entrance where users can
interact with other components. This API gateway routes users’ requests
to suitable components for processing and delivers the result back to
the users with a common data format after completing the execution.

4.2.2. Application deployment layer
This layer serves as a bridge between quantum software engineers

and the cloud layers to deploy and expose each function as a service
with an API endpoint. It takes the principal responsibility for code ver-
sion control, containerizing, and deploying functions by incorporating
four key components:
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• Code Repository is a Git-based platform to manage function
codes with version control, which is essential in software devel-
opment for collaboration, issue tracking, and further workflow
automation integration.

• Function Templates and Library provides container-based quan-
tum software environment configuration, support library, and
common function templates for well-known quantum SDKs and
languages, including Qiskit, Cirq, Q#, and Braket. We developed
QFaaS Library,1 a Python-based programming library that sup-
ports essential interactions to the Core APIs and provides common
pre-built data pre-processing, and output post-processing for the
function development.

• DevOps Automation employs Continuous Integration and Con-
tinuous Deployment (CI/CD) integration following DevOps man-
ner to automate the function deploying and updating, ensuring
the continuous delivery of reliable quantum functions.

• Container Registry stores immutable container images of func-
tions and environmental setup for function deploying, migrating
and scaling.

4.2.3. Classical cloud layer
This layer is a cluster of cloud-based classical computers (physical

servers or virtual machines), where the quantum functions are deployed
and triggered. All the classical computation tasks are executed here,
including backend selection, data pre-processing, and post-processing.

We employed Kubernetes to orchestrate all the pods (the container-
based unit of Kubernetes) for the deployed function across all cluster
nodes. Each function will be run on a pod and can be scaled up
horizontally by replicating the original pod to serve multiple incoming
requests simultaneously. Following the proposed architecture, we can
use all built-in quantum simulators of employed SDKs directly inside a
pod at the Kubernetes cluster. We call this kind of simulator the internal
quantum simulator, while the term external quantum simulator denotes
simulators offered by quantum cloud providers.

We also deployed a NoSQL database on this layer to permanently
store the processed job result data and information of users, functions,
and backends. In a production deployment, it is recommended that
the database be placed externally to ensure the high availability for
permanent data storage. Besides, the cached data for quantum circuits
can be stored at this layer.

4.2.4. Quantum cloud layer
This layer is an external part, indicating the quantum cloud

providers, such as IBM Quantum and Amazon Braket, where the quan-
tum job can be executed in a physical quantum backend. Quantum
providers can provide either quantum simulators or actual quantum
computers through their cloud services, which can be accessed from
the Classical Cloud layer. We develop the corresponding APIs in QFaaS
Library and Core APIs to interact with each external quantum cloud
platform. The result processing data from all cloud providers is stan-
dardized in a common JSON format, ensuring data consistency and
preventing data lock-in issues within the serverless-based platform.

4.2.5. Monitoring layer
This layer incorporates monitoring techniques to check the status

of other QFaaS components, including quantum backends, quantum
providers, function execution (job), and function deployment. As the
classical cloud layer employs Kubernetes as the container orchestration,
we can also seamlessly integrate additional open-source monitoring
techniques, such as Prometheus,2 Grafana,3 and Lens4 for observing
other system aspects of the classical cloud layer such as resource
consumption, networks, and system logs.

1 https://pypi.org/project/qfaas/
2 https://prometheus.io/
3 https://grafana.com/
4 https://k8slens.dev/

https://pypi.org/project/qfaas/
https://prometheus.io/
https://grafana.com/
https://k8slens.dev/
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Fig. 3. Class Diagram of QFaaS Core APIs.

4.2.6. User interface
We created a user-friendly web application (QFaaS Dashboard)

using React5 to interact with the QFaaS system (examples can be found
in Section 6). This user interface visualizes the essential functionalities
of QFaaS, such as function developing, deploying, invoking, monitoring
job results, and backend connection.

5. Design and implementation

This section provides the technical design, procedures, and imple-
mentation of the QFaaS Core APIs and quantum function development,
development, invocation, backend selection, and cold start mitigation
in the QFaaS framework.

5.1. QFaaS core APIs

QFaaS Core APIs take responsibility for primary functionalities in
the QFaaS framework. We have developed this API set using Python
3.10 with FastAPI,6 a high-performance Python-based framework sup-
porting the Asynchronous Server Gateway Interface (ASGI) for concur-
rent execution. We used the MongoDB database to store the persistent
data in JSON format. Fig. 3 depicts the overall class diagram, with
attributes and methods of each object in QFaaS Core APIs.

• User: This class defines user attributes and methods to facilitate
access control and role management features. We categorized
three different users: administrator, software engineer, and end-
user with different privileges in the system. Administrators con-
trol all components; software engineers can develop and deploy
functions, while end-users can only use their appropriate func-
tions. Each active user is assigned a unique token (using OAuth2
Bearer7), which is used for authentication, authorization, and
dependency check for each interaction with the core components
of the QFaaS. This implementation enhances security for the
whole framework and provides a multiple-user environment for
taking advantage of the framework.

• Function: This class defines each function’s properties and sup-
ported methods. Each function belongs to a software engineer
(author) and its access can be granted to a specific end user.
The CRUD, invoke() and scale() methods of this object interacts

5 https://reactjs.org/
6 https://fastapi.tiangolo.com/
7 https://datatracker.ietf.org/doc/html/rfc6750
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directly with other architectural components such as Code Repos-
itory, Container Registry and the Classical Cloud layer to handle
the function deployment, management, and invocation.

• Job: A job in QFaaS is a computation task submitted to a quantum
backend for execution. All properties and methods of a job are
defined in the Job class. Each Job has a unique Job ID assigned by
QFaaS and can be associated with a providerJobID given by an ex-
ternal provider. The function invocation initializes the job object.
After finishing the execution, job results can be post-processed
and stored in the database for further retrieval.

• Provider: The provider class handles a user’s authorization to
external quantum providers, including IBM Quantum and Amazon
Braket. The design of this class ensures that each user has the
specific privilege to access their quantum providers only.

• Backend: A backend is a quantum computation node, such as
a quantum simulator, or a quantum computer, which takes re-
sponsibility for the quantum execution. The Backend class defines
the attributes and methods to interact with the backend provided
by the classical cloud layer or external quantum cloud layer.
We also implement the Backend Selection policy in this class for
automating selecting the most appropriate quantum backend for
each quantum task execution (Section 5.3).

5.2. QFaaS quantum function structure

This section describes the structure of a quantum function in the
QFaaS framework for the development process. Our framework pro-
vides a set of pre-configured function templates, each encapsulated in
a Docker image with the necessary quantum software development
kit (SDK) environment, to streamline the development of quantum
functions. Each function has a single working directory, including main
components following the common pattern of the serverless platform
(such as Lambda [39]). Function handler code includes classical parts
(using Python) and quantum parts. When end-users invoke the function,
QFaaS executes the function handler and starts the computation as
defined. Handler for Qiskit, Cirq, and Braket function can be defined
at handler.py file while Q# function requires an additional Q# code
at handler.qs file and then to import it to the main handler.py
file. The sample structure for the function handler with classical pre-
processing and post-processing is described in Code 1. In the function
handler code, we import qfaas library8 and all additional libraries
(including compiled binary for Q# function). Then, we define the
function handling procedure (as shown in Code 1) as follows:

1 import qfaas, [additional_libraries]
2

3 def handle(event, context):
4 # 1. Pre-processing (optional)
5 data = pre_process(event.data)
6 # 2. Generate Quantum Circuit
7 qc = generate_circuit(data.input)
8 # 3. Verify/select quantum

backend
9 backend = Backend(data, qc)

10 # 4. Submit job for execution
11 job = backend.submit_job(qc)
12 # 5. Post-process (optional)
13 result = post_process(job.result)
14 return result

Code 1: Sample structure of a hybrid quantum-classical function

8 https://pypi.org/project/qfaas/

https://reactjs.org/
https://fastapi.tiangolo.com/
https://datatracker.ietf.org/doc/html/rfc6750
https://pypi.org/project/qfaas/
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1. Input Pre-processing: Users can optionally define the pre-
processing for input data handling in event object. The event is
JSON-based data that contains user input raw data, followed by
the QFaaS JSON format, while context provides HTTP methods
(such as GET/POST), HTTP headers, and other properties, which
are optional for the request. This pre-processing is executed on
classical computers and the processed data is used for the circuit
generation process.

2. Quantum Circuit Generating and Compilation: The engineer
can define quantum circuit code that takes input parameters
as input data. Based on the given parameters, an appropri-
ate quantum circuit is built. As aforementioned in Section 3.2,
each quantum function is a single-purpose and event-triggered
quantum program to solve a specific problem that produces the
output based on the user’s input. To ensure the versatility of
the quantum function, the quantum function code needs to be
designed to generate the quantum circuit dynamically based on
the user’s input (so we called variable circuits for short). Other-
wise, if the quantum circuit is fixed regardless of different input
data, the same circuit will be generated every time the quantum
function is invoked. The characteristic of the quantum circuit is
used for the backend selection in the next stage. After that, the
initial circuit may need to be transpiled to be compatible with
the supported gates and qubit topology of the selected backend.
The conversion is also required in the case of the quantum
cross-platform execution model.

3. Quantum Backend Selection: QFaaS provides a built-in quan-
tum backend verification and selection in Backend class (de-
tailed implementation in Section 5.3) to ensure the most ap-
propriate backend is selected for the execution. It is worth
noting that our proposed backend selection strategy is a best-
effort approach as some quantum jobs take longer to execute
than others, and no quantum provider discloses any information
about the pending jobs’ characteristics at the moment. However,
our framework also allows users to define their customized back-
end selection strategy, which paves the way for more advanced
techniques to be designed when more information is available in
the future.

4. Quantum Job Submission and Execution: We also provide
the submit_job method in the Backend class to perform the
job submission to the selected quantum backend in the previous
step. This method involves the quantum circuit transpilation to
ensure the submitted circuit is compatible with all supported
gates of the quantum backend. The outcome of this method
is a job with a unique ID for result retrieval and further in-
spection. As today’s quantum computers are NISQ devices [13],
each quantum execution should be run many times (shots) to
mitigate quantum errors. Besides, due to the limited number of
available quantum computers, a quantum task (job) needs to be
queued at the cloud provider (from seconds to hours) before
execution. After the quantum computation is finished, the raw
result is retrieved from the provider to the function handler for
the post-processing step.

5. Output Post-Processing: Users can define the customized post-
processing method for further analyzing the raw result from
the quantum computer before generating the final result for
end-users. We provided several sample post-processing methods
based on result counts, which will be discussed in Section 6.

After finishing all the processing, the function handler returns the
result to end-users, including the HTTP Status Code and response
data in common JSON format, regardless of the difference of targeted
backends. The job result is also kept in the MongoDB database for
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further retrieval.
Algorithm 1: QFaaS Quantum Backend Selection
Input : qc: quantum circuit, sdk: quantum SDK,

a: autoselect option, t: preferred backend type,
bName: backend name (for manual selection),
𝛾: list of all parameter weights, u: current user

Output: be: quantum backend instance
1 procedure BackendSelection:
2 be ← null
3 q ← qc.getNumQubit()
4 if t is internal then
5 be ← getInternalSimulator (sdk, q, u)
6 else
7 if a is True then
8 # Auto Backend Selection
9 Pre-select backends and get all transpiled qc
10  ← getBackendList (u)
11  ← preSelect (, q, sdk, t)
12  ← getTranspile (qc, )
13 Scoring all backend in 
14 for b ∈  do
15 𝜏 ← get transpiled circuit for b (𝜏 ∈  )
16 Normalize depth, QV, workload & CLOPS
17 v ← norm (getQV(b), )
18 d ← norm (getDepth(𝜏),  )
19 c ← norm (getCLOPS(b), )
20 w ← norm (getWorkload(b), )
21 Compute precision, speed & overall score
22 p ← 𝑣𝛾𝑣 + 𝑑𝛾𝑑
23 s ← 𝑤𝛾𝑤 + 𝑐𝛾𝑐
24 𝜖 ← 𝑝𝛾𝑝 + 𝑠𝛾𝑠
25 Update all backend scores
26  ← updateScore (b, 𝜖)
27 end for
28 be ← getMaxScore ()
29 else
30 # Manual Backend Selection
31 be ← verifyBackend (bName, u, qc)
32 end if
33 end if

5.3. Quantum backend selection

Quantum Backend Selection is an essential procedure in the function
invocation process to determine which quantum backend is suitable
for the quantum circuit execution. In the initial version of QFaaS, we
have incorporated a scoring-based policy, as outlined in Algorithm 1.
This policy empowers users to prioritize their selection of the quantum
backend based on factors such as result precision or the speed of
function execution.

In our backend selection logic, users can specify their preferred
backend type as internal to use the internal quantum simulator for
testing and prototyping purposes. They can also manually select a
specific quantum backend when invoking a function. Otherwise, the
QFaaS framework will process the automatic backend selection strategy
as follows:

1. Backend Pre-selection and Circuit Transpilation:
QFaaS filters a list of backends based on key requirements
to execute the quantum task. These requirements include (1)
scale of the quantum backend (i.e., the number of qubits must
be sufficient), (2) availability (i.e., the quantum backend must
be operational), and (3) and compatibility (i.e., the quantum
backend must support the quantum SDKs used by quantum
circuit) [40]. After pre-selecting the list of appropriate quantum
backends (), the circuit will be transpiled to adapt to all quan-
tum backends in , and the characteristics of each corresponding
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transpiled circuit can be used for determining the most suitable
quantum backend.

2. Backend Scoring based on execution priority
Considering the current state of NISQ devices and the quantum
computing service model of quantum providers, we determine
two priorities to select a quantum backend when invoking a
function, i.e., precision and speed.
(a) The precision of the execution results depends on the quality
of qubits in a quantum system, which can be determined by the
quantum volume (QV, denoted by 𝑣). Quantum volume [41] is a
holistic metric that indicates how well a quantum circuit can be
executed in a quantum system, measured by the largest random
square circuit that can be successfully run. We also consider the
depth (denoted by 𝑑) of the circuit as a shallower circuit has
a higher chance of being executed faithfully inside a quantum
system [42,43]. In other words, a finer quantum backend for
generating better result precision has a higher quantum volume
and requires a quantum circuit to be transpiled with a smaller
circuit depth. For equally weighting two metrics with different
scales in our backend scoring algorithm, we normalize 𝑣 and 𝑑
of the 𝑖th backend in  to be between 0 and 1 (using min–max
normalization) by the following formulas:
�̄�𝑖 =

𝑣𝑖 − min(𝑣)
max(𝑣) − min(𝑣)

and 𝑑𝑖 =
max (𝑑) − 𝑑𝑖

max (𝑑) − min (𝑑)
where �̄�𝑖 and 𝑑𝑖 are normalized values of quantum volume and
transpiled circuit depth.
The precision score (𝑝𝑖) of the 𝑖th quantum backend can be
calculated by 𝑝𝑖 = �̄�𝑖𝛾𝑣 +𝑑𝑖𝛾𝑑 where 𝛾𝑣 + 𝛾𝑑 = 1 and 𝛾𝑣, 𝛾𝑑 are the
weight of quantum volume and circuit depth, respectively.
(b) The speed of execution relies on how fast a quantum system
can execute quantum circuits, which can be measured by Circuit
Layer Operations Per Second [43] (CLOPS, denoted by 𝑐). We
also consider the current workload (i.e., the total number of
pending jobs to be executed, denoted by 𝑤) of a quantum
backend to determine the speed score, as the waiting time can
be typically shorter. Similar to the calculation of precision score,
we normalize 𝑐 and 𝑤 of the 𝑖th backend in  to be between 0
and 1 by the following formulas:
𝑐𝑖 =

𝑐𝑖 − min(𝑐)
max(𝑐) − min(𝑐)

and �̄�𝑖 =
max (𝑤) −𝑤𝑖

max (𝑤) − min (𝑤)
where 𝑐𝑖 and �̄�𝑖 are normalized values of CLOPS and current
workload of the quantum backend.
The speed score (𝑠) of an 𝑖th quantum backend can be deter-
mined by 𝑠𝑖 = 𝑐𝑖𝛾𝑐 + �̄�𝑖𝛾𝑤, where 𝛾𝑐 + 𝛾𝑤 = 1; 𝛾𝑐 and 𝛾𝑤 are
the weight of CLOPS and workload of the quantum backend,
respectively.

After scoring the precision (𝑝𝑖) and speed (𝑠𝑖), we calculate the
overall score (𝜖𝑖) of the 𝑖th backend by using the following formula:
𝜖𝑖 = 𝑝𝑖𝛾𝑝 + 𝑠𝑖𝛾𝑠 where 𝛾𝑝 + 𝛾𝑠 = 1; 𝛾𝑝 and 𝛾𝑠 are the weight of precision
and speed priority, respectively. This approach can dynamically select
the most suitable quantum backend based on user priority, the charac-
teristics of current function invocation, and the status of all available
quantum backends. It is important to note that although all weight
parameters can be adjusted, users can only need to adjust two primary
weights 𝛾𝑝 and 𝛾𝑠 based on their priority on either the precision of the
execution result or how fast the quantum circuit will be executed. For
example, if a user prioritizes the precision of the result rather than the
speed, they can set 𝛾𝑝 close to 1, in which the quantum can be queued in
a specific backend (which can be executed with the highest accuracy)
even if the availability of the least busy or highest quantum backend is
not the best one. Otherwise, the default value of all weight parameters
can be set to 0.5 to maintain the balanced contribution of all factors
to the backend selection decision. To validate the operation of this
policy, we provide examples of backend selection for three consecutive
quantum function invocations in Section 6.3.
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Fig. 4. Quantum function cold start latency process during the invocation.

It is important to note that we have already utilized the most
accessible circuit information and key benchmarking metrics of quan-
tum computers (qubit number, quantum volume, CLOPS) [43] for
implementing the backend selection strategy. Due to the limitations to
accessing the public information of pending jobs at the other cloud
provider (e.g., Amazon Braket through Strangeworks), this backend
selection procedure is only supported for IBM Quantum providers at
the time of its initial development. Supporting the backend selection
for Amazon Braket and other quantum cloud vendors and considering
other aspects, such as costs, is our future plan.

5.4. Quantum function cold start mitigation

Cold start is a typical problem of serverless computing [31]. It is
referred to when the framework needs to initialize a new container
instance and prepare the function execution when handling a new
invocation [44,45]. This latency is even more significant in the context
of quantum functions, as each function typically requires a specific
environment setup and circuit compilation optimization to adapt to the
targeted quantum backend.

The quantum function cold start latency can be illustrated in Fig. 4.
If there is no container of a specific function is available at the time of
its invocation, a new instance needs to be initialized, which can cause
a notable delay. After setting up the environment for the quantum SDK,
a corresponding quantum circuit needs to be generated and compiled.
As most available quantum computers do not have fully connected
qubit topology and do not support all quantum gates, quantum circuit
transpilation is typically required to tailor it to specific qubit topology
and native gate set of targeted quantum backend. This process can also
result in substantial delays in the quantum circuit compilation phase
before its execution. Thus, mitigating cold start latency in a quan-
tum serverless platform, particularly in the NISQ era, is unavoidably
essential.

Focusing on the nature of current quantum execution, we design
an agile and practical strategy to mitigate the cold start issue and
enhance quantum function execution as a complement to the QFaaS
framework (see Fig. 5). To reduce the container preparation latency, we
keep the function’s container ‘‘warm’’ (i.e., keep at least one instance
up and running) after its creation to avoid the long container initial-
ization latency. To mitigate the quantum circuit compilation latency,
we utilize the cache-based approach, which is a popular strategy in
classical serverless computing [45]. To enhance the reusability and
flexibility of cached data, we use QASM (quantum assembly language)
to store a copy of the pre-transpiled quantum circuits. Open QASM
is a lightweight assembly language to represent universal quantum
circuits [33], which can be imported to or generated from different
quantum SDKs (e.g., Qiskit). During the circuit compilation, QFaaS
will check the availability of the corresponding transpiled circuit and
load it into the current function instance for execution. Otherwise, the
quantum circuit has to be transpiled, but a copy of the transpiled circuit
will be stored for further reuse. Besides, during the idle time period
of the function, we can proactively pre-transpile quantum circuits of
that function to optimize with the qubit topology and native gate set
of available quantum backends. Another source to enrich the transpiled
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Fig. 5. QFaaS Transpilation Caching approach for mitigating the cold start latency of
container preparation and quantum circuit compilation.

QASM files is to integrate the external quantum circuit dataset, such
as MQTBench [46], which comprises over 70,000 quantum circuits in
QASM format of different applications. As Open QASM is a lightweight
and platform-agnostic quantum assembly language [33], this caching
approach also brings its potential to future expansion of QFaaS to
support other quantum computing systems. Also, the circuit loading
time from a pre-transpiled QASM file is by far faster than transpile
the circuit; this approach can significantly reduce the overhead for the
function repeated execution, hence reducing the cold start latency for
the quantum function execution. The empirical result to validate this
strategy can be found in Section 6.4.

5.5. QFaaS sample operation workflows

This section provides two sample operation workflows, including
developing/deploying and invoking quantum functions using the QFaaS
framework.

5.5.1. Developing and deploying quantum functions
QFaaS simplifies the function development process for quantum

software engineers. They can utilize the following workflows to cre-
ate new functions, update existing functions, and troubleshoot issues
during the development process. Fig. 6(a) depicts the function devel-
opment process, which consists of seven key steps as follows:

1. Create a new function by using the QFaaS UI. The engineers
specify which quantum SDK will be used (Qiskit, Cirq, Q#, or
Braket), include the required library, and write their quantum
function code or use pre-defined circuit library (0).

2. Push function codes to the Application Deployment layer
through the QFaaS API Gateway.
After these steps, QFaaS automatically takes responsibility for the
rest of the deployment procedure by performing the following steps:

3. The API gateway forwards the function code and pushes it to the
Code Repository.

4. After the function code is pushed, it triggers the Automation
components to start the continuous deployment.

5. Pull the function template and combine it with function code to
build up and containerize it into a Docker image. Then, those
images will be pushed to a Container Registry to be stored for
further utilization (such as migrating or scaling in a function).
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6. Deploy the function as a container-based service into the Kuber-
netes cluster at the classical cloud layer.

7. Expose the service API URL endpoint corresponding to the de-
ployed function. After this stage, the function serves as a service
and is ready for invoking from end-users.

During the development stage of the quantum function, engineers can
test the deployed services with different backends several times and
analyze the results, which are stored in the database for comparison and
further improve function configurations (e.g., shots) to achieve optimal
results. QFaaS also monitors the operation of quantum functions and
performs the cold start mitigation strategy as described in Section 5.4

5.5.2. Invoking quantum functions
The users can invoke the deployed function through the QFaaS API

gateway. Fig. 6(b) demonstrates the overall workflow for the function
invocation, including seven steps as follows:

1. Sending request : In the requested data, the user can clarify their
preferred backend or let the framework automatically select the
suitable backend, the result retrieval method, and the number of
shots they want to repeat the quantum task.
After receiving the user’s requested data, QFaaS automatically ac-
complishes the rest of the process.

2. Routing the requests: The API Gateway routes user requests to
appropriate available functions. In the event that a function is
not yet initiated or undergoing scaling in to zero, QFaaS takes
charge of initializing and activating the function to handle the
incoming user request. This scenario is anointed as a cold start
in serverless jargon.

3. Input Pre-Processing and Quantum Circuit Compilation: The user’s
input data undergoes pre-processing at the classical computation
node. Then, a corresponding quantum circuit is generated based
on the provided input.

4. Backend Selection: An appropriate backend is selected based on
user requests and availability at the quantum provider, using our
decision policy (Algorithm 1).

5. Executing the quantum job: The quantum circuit is transpiled and
dispatched to the chosen backend, which can be an internal
quantum simulator (6a), an external quantum simulator (6b), or
a quantum computer (6c). Once the backend completes the exe-
cution, the outcome is transmitted back to the function handler
for post-processing on classical resources in the same invocation.
If users want to check the response later or when the waiting
time at the provider is longer than a predefined timeout (1 min
by default), the function will send back the QFaaS Job ID and
backend information after successfully submitting the quantum
circuit to the selected backend. This delayed scenario is expected
to happen often when submitting a job to an external quantum
cloud provider during peak hours due to the current shared
nature of available quantum resources.

6. Output Post-Processing : The outcome from quantum backends
could be analyzed and post-processed before being sent back to
end-users and stored in the database.

7. Returning the results: Following the previous step, the final result
is returned to end-users through the API Gateway, following
the same approach as when they initially submitted the re-
quest. End-users can obtain the final result data and informa-
tion regarding the quantum backend device utilized during the
quantum execution.

6. QFaaS example of operation and evaluation

This section provides explanatory examples of the operation and
performance evaluation of QFaaS in function deployment, resource
consumption, and scalability. Besides, we validate the proposed quan-
tum backend selection and cold start mitigation strategy with various
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Fig. 6. Overview of two main operation workflows in QFaaS: (a) Function development and deployment, (b) Function invocation.
quantum algorithms. We also use QFaaS to evaluate the performance
of popular simulators and computers to give practical insights into
the limitations and challenges of quantum software engineering in the
NISQ era (see Appendix B).

6.1. Environment setup

We deployed the core components of QFaaS on a set of four virtual
machines (VMs) offered by the Melbourne Research Cloud.9 We set
up the Kubernetes cluster using microk8s10 with containerd as the
underlying containerization technology on a three-VM cloud cluster
(one master node with 4 vCPU, 16 GB RAM, and two worker nodes with
8vCPU, 32 GB RAM each). The function deployment component is built
on top of OpenFaaS [47]. The QFaaS Code Repository and Automation
components are deployed on the last VM (4 vCPU, 16 GB RAM) with
Gitlab as the underlying Git-based platform. For the quantum com-
putation, we have tested the Qiskit functions with the built-in QASM
simulator on the classical computers at the classical cloud layer and
quantum backends provided by IBM Quantum [14]. For Q# and Cirq
functions, we used their built-in quantum simulators and executed them
on the classical cloud layer. For Braket functions, we used their local
simulator and external backends at Amazon Braket through the support
of Strangeworks Backstage program [48]. The circuits and transplied
QASM files for other quantum algorithms in the backend selection
and cold start mitigation validation are adopted from the MQT Bench
dataset [46].

9 https://cloud.unimelb.edu.au/
10 https://microk8s.io/
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6.2. Example of operation and performance evaluation

To demonstrate the practical operation of QFaaS, we utilize an ex-
planatory quantum circuit to generate truly random numbers, utilizing
the superposition characteristic of qubits. It is evident that random
numbers play an essential role in cryptography, finances, and many
other fundamental scientific fields [49]. By leveraging quantum princi-
ples, Quantum Random Number Generation (QRNG) is a reliable way
to provide true randomness, which cannot be achieved by classical
computers [50]

We deployed the QRNG circuits in four popular quantum SDKs
(Qiskit, Cirq, Q#, and Braket). The main idea of this circuit is to
leverage the Hadamard gate to create the superposition state of each
qubit and then measure to get a random value (0 or 1) with the same
possibility (50%). To validate the hybrid quantum–classical integration
feature, we implemented sample post-processing by analyzing all possi-
ble outcomes when the function is executed multiple times (shots) and
returning the most frequent result to the user.

The request for invoking the QRNG function using all supported
SDKs and languages follows the QFaaS format. Upon completion of the
processing, the sample response, as illustrated in Fig. 7, indicates that a
10-qubit random number, specifically 367 (0101101111 in binary), has
been generated. This particular random number occurs most frequently,
appearing twice, during the execution of the function using the Amazon
Braket Simulator (aws.SV1).

6.2.1. Function deployment evaluation
In this evaluation, we measured the image size, average image

building time, and the total deploying time in the first and later update
at the Application Deployment layer (using Gitlab) to provide insight
into QFaaS system performance. Table 1 records the detailed result of
this evaluation.

https://cloud.unimelb.edu.au/
https://microk8s.io/
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Table 1
QFaaS functions deploying and re-deploying (updating) time.

Function Function
Image Size
(MB)

1st Building
time
(s)

1st Deploying
time
(s)

Re-building
time
(s)

Re-Deploying
time
(s)

Qiskit QRNG 755.85 180.62 262 8.35 31
Cirq QRNG 561.19 105.57 168 8.53 30
Braket QRNG 1010.07 354.04 496 6.36 30
Q# QRNG 2200 267.75 466 5.77 34
Table 2
QFaaS function resource consumption during the idle time and busy time with 1 and 10 concurrent users.

Function Idle time 1 user 10 concurrent users

CPU (vCore) RAM (MB) CPU (vCore) RAM (MB) CPU (vCore) RAM (MB)

Qiskit QRNG 0.001 87.9 0.052 87.93 0.082 88.04
Cirq QRNG 0.001 124.56 0.024 128.605 0.053 129.07
Braket QRNG 0.001 96.063 0.042 99.586 0.078 99.96
Q# QRNG 0.037 688.77 0.056 735.16 – –
Fig. 7. Sample QRNG Function Invocation Result on QFaaS Dashboard interface using
Amazon Braket backend (aws.SV1).

As all function’s essential components are compressed in the con-
tainer images, its size is varied from 561 MB (Cirq) up to 2.2 GB
(QSharp). The total deploying time includes the function image-
building time and image-deploying time, which is below ten minutes
for creating the function deployments the first time. Deploying the Cirq
QRNG took the shortest time (below 3 min) whereas Braket and Q#
functions required 7-8 min to complete. However, when we update the
function handler code, the re-deploying times are significantly faster
(around 30 s) for all functions. It is mainly because a container image
comprises multiple layers and the updated image can inherit multiple
layers from the previous images. We also utilized caching technique
to optimize the continuous integration and deployment process. These
function deploying and updating times are reasonable in practice as the
software engineer can focus on coding and offload the configuration
and deployment to the Application Deployment layer. The correspond-
ing service endpoint of the quantum function is then ready for invoking
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after several minutes in the first deployment and below a minute for
the following update.

6.2.2. Function resource consumption
We monitored the resource consumption, including the CPU and

memory (RAM) used by the pod associated with the deployed function
in QFaaS. We measured the average value of maximum CPU and RAM
usage, provided by Kubernetes Dashboard and K8sLens 611 monitoring
tool. In this evaluation, we kept a single pod for each function and
considered 3 scenarios: the idle time (i.e., keep the pod running without
any invocation), 1 user, and 10 concurrent users.

As the results are shown in Table 2, the required resource to keep
Qiskit, Cirq, and Braket functions running are kept low, which are
0.001 CPU vCore and roughly 100 MB of memory. In contrast, the Q#
function requires more additional resources to keep its pod running,
even during idle time. Then, we used JMeter 512 to continually generate
1000 requests to obtain 10-qubit random numbers (using the internal
quantum simulators) with 100 shots for each invocation. The maximum
CPU and RAM used are slightly increased in cases of Qiskit, Cirq,
and Braket while the corresponding increment is higher with the Q#
function. We also note that the figures for the Q# function in the
last columns are disregarded as its pod frequently crashed when we
constantly send requests from 10 concurrent connections. Therefore,
we suggest using Qiskit, Cirq, or Braket for prototyping a quantum
function to achieve better performance and maintain proper resource
consumption.

6.2.3. Function scalability evaluation
As the underlying orchestration technique is based on Kubernetes,

we can enable the auto-scaling feature to scale out the function deploy-
ment horizontally (i.e., increase the number of function replications),
dealing with the scenario when the request workload grows signifi-
cantly from multiple concurrent connections. To evaluate the effective-
ness of different scalability levels, we perform a set of evaluations on
the 10-qubit Qiskit QRNG function. In this evaluation, we increase 𝑁
- the number of concurrent users from 8 to 64, using JMeter 5. In
each case, we consider a set of three different scenarios: non-scale (1
pod/function), scale out to N/2 pods, and scale out to 𝑁 pods (we
note that the number of pods is fixed for evaluation purposes only).
For example, suppose there are 64 users (N) invoking the function
simultaneously; we will conduct three test cases: 1 pod, 32 pods (N/2),
and 64 pods (N), and record the average response time and the standard
deviation.

11 https://k8slens.dev/
12 https://jmeter.apache.org/

https://k8slens.dev/
https://jmeter.apache.org/
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Table 3
Backend Selection for Job 1 (Deutsch-Jozsa’s algorithm - using 5 qubits. ibmq_kolkata backend is chosen with the highest 𝜖 = 0.61.

Backend Qubits QV (v) �̄� QC depth (d) 𝑑 CLOPS (c) 𝑐 Workload (w) �̄� p s 𝜖

ibm_washington 127 64 0.33 20 0 850 0 2 1 0.17 0.5 0.34
ibmq_kolkata 27 128 1 19 0.17 2000 0.56 40 0.68 0.59 0.62 0.61
ibm_hanoi 27 64 0.33 17 0.5 2300 0.71 88 0.27 0.42 0.49 0.46
ibmq_guadalupe 16 32 0 14 1 2400 0.76 103 0.14 0.5 0.45 0.48
ibm_perth 7 32 0 15 0.83 2900 1 120 0 0.42 0.5 0.46
Fig. 8. Scalability evaluation on 10-qubit Qiskit QRNG function.

Fig. 8 demonstrates the result of our benchmarking. Overall, it is
clear that if the function is non-scalable, the average response times
for high-demand scenarios significantly increase. The previous section
shows that the average response time for the 10-qubit Qiskit QRNG
function is 81 ms. This figure jumps dramatically, up to 1703 ms,
if 64 users use the function simultaneously. However, thanks to the
containerization approach in our framework, we can quickly scale out
deployment in seconds to ensure the response time is maintained. We
can see that the average response time fluctuates between 87 to 148 ms
if we scale out to 𝑁 pods or from 102 to 180 ms when the number of
pods is N/2.

It is important to notice that by scaling a quantum function, our ap-
proach is to replicate its classical instance deployment (i.e., Kubernetes
pod), which is comparable to any existing serverless system. Its main
objective is to handle concurrent requests from multiple connections
efficiently by reducing total response time. As shown in Fig. 8, this scal-
ing approach shows significant performance improvement in the case
of using internal quantum simulators (for function testing or prototyping
purposes) as the corresponding quantum simulator is incorporated into
each function instance.

This scaling approach has no impact on the general performance
in a special situation when all concurrent users manually select the
same quantum backend for execution, as all quantum circuits will
be forwarded to the same backend. However, this limitation can be
addressed by designing an automatic backend selection algorithm based
on the availability of quantum resources at the provider as our pro-
posed algorithm (see Section 5.3). This way, each time the new instance
of the same function is triggered, it will execute the backend selection
individually to determine the best-suited quantum backend for execu-
tion without overflowing the same quantum backends. Considering the
limitations of NISQ devices and available information about quantum
jobs provided by the quantum cloud vendor, our scaling and backend
selection strategy can still offer a best-effort and viable approach to
facilitate the service-oriented quantum application requirements. We
have planned to advance these techniques in future releases of QFaaS
when more information about waiting jobs is publicly accessible from
the provider.
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6.3. QFaaS backend selection validation

To illustrate and validate the operation of the proposed Backend
Selection policy, we present a case involving three invocations of dif-
ferent quantum functions (Deutsch-Jozsa’s algorithm [6] using 5 qubits,
the GHZ state [51] using 10 qubits, and Shor’s algorithm [7] using 18
qubits) that need to be executed on the most suitable quantum backend.
We assign equal weight to all factors, with 𝛾 = 0.5, thereby ensuring
a balanced contribution of all aspects (including quantum volume,
circuit depth, CLOPS, and workload) to the final backend decision.
It is important to note that users can adjust these weight parameters
according to their preferences, prioritizing either precision or execution
speed. We assume that five quantum backends are available for the
backend selection, each supporting a different number of qubits ranging
from 7 to 127. Quantum volume and CLOPS are fixed values associated
with each quantum backend, sourced from IBM Quantum [14], while
the quantum circuit depth and workload are variable. Therefore, the
quantum backend can be dynamically selected based on the current
quantum circuits to be executed and the status of all available quantum
backends (once per function invocation).

Table 3 illustrates the backend selection process for the first quan-
tum job. While the ibm_washington backend has the largest number of
qubits and is less busy, its quantum volume and CLOPS are significantly
lower compared to other 27-qubit quantum computers. Considering all
the factors, the ibm_kolkata backend is chosen as it has a higher chance
of achieving both higher precision and faster execution. For the second
quantum job (see Table 4), only four backends with more than 10
qubits are considered. Since all the transpiled quantum circuits have
the same depth, the depth scores are normalized to 1. The ibm_hanoi
backend is eventually selected as it has the highest score of 0.8. Lastly,
the third quantum job involves Shor’s algorithm to factorize 9, which
requires 18 qubits and a significant number of layers in the transpiled
circuit ( Table 5). Only three backends meet the key requirement for
the number of qubits, and among them, the ibmq_kolkata backend with
the highest score is chosen.

It is also essential to highlight that the backend selection policy
presented here is an approximation approach, as certain metrics, such
as the workload of a quantum backend, can be tricky. For example, a
backend with a smaller number of pending jobs does not necessarily
guarantee faster execution, as those pending jobs could be large tasks
requiring a longer processing time. However, users have the flexibility
to disregard or assign a lower priority (close to 0) to this metric
when determining the speed score of a backend. In our future plans
for advancing the QFaaS framework, we aim to incorporate more
advanced techniques, such as machine learning, which automatically
adjust these metrics to enhance the backend selection process. This
will further refine the effectiveness of the policy, offering improved
decision-making capabilities within the QFaaS framework.

6.4. QFaaS cold start mitigation evaluation

We evaluate the cold start mitigation strategy with Grover’s al-
gorithm to diverse the use cases of QFaaS. Grover’s algorithm [8] is
a quantum search algorithm that provides a quadratic speedup over
classical counterparts. Its complexity grows with the number of qubits,
which in turn affects the depth of the quantum circuit and the qubit
connectivity.
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Table 4
Backend Selection for Job 2 (GHZ State - using 10 qubits). ibmq_hanoi backend is chosen with the highest 𝜖 = 0.8.

Backend Qubits QV (v) �̄� QC depth (d) 𝑑 CLOPS (c) 𝑐 Workload (w) �̄� p s 𝜖

ibm_washington 127 64 0.33 13 1 850 0 5 1 0.67 0.5 0.59
ibmq_kolkata 27 128 1 13 1 2000 0.74 212 0 1 0.37 0.69
ibm_hanoi 27 64 0.33 13 1 2300 0.94 22 0.92 0.67 0.93 0.8
ibmq_guadalupe 16 32 0 13 1 2400 1 103 0.53 0.5 0.77 0.64
ibm_perth 7 – – – – – – – – – – –
Table 5
Backend Selection for Job 3 (Shor’s algorithm to factorize number 9 - using 18 qubits). ibmq_kolkata backend is chosen with the highest 𝜖 = 0.7.

Backend Qubits QV (v) �̄� QC depth (d) 𝑑 CLOPS (c) 𝑐 Workload (w) �̄� p s 𝜖

ibm_washington 127 64 0.33 38 381 0 850 0 4 1 0.17 0.5 0.34
ibmq_kolkata 27 128 1 37 776 1 2000 0.79 130 0 1 0.4 0.7
ibm_hanoi 27 64 0.33 38 190 0.32 2300 1 57 0.58 0.33 0.79 0.56
ibmq_guadalupe 16 – – – – – – – – – – –
ibm_perth 7 – – – – – – – – – – –
Fig. 9. Quantum function cold start latency mitigation evaluation with Grover-n
function, where n is the number of qubits. Grover’s algorithm circuits and transpiled
QASM files adopted from the MQT Bench dataset [46], transpilation optimization level
3 to IBM Quantum 27-qubit devices.

We deploy different variations of Grover’s algorithm from 2 qubits
to 7 qubits, using the quantum circuits and transpiled QASM files of
the MQT Bench dataset [46] (no ancilla qubit version, transpilation
optimization level 3 to IBM Quantum 27-qubit quantum computers).
We measure the average start-up latency from the function invocation
until the function is ready for the quantum execution (i.e., finish the
circuit compilation and transpilation) with the results as shown in
Fig. 9.

It is obvious that our transpilation caching approach (warm start
with caching) significantly reduces the latency compared to both the
cold start and the warm start without caching scenarios. For example,
in the Grover-7 function (7 qubits), the cold start latency is around
15 s, the warm start without transpilation caching is around 8s, while
the QFaaS transpilation caching approach brings it down to under
0.628s, demonstrating a substantial improvement in execution prepa-
ration time. This pattern of reduction holds consistently across all
evaluated Grover-n functions, with the caching approach offering a
significant decrease in function preparation latency. This evaluation
suggests that the QFaaS’s transpilation caching strategy can effectively
handle the classical cold start problem for quantum function execution,
thereby enhancing the system’s responsiveness and performance for
end-users.
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6.5. Industry use cases of QFaaS

It is imperative for industries to start investing in quantum com-
puting services to stay competitive in the cloud-based computing mar-
ket. QFaaS can serve as a proof-of-concept case study and reference
system architecture design for further practical development. For ex-
ample, Citynow Asia, a Japan-based quantum-driven company, has
already started using QFaaS to develop their quantum serverless plat-
form (QuaO) [52]. We anticipate a growing interest in quantum
serverless computing and the adoption of QFaaS in the future.

7. Discussion and lessons learned

This section presents key lessons learned regarding both the oppor-
tunities and limitations of the QFaaS framework, providing a roadmap
for future advancements in QFaaS and the broader quantum serverless
domain. Throughout the empirical development and rigorous valida-
tion of our QFaaS framework, we have gained pivotal insights into the
prospects of the serverless approach to quantum computing, including:

• L1: Serverless computing holds great potential to accelerate quantum
software development.
From the software developers’ perspective, serverless approaches
can help to obviate the necessity for quantum software envi-
ronment setup, service deployment, and quantum infrastructure
configuration, enabling them to concentrate on application devel-
opment and experimentation without worrying about the under-
lying system. Quantum functions can be developed and deployed
in a manner analogous to classical functions, ensuring seam-
less integration into existing application workflows. For quan-
tum cloud providers, serverless models can provide an efficient,
cost-effective means for allocating resources, optimizing utiliza-
tion, and reducing idle time. By effectively implementing server-
less models and offering a competitive pay-per-use cost model,
providers can enhance user engagement and encourage long-term
commitment to their services.

• L2: The state-of-the-art software techniques and workflows can be
effectively leveraged to expedite the quantum serverless paradigm.
Our work not only theorizes but also empirically demonstrates
the adaptation of the DevOps methodology and techniques within
the QFaaS framework, such as containerization, continuous in-
tegration, and continuous deployment. The development process
of a quantum function can further be split into multiple stages.
Quantum simulators can be used in the initial prototyping and
testing phase, while quantum computers can be used later on
during the production stage.

• L3: The hybrid architecture of QFaaS represents one of the adaptive
and practical approaches to facilitate quantum serverless systems,
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reflecting the current reliance of quantum execution on classical
runtimes.
This architecture highlights the crucial cooperation between clas-
sical and quantum computation resources. In this setup, the classi-
cal counterpart acts as the runtime server, responsible for storing
and compiling the quantum code prior to its execution on the
designated quantum computer. The abstraction for decomposing
a complex application into multiple smaller quantum functions
adapts to the NISQ devices. The development and deployment of
quantum functions are simplified and streamlined by the employ-
ment of DevOps techniques. The quantum function performance
can also be optimized based on the needs of users thanks to the
lightweight yet adaptive backend selection strategy.

espite the promising potential of the quantum serverless approach,
he current state of quantum hardware and software presents several
ignificant challenges. These serve as crucial lessons learned for further
xploration in our work:

• L4: Current NISQ hardware is expensive, unreliable, and constrained,
making it significantly challenging to incorporate the quantum server-
less paradigm into production environments.
The intrinsic noise in these devices poses substantial challenges
to the reliability and accuracy of quantum operations, where
techniques such as quantum error correction and mitigation can
be employed. Furthermore, the execution of tasks on real quan-
tum devices is often associated with long queuing times and
inconsistent execution durations, making them less suitable for
time-sensitive and real-time applications. Throughout our empir-
ical study with QFaaS, even the execution of Shor’s algorithms
requires minutes on current platforms, which is unanticipated for
a common serverless execution. However, the rapid advances in
quantum hardware in recent years hold promise for addressing
this problem in the near future.

• L5: Quantum resources cannot be scaled in the same manner as their
classical counterparts.
Contrary to the classical domain, where serverless offers clear
scalability and resource management benefits, the quantum realm
introduces unique challenges. The scaling constraint of quantum
hardware underscores the need for unique approaches to resource
management in quantum serverless architectures. Our research
recognizes that the advantages seen in classical serverless com-
puting may not translate directly to quantum computing without
significant adaptations and optimizations, specifically concerning
the scalability of quantum resources. Techniques such as virtual-
ization and containerization for quantum resources are potential
directions to improve the utilization and scalability of quantum
computing resources in the future.

• L6: The quantum serverless model is still in its early stages, and
there are numerous open problems that require extensive research and
attention.
The application of serverless computing for quantum applications
is still an emerging area where more knowledge is needed to
understand the full extent of its suitability and benefits. A server-
less approach may introduce challenges for non-trivial quantum
applications that require iterative adjustment and optimization,
such as quantum machine learning. Besides, the nature of cur-
rent NISQ devices can also limit the potential of a quantum
serverless approach. Despite this, the serverless approach has
gained prominence due to its ability to reduce costs, improve
scalability, and eliminate the need for hardware-side manage-
ment, which can be particularly beneficial for future quantum
software development. Indeed, quantum vendors, such as IBM
Quantum, have placed quantum serverless as their key priority
in the development roadmap [53]. There are numerous open
problems that require further extensive research and attention to
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exploit the potential of a quantum serverless approach. Key areas l
that necessitate additional exploration include circuit cutting,
optimizing the orchestration of hybrid quantum–classical tasks,
circuit transpilation caching, reducing quantum cold start, and de-
veloping adaptive backend selection mechanisms. Resolving these
challenges will play a critical role in facilitating the widespread
adoption of the quantum serverless paradigm in the near future.

8. Related work

This section discusses the related work in the context of frame-
works for developing service-oriented quantum software. To the best
of our knowledge, QFaaS can be considered one of the pioneers in
serverless-based function-as-a-service frameworks for quantum comput-
ing. Table 6 summarizes the difference between QFaaS and related
work in the context of their various capabilities. It is important to
note that all related frameworks [54,55], empirical studies [10,56]
and minimum viable product (MVP) [57] designs did not provide an
open-source or detailed description for reproducible purposes. Besides,
two other SDKs [25,58] are related but their classification is not a
quantum serverless framework. Therefore, we can only use the feature
information reported in these studies to compare with our framework
capabilities for reference purposes but cannot fully validate the features
of related work in practice.

Existing quantum software platforms lack various features to pro-
vide a universal environment for developing service-oriented quan-
tum applications. Hevia et al. proposed QuantumPath (QPath) [54],
which is a software development platform aiming to support multiple
quantum SDKs for gate-based and annealing quantum applications,
and provide multiple design tools for creating a quantum algorithm.
However, QPath does not support a serverless computing model and
scalability features for further expansion, and it is still in the prelimi-
nary phase without providing a performance evaluation to validate the
proposed design. Fu et al. [25] proposed the overall framework for de-
veloping heterogeneous quantum–classical applications, adapting with
NISQ devices. Instead of working with popular quantum languages and
SDKs, they also proposed a new programming language for quantum
computing, called Quingo. Although this is an exciting direction for
further quantum framework development, it can face many challenges
when developing a new programming language compared to improving
well-known languages. For example, expanding the support for large
developer communities, security testing for potential vulnerabilities,
and covering all aspects of quantum and classical computation. In an-
other way, Claudino et al. [55] proposed the XACC framework, which
extended the C++ programming language to support quantum chem-
istry simulations. However, this framework focused solely on designing
multiple quantum algorithms for chemical problems and simulating
quantum computation on GPU backends. Cambridge Quantum Com-
puting proposed 𝑡|𝑘𝑒𝑡⟩ [58], which is an open-source language-agnostic
uantum compiler for NISQ devices. This framework focuses on circuit
ptimizations, transformation, and qubit mapping features and does
ot consider the service-oriented quantum application approach. In
ight of the Quantum Computing as a Service approach, Garcia-Alonso
t al. [10] proposed the proof-of-concept about Quantum API Gateway
ith two simple API endpoint validations (execution and feedback)
sing Python and Flask platform on the Amazon Braket platform. This
aper also presented an execution time forecasting model and quantum
omputer recommendation. Still, no information about what kind of
uantum SDKs, quantum problems, or datasets are used for the fore-
asting is provided. There is also some Proof-of-Concept (PoC) designs
or cloud-based quantum software development that have been pro-
osed in recent years. For instance, Sim et al. [56] proposed algo2qpu,
hardware and software agnostic framework that supports design-

ng and testing hybrid quantum–classical algorithms on the Rigetti
loud-based quantum computer. Using their proposed framework, they
mplemented two applications in quantum chemistry and machine

earning. However, similar to the work mentioned above, algo2qpu also
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Table 6
A summary of related work and their comparison of system and software engineering aspects for quantum computing (✓: Yes, ×: No, -: Not validated).

Criteria QPath
[54]

Quingo
[25]

XACC
[55]

QAPI [55] t|ket [58] algo2qpu
[56]

SCQ [57] QFaaS
(Proposed)

Type (Main category) Frame-
work

Quantum
SDK

Frame-
work

Empirical
Study

Compiler
and SDK

Empirical
Study

MVP
Design

Frame-
work

Systems

1. Serverless without Vendor lock-in × × × × × × × ✓

2. Modular/Microservices
Components

× × × × ✓ × ✓- ✓

3. Support multiple Quantum Clouds ✓ × × × ✓ × × ✓

4. Support multiple Quantum
Simulators

✓ × × × ✓ × × ✓

5. Containerization/Kubernetes
Integration

× × × × × × ✓- ✓

6. Distributed and Scalable System × × × × × × × ✓

7. Evaluation on NISQ devices × × ✓ ✓ ✓ ✓ × ✓

8. Permanent Data Storage ✓ × × × × × × ✓

9. Security & User Authentication × × × × × × × ✓

10. Monitoring Integration × × × × × × × ✓

Software

11. Hybrid Quantum-Classical
Integration

× ✓ ✓ × × ✓ ✓- ✓

12. Support multiple Quantum SDKs ✓ × × × ✓ × × ✓

13. Built-in Software
Library/Templates

✓ ✓ ✓ × ✓ × × ✓

14. Quantum Software Workflows × ✓ ✓ × × ✓ × ✓

15. Quantum Backend Selection × × × × × × × ✓

16. REST API support with API
Gateway

× × × ✓ × × × ✓

17. Full-stack Software Framework ✓ × × × ✓ × × ✓

18. DevOps (CI/CD) Integration × × × × × × × ✓

19. Practical Use Cases ✓ ✓ ✓ × ✓ ✓ × ✓

20. Open-Source Software × ✓ × × ✓ × × ✓
did not apply the serverless quantum computing model but considered
the standalone quantum application model instead. Another minimum
viable product (MVP) design proposed by Grossi et al. [57] suggested
using IBM services such as IBM Cloud Functions and IBM Containers to
integrate serverless features for Qiskit programs. However, this work
only considered single-SDK and single-vendor environments with no
implementation or validation provided. This work did not consider the
software workflow or the backend selection strategy and depended on a
specific quantum SDK and platform technology. This approach can lead
to a data lock-in problem, which is one of the most serious challenges
of serverless computing.

As shown in Table 6, we use ten criteria (1–10) to evaluate in
terms of system architecture and computing model. The major contri-
bution of QFaaS is one of the first frameworks adopting the serverless
function-as-a-service model for quantum computing, which avoids ven-
dor lock-in problems of serverless computing by supporting multiple
quantum SDKs/programming languages, quantum cloud providers, and
simulators (1). The idea of serverless integration is also proposed
in [57] using Qiskit SDK and IBM techniques. Still, no implementation
and evaluation are provided to validate the design, and it can also lead
to the vendor lock-in problem as that design relies on single vendor
techniques. The core elements of the QFaaS system are developed on
top of open-source cloud-native technology, such as Docker container,
Kubernetes, OpenFaaS, and Gitlab, with flexibility for further expansion
and integration (2). This system design leverages the state-of-the-art
techniques in classical cloud computing to support the quantum com-
puting as a service (QCaaS) model, which adapts to the limitations
of the NISQ computers. We validated the system design and used
QFaaS to evaluate the performance of multiple quantum simulators
and computers to provide insight into the current state of the NISQ
era (3–7). The database integration with a common data scheme for
all different SDKs in QFaaS allows users to perform further analyses
and avoids data lock-in issues (8). Furthermore, we also incorporate
other essential system components, such as monitoring and security
for QFaaS, to demonstrate the completed quantum software stack in
practice (9–10).

Regarding software engineering aspects to facilitate the Quantum
FaaS model, we consider the ten remaining features (11–20). Our
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framework simplifies the hybrid quantum–classical integration model
by providing function templates and a supported software library (11–
12). It allows users to write both classical and quantum code in a
single file. Besides, we also propose an adaptable quantum software
life cycle with seven stages of a quantum function and demonstrate its
implementation in practice. This is the first quantum function life cycle,
as other proposals in the literature focused on the general, standalone
quantum software (14). We design a backend selection strategy and
directly apply it to QFaaS to automatically select the most suitable
quantum backends for executing the quantum computation parts (15).
As several works in the literature only proposed the proofs-of-concept
(PoC) [10,56,57], we do not only propose the PoC but also fully im-
plement and validate the proposed PoC with practical use cases (19) of
well-known quantum circuits. Apart from adopting open-source cloud-
native techniques, we also develop full-stack software components for
quantum functions. QFaaS backend included a complete OpenAPI set
with a centralized API gateway (16), a Python-based supported library,
and multiple Docker-based function templates (13), where its front end
is a user-friendly web application. We demonstrate the first integra-
tion of continuous integration and continuous deployment (CI/CD) of
DevOps into the quantum software workflow (18). Finally, as we in-
corporated several latest open-source techniques, our framework is also
designed to be a part of the quantum open-source software ecosystem to
contribute to our effort in the early development of serverless quantum
computing (20).

In summary, as no existing quantum function-as-a-service frame-
work in the literature consider the multi-SDK, multi-cloud environment,
QFaaS is one of the first practical platforms that seriously investigated
and prepared the initial steps towards a universal serverless quantum
computing architecture. Our major innovation also includes bring-
ing state-of-the-art system design and software engineering techniques
in classical computing to support service-oriented quantum software
development and mitigate the challenges in the current NISQ era.

9. Conclusions and future work

We proposed and developed QFaaS - a holistic serverless framework

for developing quantum function as a service, enabling traditional
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software engineers to leverage their knowledge and experience to adapt
to quantum counterparts in the Noisy Intermediate-Scale Quantum era
quickly. Our framework brings state-of-the-art methods such as con-
tainerization, DevOps, and the serverless model to reduce the burden of
quantum software development and pave the way towards combining
hybrid quantum and classical components. QFaaS provides essential
features with multiple quantum software environments, leveraging the
well-known quantum SDKs and languages to develop quantum func-
tions running on multiple quantum simulators or cloud-based quantum
computers. The current implementation of QFaaS demonstrates the
possibility and advantages of our framework in developing quantum
function as a service without vendor lock-in issues and can be seam-
lessly integrated into the current software workflow. Throughout our
empirical implementation and evaluation, we also highlight the lessons
learned and limitations of the quantum serverless approach that need
to be further investigated.

Due to the current restriction around access to quantum cloud
services from our region, we are able to demonstrate the experiments
with IBM Quantum and Amazon Braket (through Strangeworks) at
the moment. We plan to extend QFaaS’s ability to connect with other
providers and enable the cross-platform execution feature in the future.
Besides, we are developing a machine learning-based approach for
improving the automatic selection of the quantum backend for hybrid
quantum–classical applications and the cold start mitigation policy
for quantum function execution. We will also enhance the security
and scalability capabilities in QFaaS to support a large number of
requests from multiple users. As Quantum Software Engineering is still
an emerging area of research with numerous challenges, there is a need
for a significant research effort to make it reliable and simultaneously
adapt to rapid advances in quantum hardware.

Software availability

The QFaaS Framework with the source code of all components and
sample functions code can be accessed from our iQuantum Initiative
website http://clouds.cis.unimelb.edu.au/iquantum.
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Appendix A. A brief introduction of quantum computing

This section summarizes essential characteristics and building
blocks of gate-based quantum computing for broad readers to get
familiar with the core concepts of the quantum computing model.

A.1. Qubits, superposition, and entanglement

Quantum computing is based on the theory of quantum mechanics
and, therefore, is fundamentally different from classical computing [9].
The basic units of classical and quantum computing are strikingly
different at the fundamental level: a classical bit and a quantum bit (or
qubit). A bit has two states for computation, either 0 or 1. Besides these
classical states, a qubit can have a superposition state, i.e., a combination
of states 0 and 1 simultaneously. Quantum algorithms can achieve
exponential speed-up by leveraging this characteristic compared with
the classical solution. We can describe the general state of a qubit |𝜓⟩
as follows:

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩

here 𝛼, 𝛽 ∈ C are complex numbers, |⟩ is Dirac notation to describe
uantum states [9]. However, whenever we measure the superposition
tate, it could collapse to one of the classical states (i.e., 0 or 1):

𝛼‖2 + ‖𝛽‖2 = 1

here ‖𝛼‖2 and ‖𝛽‖2 is the probability of 0 and 1 as a result after
easuring qubit |𝜓⟩. Hence, it is not straightforward to design a
seful quantum algorithm by only utilizing the superposition attribute.
nother critical characteristic of qubits that could be leveraged to
esign quantum algorithms is entanglement. Entanglement is a robust
orrelation between two qubits, i.e., one qubit always knows exactly
he state of the other qubit after measurement, even if they are very
ar away. In other words, if a pure state |𝜓⟩𝐴𝐵 on two systems A and

cannot be written as |𝜓⟩𝐴 ⊗ |𝜙⟩𝐵 , we called it entangled [18].

.1.1. Quantum gates and quantum circuits
To perform the quantum operations on qubits, we apply quantum

ates, which are conceptually similar to how we apply classical gates,
uch as AND, OR, XOR, and NOT on classical bits to perform classical
omputation. For example, we can use the Hadamard (H) gate on qubit
0⟩ to create an equal superposition |+⟩ = 1

√

2
(|0⟩+|1⟩). A logic quantum

ate U can be represented by a unitary matrix such that 𝑈†𝑈 = I where
is the identity matrix. The general representation of a single-qubit gate
is as follows:

(𝜃, 𝜙, 𝜆) =

[

cos(𝜃∕2) −𝑒𝑖𝜆 sin(𝜃∕2)

𝑒𝑖𝜙 sin(𝜃∕2) 𝑒𝑖𝜆+𝑖𝜙 cos(𝜃∕2)

]

here 𝜃, 𝜙, 𝜆 are different parameters for each specific gate [18].
We can categorize quantum gates into two main types: single-qubit

nd multiple-qubit gates. Some popular single-qubit gates are the Pauli
ates (X, Y, Z), the Hadamard (H) gate, and the Phase (P) gate. For
xample, the H gate can be represented as the following (with 𝜃, 𝜙, 𝜆 =
𝜋
2 , 0, 𝜋, respectively):

𝐻 = 𝑈 ( 𝜋2 , 0, 𝜋) =
1
√

2

[

1 1
1 −1

]

We can also apply quantum gates to multiple qubits simultaneously
by using multi-qubit gates, such as the Controlled-NOT (CNOT) gate
and the Toffoli gate. CNOT gate, for instance, is a controlled two-qubit
gate. If the control qubit is |1⟩, the target qubit is flipped. Otherwise,
if the control qubit is |0⟩, the target qubit remains unchanged [9]. For
xample,
NOT|01⟩ = |01⟩; CNOT|10⟩ = |11⟩;

http://clouds.cis.unimelb.edu.au/iquantum
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Fig. A.10. An example quantum circuit for the Deutsch-Jozsa algorithm (generated by
using Qiskit).

A.1.2. Quantum circuits and quantum algorithms
When implementing a quantum algorithm using the gate-based

approach, we need to connect an appropriate combination of quantum
gates to build quantum circuits. A quantum circuit’s general operation
includes three main stages: (1) Initializing the qubits, (2) Applying the
quantum gates, and (3) Measuring.

For example, the quantum circuit shown in Fig. A.10 implements
Deutsch-Jozsa’s algorithm [6]. The main objective of this algorithm is
to determine whether the property of the oracle is constant (i.e., al-
ways return 0 or 1) or balanced (i.e., return 0 and 1 with the same
probability). The oracle in this circuit is a ‘‘black box’’ where we do
not know which binary value is inside. However, when we query
it with arbitrary input data, it will return a binary answer, either
0 or 1. For the traditional approach, we need to interact with the
oracle at least two times and at most 2𝑛−1 + 1 times, where n is the
number of input bits. Using the Deutsch-Jozsa algorithm, we need to
query the oracle only once to get the final result. If the measurement
outcomes of all the qubits are 0, we can determine that the oracle is
constant; otherwise, it is balanced. This algorithm was also the first
to demonstrate that quantum computers could outperform the classical
computer in 1992 [18].

Appendix B. Using QFaaS to evaluate performance of NISQ devices
and simulators

B.1. Sample QRNG circuits for the evaluation

Fig. B.12 shows sample code snippets of different SDKs for gener-
ating quantum random numbers. According to the user’s request, an
appropriate quantum circuit will be generated with the corresponding
number of qubits. This circuit can be then being transpiled to adapt to
the targeted quantum backend (see Fig. B.11).

B.2. Performance evaluation of different quantum simulators using QFaaS

In this evaluation, we used QFaaS to benchmark the performance
of four state-of-the-art quantum simulators, which are associated with
four popular quantum SDKs we integrated. For a practically fair com-
parison, we used the default quantum simulator (QASM simulator for
Qiskit, braket_sv simulator for Braket, and built-in simulator for Q#
and Cirq) of all frameworks for execution. We repeat each experiment
100 times, then measure the average response time and the standard
deviation when executing the QRNG function using 1 qubit to 20 qubits
in each quantum SDK.

Fig. B.13 illustrates the average response time of four functions
when we increase the number of qubits (n) from 1 to 20. The Cirq
simulator registers the fastest response time in all test cases with a slight
increase from 49 ms for generating a 1-qubit random number to 61 ms
for a 20-qubit one. A similar trend could also be seen if we look at
the Qiskit, Q#, and Braket function figures when n increases from 1 to
15. The Qiskit function response time is slightly longer than Cirq and
Q# during the 1- to 15-qubit span. However, when n reaches 20, the
297
Fig. B.11. A simple quantum circuit for generating 3-qubit random number and the
corresponding transpilation to adapt to ibmq_manila backend.

Fig. B.12. Sample code snippets for QRNG functions.

Fig. B.13. Average response time evaluation of QRNG function using the simulator of
4 popular quantum SDKs and languages.
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Fig. B.14. A simplified 18-qubit quantum circuit for implementing Shor algorithm to
factorize 15 (plotted using Qiskit).

response time of the Q# and Braket functions increases significantly
and doubles the Qiskit counterpart. This evaluation demonstrates the
current state of several popular quantum simulators, but it depends
on specific quantum applications and can be changed with the further
development of these SDKs.

B.3. Performance evaluation of NISQ computers and simulator with Shor’s
algorithm on QFaaS

Shor’s algorithm [7] is one of the most prominent quantum al-
gorithms for proving the advantage of quantum computing together
with its classical counterpart. It is well-known for finding the prime
factors of integers in polynomial time, which raises the severe risk
for classical cryptography based on the security of large integers such
as RSA. In this case study, we demonstrate the implementation of
Shor’s algorithm as a QFaaS function (Shor function) by utilizing the
Qiskit Terra API [19]. The quantum circuit for Shor’s algorithm is also
dynamically generated based on the input number that end-users want
to factorize. For example, to factorize 15, we need to use 18 qubits for
the corresponding quantum circuit (see Fig. B.14).

Using the Shor class in qiskit.algorithms,13 we need to define
a simple function code to generate the quantum circuit to factorize
the integer N, then execute that circuit at the appropriate backend
device selected automatically by QFaaS or manually by the end-users.
Fig. B.14 shows a general 18-qubit quantum circuit for factorizing 15
using Shor’s Algorithm and a code snippet of Qiskit Shor’s function.

As a demonstration illustrated in Fig. B.15, we use the QFaaS Dash-
board to invoke the Shor function to factorize 21, using Qiskit QASM
Simulator at QFaaS Classical Cloud Layer. The request is converted
to JSON format automatically and sent to the QFaaS API gateway
to trigger the Shor function. After finishing the execution, the final
response data is returned, and we got two expected factors 21, i.e., 3
and 7.

In this evaluation, we compare the actual performance of the Shor
function with today’s quantum computers provided by IBM Quan-
tum [14]. We pick five adequate integer numbers for the test cases,

13 https://qiskit.org/documentation/stubs/qiskit.algorithms.Shor.html
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Fig. B.15. Sample Shor’s Function Invocation Result (factorizing 21) on QFaaS
Dashboard using Qiskit QASM Simulator.

Fig. B.16. Performance evaluation of Shor function on (ibm_cairo) quantum
computer and simulator provided by IBM Quantum. f(15), f(21), f(35), f(39), and f(55)
are five test cases to factorize 15, 21, 35, 39, and 55, respectively.

including 15, 21, 35, 39, and 55. Due to the limitation of the current
NISQ devices, we keep these test cases small to fit with the capacity
of available quantum backends. All experiments are conducted on a
27-qubit quantum computer (ibm_cairo, using Falcon r5.11 quantum
processor) and the QASM simulator (ibmq_qasm_simulator).

Every time we invoke the Shor function with each test case, an
appropriate circuit will be generated and sent to the IBM Quantum.
Then, each quantum job will be validated and kept in the queue (from
seconds to hours) before being executed in the backend due to the
current fair-share policy of IBM Quantum. Therefore, to make a fair
comparison, we only measure the actual running time (including the
circuit validation and running, without the queuing time). We execute
each quantum task 100 times (shots) to ensure that the final result of
all factorization is correct. In Fig. B.16, the bar chart shows the actual
running time, and the line chart indicates the number of qubits used
for each test case in both backends. These input numbers need less
than 27 qubits to build a corresponding circuit. Regarding the run time,
we can see that the QASM simulator is much faster than the quantum
computer when the number of required qubits is small, from 18 to 22
(for factorizing 15 and 21). However, we can see the opposite trend

https://qiskit.org/documentation/stubs/qiskit.algorithms.Shor.html
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when executing 26-qubit circuits to factorize 35, 39, and 55. These
circuits cost around 3 mins to complete in an IBM Cairo quantum
computer, whereas the QASM simulator takes 13.5 to 17 mins to finish
the execution. A significant reason for the considerable delay of the
QASM Simulator in these test cases can be the complexity of the 26-
qubit quantum circuit for the Shor algorithm, which requires a lot of
resources to simulate. These results give us insight into the selection
order of existing quantum computing services for developing quantum
software. We can use the quantum simulator for the prototyping and
testing phases before entering the production stage with the quantum
computers.
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