
Journal of Network and Computer Applications 64 (2016) 12–22
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m

rsmania
rbuyya@
journal homepage: www.elsevier.com/locate/jnca
An efficient and secure privacy-preserving approach for outsourced
data of resource constrained mobile devices in cloud computing

Syam Kumar Pasupuleti a,n, Subramanian Ramalingamb, Rajkumar Buyya c

a Institute for Development and Research in Banking Technology (IDRBT), Hyderabad, India
b Department of Computer Science, Pondicherry University, Puducherry, India
c Cloud Computing and Distributed Systems (CLOUDS) Lab, Department of Computing and Information Systems, The University of Melbourne, Australia
a r t i c l e i n f o

Article history:
Received 1 January 2015
Received in revised form
16 October 2015
Accepted 8 November 2015
Available online 9 February 2016

Keywords:
Cloud computing
Privacy-preserving
Outsourced data
Probabilistic public-key encryption
Ranked keyword search
Mobile devices
x.doi.org/10.1016/j.jnca.2015.11.023
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: psyamkumar@idrbt.ac.in (S.K. P
n.csc@pondiuni.edu.in (S. Ramalingam),
unimelb.edu.au (R. Buyya).
a b s t r a c t

Outsourcing of data into cloud has become an effective trend in modern day computing due to its ability
to provide low-cost, pay-as-you-go IT services. Although cloud based services offer many advantages,
privacy of the outsourced data is a big concern. To mitigate this concern, it is desirable to outsource
sensitive data in an encrypted form but cost of encryption process would increase the heavy computa-
tional overhead on thin clients such as resource-constrained mobile devices. Recently, several keyword
searchable encryption schemes have been described in the literature. However, these schemes are not
effective for resource-constrained mobile devices, because the adopted encryption system should not
only support keyword search over the encrypted data but also offer high performance. In this paper, we
propose an efficient and secure privacy-preserving approach for outsourced data of resource-constrained
mobile devices in the cloud computing. Our approach employs probabilistic public key encryption
algorithm for encrypting the data and invoke ranked keyword search over the encrypted data to retrieve
the files from the cloud. We aim to achieve an efficient system for data encryption without sacrificing the
privacy of data. Further, our ranked keyword search greatly improves the system usability by enabling
ranking based on relevance score for search result, sends top most relevant files instead of sending all
files back, and ensures the file retrieval accuracy. As a result, data privacy ensures and computation,
communication overheads in reduction. Thorough security and performance analysis, we prove that our
approach is semantically secure and efficient.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cloud computing is emerging computing model where the data
owners are outsourcing their data into the cloud storage. By out-
sourcing the data files into the cloud, it gives many benefits to the
large enterprises as well as individual users because they can
dynamically increase their storage space as and when required
without buying any storage devices (Armbrust et al., 2009). They
are: (1) the users can access the remotely stored data at anytime,
from anywhere and gives permission to authorized users to share
the data. (2) The users can be relieved from the burden of storage
management at locally, (3) Avoidance of capital expenditure on
hardware and software costs etc. To date, there are a number of
cloud storage services: Amazon simple storage Space (S3), Rack
space, Google, Microsoft, etc. (Jaeger et al. 2009).
asupuleti),
Besides, all of these advantages of outsourced data in Cloud,
there are also some significant issues. One of the major issues is
the privacy of outsourced data in cloud (Jaeger and Schiffman,
2010) i.e., the sensitive information such as e-mail, health records,
and government data may leak to unauthorized users (Slocum,
2009; Krebs, 2009) or even be hacked (Cloud Security Alliance,
2009). Since, the cloud is an open platform; it can be subjected to
attacks from both malicious insiders and outsiders (Haclgiimfi

et al., 2002). The Cloud service providers (CSPs) usually provide
data security through mechanisms like firewalls and virtualization.
However, these mechanisms do not protect users’ privacy from the
CSP itself due to remote cloud storage servers are untrusted.

A natural approach to preserve the privacy of sensitive data is
to encrypt data before outsourcing it into the cloud and retrieves
the data back through keyword based search over encrypted data.
Although encryption provides protection from illegal accesses, it
significantly increases the computation overhead on the data
owners especially when they having resource-constrained mobile
devices and large size of data files.

Further, the authorized users want to retrieve the certain files
from cloud, need to communicate with the CSPs and allow him to

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.11.023
http://dx.doi.org/10.1016/j.jnca.2015.11.023
http://dx.doi.org/10.1016/j.jnca.2015.11.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.11.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.11.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.11.023&domain=pdf
mailto:psyamkumar@idrbt.ac.in
mailto:rsmanian.csc@pondiuni.edu.in
mailto:rbuyya@unimelb.edu.au
http://dx.doi.org/10.1016/j.jnca.2015.11.023


S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–22 13
operate over the encrypted data. To meet effective data retrieval, it
is preferred to get the most relevant files instead of getting all files
i.e., The files should be ranked and only highest relevant files are
send back to the users, which is highly desirable in the “pay-as-
you-use” cloud model. However, it is challenging task that
retrieves the data back in a secure and efficient manner without
being able to extract useful information from the cloud.

Therefore, the efficient and secure mechanisms are needed to
protect the privacy of sensitive data in a cloud environment. More-
over, the importance and necessity of privacy preserving of data
search techniques are even more pronouncing in the cloud applica-
tions. For example, large companies that are operating on the public
clouds like Google or Amazon may access the sensitive data, search
patterns, hiding the query and retrieved data has great importance in
ensuring the privacy of that using cloud services.

Recently, several keyword search based encryption schemes
have been proposed to ensure the privacy of outsourced data
(Song et al., 2000; Goh, 2003; Chang and Mitzenmacher, 2005;
Curtmola et al., 2006; Li et al., 2010; Kuzu et al., 2012; Lu, 2012;
Orencik and Savas, 2014; Wang et al., 2012; Cao et al., 2014; Boneh
et al., 2004; Bellare et al., 2007; Attrapadung and Li Bert, 2010;
Katz et al., 2008; Ogata and Kurosawa, 2004; Shi et al., 2007;
Waters et al., 2004; Bao et al., 2008; Boldyreva et al., 2009; Liu et
al., 2012; Yu et al., 2013). In all these schemes, the data owner first
encrypts the data before outsourcing it and later retrieves them
through keyword search or ranked keyword search. The schemes
(Song et al., 2000; Goh, 2003; Chang and Mitzenmacher, 2005;
Curtmola et al., 2006; Li et al., 2010; Kuzu et al., 2012; Lu, 2012;
Orencik and Savas, 2014; Wang et al., 2012; Cao et al., 2014) and
(Boneh et al., 2004; Bellare et al., 2007; Attrapadung and Li Bert,
2010; Katz et al., 2008; Ogata and Kurosawa, 2004; Shi et al., 2007;
Waters et al., 2004; Bao et al., 2008; Boldyreva et al., 2009) pro-
posed under symmetric-key cryptography and public-key crypto-
graphy respectively. However, such encryption schemes use too
much CPU time and memory power of client during the encryp-
tion and decryption process. That is the thin client has only limited
bandwidth, CPU power, and memory, therefore, the traditional
encryption schemes cannot work well in cloud environment.

To avoid above problems, Liu et al. (2012) proposed a secure
and privacy-preserving keyword search over the encrypted data
for cloud storage applications using Elliptic Curve Cryptography
(ECC) over Fp. However, this scheme supports only Boolean key-
word search i.e., either a keyword exists in a file or not, without
considering the difference of relevance with the queried keyword
of these files in the result. To improve the efficiency without
sacrificing privacy, Yu et al. (2013) proposed a Two Round
Searchable Encryption (TRSE) scheme that supports ranked multi-
keyword search over encrypted data for file retrieval. It employs
the vector space model and homomorphic encryption as a result,
the information leakage can be eliminated and data security is
ensured. However, the computation and communication costs of
this scheme are quite large, since every search term in a query
requires several homomorphic encryption operations on the data
owner side. Further, it uses two-round communication process to
retrieve the files back which resulting the unnecessary commu-
nication overhead.

In this paper, we propose an efficient and secure privacy-
preserving approach to avoid all above problems while preser-
ving the privacy and integrity of outsourced data in the cloud. In
our scheme, the data owner first builds the index for file collec-
tion, encrypts both index and data files, and stores them in the
cloud. Later, to retrieve the stored files from the cloud server, the
authorized user generate trapdoor for keywords and sends to the
server. Upon receiving the trapdoor, the cloud server search for a
list of matched file entries and their corresponding encrypted
relevance scores. Then matched files should be sent back to the
user in a ranked sequence based on the relevance scores. By
decrypting it, the user gets the original files back. Further, our
approach verifies the integrity of data in cloud. This approach
utilizes the probabilistic public key encryption technique (Witten
et al., 1999) and ranked keyword search (Cao et al., 2014; Yu et al.,
2013). It greatly reduces the processing overhead of data owners
while encrypting the files, index and it is most suitable for
resource-constrained mobile devices (thin clients) in Cloud com-
puting and ranked keyword search process reduce the commu-
nication overhead during the file retrieval. Through the security
and performance analysis, we prove that our scheme is semanti-
cally secure and efficient.

The key contributions of our work can be summarized as
follows:

1. We propose an efficient and secure privacy-preserving approach; it
uses probabilistic public key encryption technique to reduce
computational overhead on owners while encryption and decryp-
tion process without leaking any information about the plaintext.

2. Our approach uses ranked keyword search on encrypted data to
retrieve the files back. It enables the cloud server to determine
whether a given file contains certain keywords and associated
relevance score without knowing of any information about both
the keywords and the files. It greatly reduces the communica-
tion overhead during the file retrieval process. It also verifies
the integrity of data stored in cloud

3. Through analysis on security demonstrates that propose
scheme can be proved semantically secure under different
attacks. Furthermore, the performance analysis and experiential
results show that our scheme is efficient and it outperforms
compared with existing schemes.

The rest of the paper is organized as follows: In Section 2, we
briefly discuss about existing schemes. In Section 3, we explain
system architecture used in our scheme. In Section 4, we describe
our proposed approach. In Sections 5 and 6, we analyze security,
and performance analysis respectively. In Section 7, we identify
limitations and areas of improvements. Finally, we conclude our
paper with future directions in Section 8.
2. Related work

The searchable encryption schemes have been widely investi-
gated as a cryptographic primitive with a focus on security defi-
nition formalizations and efficiency improvements (Song et al.,
2000; Goh, 2003; Chang and Mitzenmacher, 2005; Curtmola et al.,
2006; Li et al., 2010; Kuzu et al., 2012; Lu, 2012; Orencik and Savas,
2014; Wang et al., 2012; Cao et al., 2014; Boneh et al., 2004; Bellare
et al., 2007; Attrapadung and Li Bert, 2010; Katz et al., 2008; Ogata
and Kurosawa, 2004; Shi et al., 2007; Waters et al., 2004; Bao et al.,
2008; Boldyreva et al., 2009; Liu et al., 2012; Yu et al., 2013). These
searchable encryption schemes can be divided into two types:
symmetric key encryption (Song et al., 2000; Goh, 2003; Chang
and Mitzenmacher, 2005; Curtmola et al., 2006; Li et al., 2010;
Kuzu et al., 2012; Lu, 2012; Orencik and Savas, 2014; Wang et al.,
2012; Cao et al., 2014) and public key encryption (Boneh et al.,
2004; Bellare et al., 2007; Attrapadung and Li Bert, 2010; Katz
et al., 2008; Ogata and Kurosawa, 2004; Shi et al., 2007; Waters
et al., 2004; Bao et al., 2008; Boldyreva et al., 2009).



S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–2214
2.1. Searchable encryption schemes based on symmetric key
encryption

The symmetric key encryption scheme allows a data owner to
outsource its data symmetrically encrypted to an untrusted server
and later to search for a specific file in server via trapdoor.

Song et al. Song et al. (2000) introduced the notion of sym-
metric searchable encryption scheme, where each word in the file
encrypted under a special two-layered encryption. Thus, the
search time is linear to file collection length. Later, Goh et al. Goh
(2003) developed a Bloom filter based per-file index scheme to
reduce a workload for each search request proportional to the
number of files in the collection. Similarly, Chang et al. Chang and
Mitzenmacher (2005) also described a per-file index scheme,
which is slightly stronger, than (Goh, 2003). However, both defi-
nitions do not consider adaptive adversaries, which could generate
the queries according to the outcomes of previous queries. Further,
to enhance search efficiency, Curtmola et al. Curtmola et al. (2006)
proposed a per-keyword-based approach, where a single encryp-
ted hash table index built for the entire file collection, with each
entry consisting of the trapdoor of a keyword and an encrypted set
of related file identifiers.

Although traditional searchable symmetric encryption schemes
allow a user to securely search over encrypted data through key-
words and retrieve the files of their interest, these techniques
support only exact keyword search. That is there is no tolerance of
minor types and format inconsistencies. This significant drawback
makes existing techniques unsuitable in Cloud computing as it
greatly affects system usability, rendering user searching experi-
ences are very frustrating and system efficiency is very low.

In ordered to solve these problems, Li et al. (2010) proposed wild-
card based fuzzy keyword search scheme over the encrypted data.
Although fuzzy scheme tolerates errors to some extent, it is only
applicable to strings under edit distance. In addition, fuzzy sets may
become too big if we have long words, which necessitate issuing large
trapdoors. In order to avoid this, Kuzu et al. (2012) described an efficient
similarity search over the encrypted data. Similarly, Lu (2012) described
a privacy-preserving logarithm search over the encrypted data.

All these secure index schemes support only Boolean keyword
search and none of them support the ranked search problem. If the
user searches for a single or more keywords, there will be a pos-
sibility that many correct matches would come where some of
them may not be useful for the user at all. Therefore, it is difficult
to decide which documents are the most relevant.

To solve the above problems, Orencik and Savas (2014) proposed a
practical privacy-preserving ranked keyword search scheme based on
PIR that allows the multi-keyword queries with ranking capability. It
increases the security of the keyword search while still satisfying effi-
cient computation and communication requirements. However, this
scheme is inefficient due to their blinding technique, which is not
suitable for resource-constrained devices. A recent work defined by
Wang et al. (2012) secure ranked keyword search over encrypted cloud
data. The ranked keyword search greatly enhances system usability by
enabling search result based on relevance ranking instead of sending
undifferentiated results, and further ensures the file retrieval accuracy.
Specifically, they explored the statistical measure approach, i.e., rele-
vance score from information retrieval to build a secure searchable
index, and develop a one-to-many order-preservingmapping technique
to properly protect those sensitive score information. The resulting
design is able to facilitate efficient server-side ranking without losing
keyword privacy. Similarly, Cao et al., (2014) introduced a new method
that allows multi-keyword ranked search over encrypted database.
Moreover, it is not efficient due to matrix multiplication operations of
square matrices where the numbers of rows are in the order of several
thousands. However, cloud server has linearly traversed the whole
index of all the documents for each search request.
However, all these schemes are working based on symmetric key
encryption, where single key used to encrypt and decrypt the data. If
the data owner needs to share the secrete-key, which is used in
trapdoor generation to all authorized users. Sharing a secret key by
several users forms a high security risk since it can easily leak to the
unauthorized parties. Once the unauthorized parties learn the secret
key, they can break the system and access the data.

2.2. Searchable encryption based on public-key encryption

To avoid key leakage problems, the public-key encryption is
used in a similar scenario with two keys: one key is for encryption
and another for decryption.

Boneh et al., (2004) developed a public-key searchable
encryption scheme that can be extended to handle range, subset
and conjunctive queries. It is also hiding the attributes for message
that match a query. Similarly, Bellare et al., (2007) proposed a
deterministic efficiently searchable public-key encryption scheme.
Since searchable tags are deterministic, the server can organize
them in a sorted way and match the minimum logarithmic time.
Although it is efficient, this scheme only supports equality search
and it is hard to deal with duplicate attribute values. The records
with duplicate attribute values will end up with same cipher text,
exposing plaintext frequency.

Attrapadung and Li Bert (2010) designed a privacy preserving key-
word search protocol based on RSA blind signatures. It requires
public-key operations per item in the database for every query and
this operation performed on the user side. Later, Katz et al., (2008)
proposed a public-key based encryption that supports inner products.
Ogata and Kurosawa (2004) improved the efficiency of the inner
product encryption by sacrificing attribute privacy.

Allowing range queries over encrypted data in the public key
settings has studied in other related works (Shi et al., 2007), and as
an attempt to enrich query predicates, conjunctive keyword search
over encrypted data also have been proposed in Waters et al.
(2004), Bao et al. (2008) and Boldyreva et al. (2009). Though these
schemes provide provably strong security but they are generally
not efficient for a single search request, Moreover, these schemes
do not support the ordered result listing on the server side. Thus,
they cannot be effectively utilized, since the user does not know
which retrieved files would be the most relevant.

However, not all these schemes support for resource-
constrained devices. This is due to their encryption and decryp-
tion process creates process overhead on system.

To avoid above problems, Liu et al. (2012), proposed a secure and
privacy preserving keyword searching scheme for cloud storage ser-
vices using ElGamal public-key encryption based on Elliptic Curve
Cryptography (ECC) over Fp. It allows the CSP to participate in the
decipherment, and return the encrypted files containing certain key-
words without knowing any information. However, this scheme may
disclose information to cloud service provider because it allows the CSP
to participate in the encryption process. Furthermore, like previous
schemes (Song et al., 2000; Goh, 2003; Chang and Mitzenmacher,
2005; Curtmola et al., 2006; Li et al., 2010; Kuzu et al., 2012; Lu, 2012),
this scheme does not support the ranked search technique. To support
ranked keyword search with less efficiency, Yu et al., (2013) proposed a
Two-Round Searchable Encryption (TRSE) scheme that supports top-k
multi-keyword retrieval based on ranking. the TRSE scheme used a
vector space model and homomorphic encryption techniques, it
enables users to involve in the ranking process while the majority of
computing works done at the server side by operations only on cipher
text. As a result, information leakage can be eliminated and security is
ensured. However, the computation and communication costs of this
method are quite large since every search term in a query requires
several homomorphic encryption operations both on the server and on



S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–22 15
the user side. Further, it uses two-round communication process to
retrieve the data from the server.
3. Problem statement

3.1. System architecture

In our work, we consider a model of cloud data storage system,
which consisting of three main entities as illustrated in Fig. 1: Data
Owner, Cloud Service Provider (CSP) and Authorized Users.

Data Owner (DO): is an entity that has large amount of data to
be stored in the cloud, can be individual user having mobile
constrained devices such as smart phones, PDA, TPM chip, etc.
Cloud Service Provider (CSP): is an entity, provides data storage
services and computational resources dynamically to the data
owner and users
Authorized Users (AU): The data owner allows the authorized
users to use their files and share some keying material with the
data owner. The authorized users would retrieve the data from
the cloud in an encrypted form and by decrypting it they get the
original data.

The typical interactions between these three entities of the
system (see Fig. 1) are follows:

1) The data owner wants to outsource the set of files on the cloud
server in encrypted form while still keeping the capability to
search them through keyword for effective data utilization
reasons.

2) When an authorized user wants to retrieve the file collection,
send a search request to the CSP

3) Then, the CSP search the files and returns set of files and hash
values of files to the user.

4) Finally, the authorized user verifies the integrity and decrypts
the files and gets the corresponding plaintext

3.2. System model

In above system model, the data owner first outsources the
encrypted data files into cloud servers via Cloud Service Provider
(CSP). Once data moves to the cloud, he has no control over it. This
lack of control on data raises privacy issue in the cloud, even if CSP
Data Owner

Authorized Users

Index

Encrypted Files

CSP

Cloud Servers

Matched Files

Search Request 

Outsource

Outsource

Access Control 

Fig. 1. Cloud data storage architecture.
provides some standard security mechanism to protect the data
from attackers, still it is hacking. Therefore, we need an efficient
and secure mechanism to protect the privacy of sensitive out-
sourced data in the cloud.

In our scheme, we consider the efficient and secure ranked
keyword search over encrypted data as follows: the search result
should return the files according to certain ranked relevance cri-
teria to improve file retrieval accuracy for users without prior
knowledge on the file collection. However, the cloud server should
learn nothing about the index and data as they exhibit significant
sensitive information against keyword privacy. To reduce band-
width, the CSP sends only top-k most relevant files to the users for
inserted keywords.

3.3. Threat model

In threat model, we are considering mainly two types of
threats, which are disturbing the outsourced data in the cloud:
Internal Attacks and External Attacks

1. Internal Attacks: which are initiated by malicious insiders:
Cloud users, malicious third party user (either cloud provider or
customer organizations) are self-interested to accesses the data
or disclose the data stored in the cloud. They also alter or
modify the data.

2. External Attacks: which are initiated by unauthorized outsiders,
we assume that external attackers can compromise all storage
servers, so that they can intentionally access the owner’s data

3.4. System goals

In order to address the privacy of sensitive data stored in the
cloud, we propose an efficient and secure privacy-preserving
approach with following goals:

1. Privacy Preserving: to ensure that there is no way for unau-
thorized parties and malicious insiders to access the sensitive
data content from the cloud

2. Index Privacy: the search index or the query index does not leak
any information about the corresponding keywords

3. Efficiency: the above goals should be achieved with less com-
putation and communication overhead

4. Data Integrity: detect the modifications or deletions of data and
maintain the consistency of data

3.5. Preliminaries and notations
� C – the total file collection denoted as a set of n data files C¼ {F1,
F2, …, Fn}.

� w –the keywords denoted as a set of m words wi¼ {w1,w2,…
wm}

� id(Fij) – the file identifier Fij that can help to uniquely identify
the actual file.

� I – the index built from the file collection, including a set of
posting lists {I(wi)}

� Twi – the trapdoor for search request of keywords wi.
� H – is cryptographic hash function like SHA�1 H:

{0,1}k� {0,1}*-{0,1}log2
(l).
4. Efficient and Secure Privacy-Preserving Approach(ESPPA)

The existing TRSE scheme (Yu et al., 2013) has been proposed
based on fully homomorphic encryption and ranked keyword
search for privacy of outsourced data. However, homomorphic



4
5
6
7
8

9
1
1

S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–2216
encryption increases heavy computational burden on the data
owner side of mobile resource-constrained mobile devices and
ranked keyword search process would increase the high commu-
nication overhead due to the two-round communication between
the cloud server and the authorized user for file retrieval.

To alleviate the computation and communication overhead and
ensure the privacy of outsourced data of resource-constrained
mobile devices in the cloud, we propose an Efficient and Secure
Privacy-Preserving approach (ESPPA) using probabilistic public key
encryption and ranked keyword search. In our scheme, the data
owner creates an index for file collection then encrypts the both
index and files. Later, the authorized user generates a query and
sends to the server. When the cloud server receives a query, it
searches for corresponding files, and sends top-k matched files to
the authorized user. Then, the user decrypts the files and gets the
original data. The ESPPP consists of three phases: (1) Setup phase,
(2) Retrieval Phase and (3) Integrity verification

In setup phase, the data owner first generates public and pri-
vate key pairs. Then builds the index from multiple keywords
extracted from file collection, then calculate the relevance score
and add to index post list. Then, to ensure the privacy of the index
and file collection, the data owner encrypts the both. Finally, the
data owner distributes the encrypted files and index to the cloud
server.

Later, in retrieval phase, the data owner or authorized user
generates trapdoor for set of keywords and send to the server.
Then, the server search for the matched files and their corre-
sponding relevance scores based on trapdoor. If keywords match
with index, the server ranks the matched files based relevance
score and send the files to the user in a ranked ordered manner.
Then the data owner or user decrypts the file using private key

In integrity verification, the user verifies the integrity of both
file collection and index i.e. stored data in cloud is safe or not?

4.1. Setup phase

In setup phase, the data owner pre-processes the file before
outsourcing it into the cloud. It consists of three algorithms:
(1) Key Generation, (2) Index Creation and (3) Privacy-Preserving.

4.1.1. Key generation
In this algorithm, the data owner generates key pairs as fol-

lows: the data owner chose the two large primes and calculates
N¼ pq. Next computes r and s using extended Euclidian algorithm
where prþqs¼ 1. Then public key is PK ¼ fNg and private key is
PR¼ fp; q; r; sg. The process of key generation is illustrated in
Algorithm 1.

Algorithm 1. Key Generation

1 Select two large random primes p,q
2 Calculate N¼ pq
3 Compute r & s using Euclidian algorithm

where prþqs¼ 1
4 Public Key PK ¼ fNg and Private key PR¼ fp; q; r; sg
4.1.2. Index creation
After generating key pairs, the data owner creates an index for file

collection. Without loss of generality, we use Wang’s scheme (Wang
et al., 2012) as the base of our index creation. The process of index
creation is illustrated in Algorithm 2.
Algorithm 2. Index Creation

1 Procedure: Index Creation
2 Scan the file Collection C
3 Extract keywords wi¼{w1,w2,…wm} from the C
for each i from 1 to m
IðwiÞ ¼ idðFijÞ

end for
for j from 1 to wi

Sij ¼
P
tA i

1
j :ð1þ ln f d:tÞ: lnð1þN

f t
Þ

end for
0 end for
1 IðwiÞ ¼ ðidðFijÞ‖ðSijÞÞ
2 return I
1

The detail of index creation in Algorithm 2 as follows:

1) the data owner scan the file collection C ¼ fF1; F2; ::::; Fng and
extract the its multiple keywords wi ¼ fw1;w2; ::::;wmg for each
file FiAC, the data owner build index is

IðwiÞ ¼ idðFijÞ=1r irn and 1r jrm ð1Þ

2) Then, calculate the relevance score for set of keywords in file Fij
using ranking function denoted as Sij

Sij ¼ ∑
t∈Q

1
j
� ð1þ ln f d:tÞ � ln 1þN

f t

� �
ð2Þ

where i is the set of keywords,

fd,t denotes the term frequency in file F
ft, denote the number of files that contain term frequency t of
term d in F,
N denotes the number of files,
j is the length of the file

3) Add the relevance score to post index:

IðwiÞ ¼ ðidðFij‖ðSijÞÞ ð3Þ
We build the index by using the technologies from IR com-

munity like stemming that are employed to build searchable index
I from file collection C (Witten et al., 1999).

4.1.3. Privacy-preserving
After creating an index, to ensure the privacy of index and files,

the data owner encrypts both index and file collection. Due to the
limited computing power on the data owner side, we encrypts
index and files using probabilistic public key encryption techn-
ique (Menezes et al., 1996) instead of Homomorphic encryption
(Yu et al., 2013). The procedure of encryption process is given in
Algorithm 3 as follows:

1) Let the file F¼{m1,..,mn} with length n, where each mi is a
binary string of length h and index IðwiÞ

2) Select the random seed t and generate

x¼ t2 mod N ð4Þ

3) Generate the pseudorandom bits

xi ¼ x2i�1 mod N ð5Þ

pi ¼ xmod 2 ð6Þ
where pi is least significant bits of xi.

Algorithm 3. Encryption

1 Procedure: Encryption
2 Owner authentic public key N
3 Let file f ¼ fmig1r irn



4
5
6
7
8
9
1
1

S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–22 17
Select r as a seed
x¼ t2 mod N

for each i from 1 to n do
xi ¼ x2i�1 mod N
pi ¼ xi mod 2 /pseudorandom sequence bits
Compute I0ðwiÞ ¼ pi � IðwiÞ

0 Compute ci ¼ pi � mi

1 end for
2 Compute xnþ1 ¼ x2n mod N
1

4) Then, the pseudorandom bit sequence pi XORed with index and
plaintext to get the ciphertext

I0ðwiÞ ¼ pi � IðwiÞ ð7Þ

and

ci ¼ pi � mi ð8Þ

5) Finally, generate next random

xnþ1 ¼ x2n mod N ð9Þ

After encrypting the data, the data owner sends encrypted file
collection and index C ¼ fc1; c2; ::::cn; I0ðwiÞg to the CSP. The resulting
bit sequence xnþ1 send to the authorized users or keep it locally.
4.2. Retrieval phase

In this phase, the authorized user retrieves the files from the
CSP through ranked keyword search. This phase consists of three
methods: (1) Trapdoor Generation, (2) Ranked Keyword Search
and (3) Data Decryption

4.2.1. Trapdoor Generation
After storing the data in cloud, whenever the authorized user

wants retrieve the file containing certain keywords, computes the
trapdoor for keywords wiAw and sends to the CSP as search
request. The procedure of computing trapdoor is given in Algo-
rithm 4.

Algorithm 4. TrapDoor Generation

1 Procedure: TrapDoor
2 user authenticate key r
3 Compute Trapdoor

4 Twi ¼
Pm
i ¼ 1

HðwiÞr

5 Send trapdoor to cloud server
1) The User gets the trapdoor information from the owner
2) For inserted keywords, the user computes the trapdoor is

Twi ¼
Xm
i ¼ 1

HðwiÞr ð10Þ

where H is a collision resistant hash function like SHA�1, in
which case p is 160 bits and r be the random key.

3) Then, the user sends trapdoor (Twi , k) to the CSP where k is a
optional value.

4.2.2. Ranked Keyword Search
In this method, the cloud server searches for the matching files

after receiving a Trapdoor Twi from user as follows:
1) The cloud server first finds the matching entries of file via
trapdoor Twi , if server gets matching file identifiers along with
their associated relevance scores ðidðFij‖ðSijÞÞ

2) Then, the server ranks the matched files according to relevance
scores and sends top-k most relevant files Ci¼{c1,c2,…..ck} 1r
irk to the user.

The procedure of ranked keyword search is illustrated in
Algorithm 5.

Algorithm 5. Ranked Search Index

1 Procedure: Ranked Keyword Search
2 for each level i from 1 to n do
3 if(I0ðwiÞ¼¼Twi )
4 Rank (Ci)/ highest level that match with query
5 end if
6 end for
7 send C¼{c1,c2,…..ck,} to the user
To search the files, we use a Bþ tree-based data structure to get the
corresponding file list. We assume that there are n levels in the tree for
some integer n41. For each file, each tree level stores an index for
frequent keywords of that file in a cumulative way. The server starts
comparing the trapdoor against the first level identity of each file. If
matching file found as a result of the comparison in the first level then
this process continue to the other levels in tree as shown in Algorithm
5. Therefore, the overall search time is almost as efficient as on unen-
crypted data. Our search phase focus is on top-k retrieval, the server can
process the top- k retrieval almost as fast as in the plaintext domain.

4.2.3. Data Decryption
After receiving the matched files from CSP for corresponding

search request, the authorized user decrypts themwith the private
key and obtains their plain text. The procedure of decryption
process is given in Algorithm 6 as follows:

1) To decrypt the file, the user computes

d1 ¼ pþ1ð Þ=4Þnþ1 mod p�1ð Þ ð11Þ

d2 ¼ qþ1ð Þ=4Þnþ1 mod q�1ð Þ ð12Þ

a¼ xd1nþ1 mod p ð13Þ

b¼ xd2nþ1 mod q ð14Þ

x¼ brpþasq mod N ð15Þ

2) Then, the user uses x to construct xi and pi just as data owner
did for encryption

xi ¼ x2i�1 mod N ð16Þ

3) Finally, the user get the plaintext mi by XORing the pi with
ciphertext blocks ci

mi ¼ pi � ci ð17Þ

Algorithm 6. Data Decryption
1 Procedure: Data Decryption: To recover plaintext from C,
user should do the following:

2 Compute d1 ¼ pþ1ð Þ=4Þnþ1 mod p�1ð Þ
3 Compute d2 ¼ qþ1ð Þ=4Þnþ1 mod q�1ð Þ
4 Compute a¼ xd1nþ1 mod p



S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–2218
5 Compute b¼ xd2nþ1 mod q
6 Compute x¼ brpþasq mod N
7 for i to n do
8 Compute xi ¼ x2i�1 mod N
9 Let pi be the h least significant bits of xi
10 end for
11 Compute mi ¼ pi � ci

4.3. Integrity verification

Due to possible data corruption by internal attacks i.e., insider
attacker adds in scrambled data into the encrypted files or even to
the encrypted index, the search result may return false files to the
user. We need a security mechanism to verify the integrity of the
search results by the user is desirable.

Therefore, we design an integrity check mechanism over the
returned search results to address data corruptions problems. In
order to verify the integrity of data, we are using collision-
resistant hash function H (e.g., SHA�1) as follows:

1. The data owner computes the hash value of each file and index
before storing them in the cloud:

h1 ¼ HðI0ðwiÞ‖ϕðFiÞ
� �

1r irm;1r irn

where H is a hash function, m is number of keywords and n is
the total number of files.

2. Then, the data owner stores hash values locally or may share
with authorized users.

3. Later, upon receiving a query request from the user, the cloud
server computes hash value h2 of file collection, index and sends
hash value h2 along with ranked search results:

h2 ¼ HðI0ðwiÞ‖ϕðFiÞ
� �

1r irm;1r irn

4. After receiving the search results from the cloud server, the user
compares hash value of file collection and index before
uploading to cloud and after receiving from the cloud is

h1 ¼ h2?

5. if h1 ¼ h2 the user can be assured that returned files from the
cloud server has integrity and maintaining the correct ranking
order in index, other wise data are corrupted in cloud.

As a result, the proposed scheme can achieve the integrity of
encrypted files and index stored in cloud. In this way, privacy-
preserving approach satisfies the design goal of data privacy along
with data integrity.

5. Security analysis

In this section, we analyze the security of our scheme against
insider and outsider attacks and chosen cipher-text attacks.

Definition 1. (Semantic Security) Semantic security captures our
intuition that given a cipher text, the adversary (insider/outsider)
learns nothing about the corresponding encrypted plaintext, thus,
we can say that it is semantically secure.

Definition 2. (Data Privacy) ESPP approach has data privacy, if
there is polynomial time adversary that, the given retrieved
encrypted data and the corresponding encrypted secret key, learns
nothing about the data.

Definition 3. (Index Privacy) A ESPP approach has index privacy,
if for all polynomial time adversaries that, given index I for set of
keywords, does not leak any information about the corresponding
keywords.

Definition 4. (Data Integrity) the ESPP approach has data integ-
rity, if an insider attacker alters or modified the data, they can be
detected by users.

Definition 5. A hash function H is collision resistant; if for any
polynomial-time probabilistic algorithm A, i.e. Pr½ðx; yÞ ¼ Að1k;HÞ :
xay 4 HðxÞ ¼HðyÞ�

is negligible.

Theorem 1. The ESPPP is semantically secure against insider/out-
sider attacks according to Definition 1.

Proof. Here, we have to prove that adversary (insider/outsider)
cannot access or learn nothing from the cipher text and index.

Consider our key generation and encryption process: the data
owner selects two large primes p, and q, generates public and
private key pairs PK ¼ fNg and PR¼ fp; q; r; sg and then encrypts
the file using public key xi ¼ x2i�1 mod N pi ¼ xi mod 2 and
ci ¼ pi � mi.

Observe that N is an integer; an adversary (insider/outsider)
can see only the ciphertext ci. Assuming that factoring N is diffi-
cult, and then h least significant bit of the principal square root xn
of xnþ1 modulo N is simultaneously secure. Thus, the adversary
(insider/outsider) can do nothing better than guessing the pseu-
dorandom bits pi, 1r irt. More formally, if the integer factoriza-
tion problem is hard, then the ESPPP is semantically secure against
insider/outsider attacks.

Theorem 2. The proposed ESPPP satisfies Data Privacy and Index
Privacy according Definitions 2 and 3.

Proof. Here, we prove that data privacy and index privacy against
CCA. In this attack, the attacker may have temporary access to
encryption files and tries to decrypt it. We do this by modifying
our system based on the assumption that the RSA function is
intractable. This implementation maintains the same cost of
encryption, decryption, and same security against sensitive infor-
mation attacks as integer factorization problem. Secure the infor-
mation against the CCA as the deterministic RSA as follows:

Let N be the modules in the RSA module. i.e N¼pq where p and
q are the primes of the same size. Let the file of the data owner
contains such a composite number N whose factors p and q only
knows to data owner.

Define pi to be the bit vector whose value is significant bits of xi,
where xi ¼ x2i�1 mod N. To encrypt themi pick a random pi, then data
owner compute ci ¼ pi � mi and xnþ1 ¼ x2n mod N. To decryptmi, the
user computes xi ¼ x2i�1 mod N and mi ¼ pi � ci. The given xi ¼ x2i�1
mod N is hard for attacker to compute random seed x to access the
file? If so, thus one may build extreme efficient encryption scheme.
Hence, it is secure against the Chosen-Cipher text Attack (CCA)

Hence, due to security strength of our encryption scheme
against insider/outsider attacks and Chosen-Cipher text Attack
(CCA) from Theorems 1 and 2, the data privacy and index privacy
is well protected.

Theorem 3. ESPP approach satisfies the data integrity according to
Definition 4.

Proof. We can now prove that ESPP approach has data integrity
against insider attacks.

If data is corrupted by insider attacker in cloud environment,
the user checks over this attack by matching hash value h2 from
cloud server with hash value h1 from data owner. So that user can
detect that the data modification or alteration to data occurred in



1 2 3 4 5 6
0

500

1000

1500

2000

2500

File Size(GB)

Ti
m

e(
m

s)

ESPP
TRSE

Fig. 2. Computation cost of Data Owner for Encrypting the File.

500

600

700

TRSE
ESPP

S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–22 19
cloud i.e. if h1 ¼ h2 says that encrypted data and index is not
modified in cloud and data integrity is satisfied, other wise
encrypted data/index is modified.

Hence, if an insider attacker adds in scrambled data to
encrypted files or encrypted index must be detected. In this way,
ESPP approach satisfies the integrity of data stored in cloud against
insider attacks.

Theorem 4. The hash function H is collision resistant, it is

Computationally hard for attacker to find two different inputs xay
that have same hash value H (x)¼H(y) according to Definition 5.

Proof. We prove that any attacker cannot produce same hash
value on two distinct inputs.

Formally, a pair of inputs x, y are called collision for function H
if xay but have same hash H(x)¼H(y). The collisions-resistance
requirement states that any probabilistic polynomial-time algo-
rithm A, that is on given inputs, succeeds in a finding a collision for
the function H with negligible probability.

Therefore, if H is collision resistant, it is computationally
infeasible to find two distinct inputs x and y that produce the same
hash value, i.e., H(x)¼H(y).

Hence, an attacker cannot inject hash a value and thus, it does
not make h1 ¼ h2 due to security strength of hash function.
500 1000 1500 2000 2500
0

100

200

300

400

Number of Keywords

Ti
m

e(
m

s)

Fig. 3. The time to generate Trapdoor on different number of keywords.
6. Performance evaluation

In this section, we present performance analysis of the ESPPA,
in which communication and computation costs are analyzed
separately. Especially, low computation costs on the data owner
and authorized users side are crucial for rendering the ESPP
approach is feasible for mobile applications where the data owner
and users usually perform the all computations through resource-
constrained mobile devices such as smart phones.

We have conducted the experimental evaluation of the proposed
ESPPP scheme on real data set: Request For Comments (RFC) database
(RFC, 2012). Our experiment environment includes the user and ser-
ver. The user use the C programming language on a Linux machine
with dual Intel Xeon CPU running at 2.0 GHz and algorithms use both
open ssl and MATLAB libraries and the server use C programming on
a Linux machine with Xeon E5620 CPU running at 2.4 GHz. The user
acts as a data owner, authorized user, and the server acts as a CSP. The
performance of our scheme evaluated regarding the efficiency in
terms of computation and communication costs.

6.1. Computation cost

In this section, we evaluate the computation cost of the data
owner, authorized user, and cloud server.

6.1.1. Data Owner
Here, we measure the computation cost of the data owner

during the setup phase, which includes key generation, encryption
and index build algorithms. We mainly concentrating on compu-
tation cost of data owner for encrypting the file collection and
compare the experimental results with existing scheme.

Fig. 2 shows that ESPPA encryption process is quite efficient
because it takes only 1 modular multiplication to encrypt h bits of
plaintext. By comparing TRSE encryption technique (Yu et al., 2013),
the ESPPA encryption takes less computation cost for longer files (GB).

The computation cost of key generation and index creation is
negligible compare to encryption process.
6.1.2. Authorized users
Here, we analyze the computation cost of authorized user to

generate trapdoor for multiple keywords and decrypt the retrieved
files in retrieval phase.

6.1.2.1. Trapdoor generation. The Trapdoor generation Twi from mul-
tiple keywords requires only addition operations. Fig. 3 shows the
time to generate a trapdoor of different lengths of keywords and Fig. 4
shows that time to generate trapdoor for queried keywords where
number of keywords are 4000. In both cases, our scheme is efficient
than TRSE (Yu et al., 2013), because they encrypt the trapdoor.

6.1.2.2. Data decryption. Upon receiving the files from the server,
the user decrypts the files and gets the corresponding plaintext.
The probabilistic public-key decryption is quite efficient because
its requiring 1 exponentiation modulo p�1, 1 exponentiation
modulo q�1, 1 exponentiation modulo p, 1 exponentiation mod-
ulo q, and n multiplications modulo N to decrypt hn cipher text
bits. By comparing homomorphic decryption for longer files,
probabilistic public-key decryption takes less computation cost.
Fig. 5 shows that the computational cost of user for decrypting
large files in ESPPP is less than that in TRSE.

The main difference between proposed ESPPP scheme and TRSE
scheme is that the former uses the Homomorphic encryption and
decryption algorithms to encrypt and decrypt the files, which require
more computation cost, whereas ESPPA uses the probabilistic public



500 1000 1500 2000 2500
0

100

200

300

400

500

Number of queried keywords

Ti
m

e(
m

s)

TRSE
ESPP

Fig. 4. The time to generate Trapdoor for different number of queried keywords.

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

Ti
m

e(
m

s)

File Size(GB)

ESPP
TRSE

Fig. 5. Computation Cost of Authorized user for decrypting the files.

500 1000 1500 2000 2500 3000 3500
0.2

0.4

0.6

0.8

1

1.2

Number of queried keywords

Ti
m

e(
s)

TRSE
ESPP

Fig. 6. The time of the server to search the files based on queried keywords.

200 400 600 800 1000 1200 1400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k value for top-k retreval

Ti
m

e(
s)

ESPP
TRSE

Fig. 7. The time of server for selecting Top-k files where total number of
files¼2000.

S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–2220
key encryption and decryption algorithms to encrypt and decrypt the
files, which require less computation cost. We claim that ESPPA
scheme reduces the computational overhead of a thin client, thus it is
more adaptable to resource-constrained mobile devices in cloud
environment than TRSE (Yu et al., 2013). To validate our claim, we
compared the computation cost of our scheme with existing scheme
during the encryption and decryption process as shown in Figs. 2 and
5 respectively.

6.1.3. Cloud server
Here, we measure the time of the server for search the matching

files based on search request (trapdoor) generated by the user and for
selecting top-k files from total file collection. Fig. 6 shows the time to
search the files based on trapdoor; the search time includes fetching the
file entry list in the index using Bþ tree. The overall search time of
ESPPA is almost as efficient as compared existing TRSE (Yu et al., 2013).
Similarly, Fig. 7 shows the time of server to select the top-k files from
the all matched files based on relevance score computed by data owner.
From Fig. 7, we can see that top-k file retrieval time against the value of
k increases for the same index of ESPPP performs better than TRSE (Yu
et al., 2013) where relevance score calculated at server side. Therefore,
computation cost of server for retrieval of top-k files from whole file
collection is less compared to existing TRSE (Yu et al., 2013) scheme.

6.2. Communication cost

We analyze the communication cost of proposed ESPPA scheme
between the authorized user and server during file retrieval
process. In Fig. 8, we show communication cost of our scheme and
compare results with TRSE scheme. From Fig. 8, we can observe
that ESPPA vastly reduces the communication overhead burden
compared to TRSE (Yu et al., 2013) scheme, because ESPPA use one
round communication between the user and server to retrieve the
matched files back, where as TRSE scheme uses two round com-
munication process between the user and server.
6.3. Experimental results on real mobiles devices

Moreover, we implement the ESPP approach on real mobile
device and Enron Email Dataset (Cohen, 2013). The user uses java
language on Android smart phone has 1.2 GHz with 1 GB RAM.

Here, we analyze the computation cost of user for encrypting,
decrypting the files and generating trapdoor respectively as shown
in Figs. 9–11.

Figs. 9 and 10 show that computation cost of ESPP is less effi-
cient than existing methods such as TRSE (Yu et al., 2013), MRSE
(Cao et al., 2014) and RRSE (Wang et al., 2012). Because, the ESPP
approach uses the probabilistic public key encryption and
Decryption algorithms where as existing methods uses determi-
nistic encryption and decryption algorithms.



200 400 600 800 1000 1200
0

5

10

15

20

25

Numer of queried keywords

Ti
m

e(
s)

TRSE
ESPP

Fig. 8. Communication cost.

1 2 3 4 50

100

200

300

400

500

File Size(MB)

Ti
m

e(
m

s)

 

 

ESPP
TRSE
MRSE
RRSE

Fig. 9. Computation Cost of Data Owner for encrypting the files on real
smart phone.

1 2 3 4 50

100

200

300

400

500

600

File Size(MB)

Ti
m

e(
m

s)

ESPP
TRSE
MRSE
RSSE

Fig. 10. Computation Cost of Authorized user for decrypting the files on real
smart phone.

100 200 300 400 500
1

2

3

4

5

6

7

8

Number of Keywords

T
im

e(
s)

RRSE
MRSE
TRSE
ESPP

Fig. 11. The time to generate Trapdoor on different number of keywords on real
smart phone.

S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–22 21
Fig. 11 shows the time to generate a trapdoor of different lengths of
keywords. As shown Fig. 11, the time to generate trapdoor is changeless
when the number of queried keywords increases. The total time cost of
trapdoor generation of ESPP is efficient than existing approaches TRSE
(Yu et al., 2013), MRSE (Cao et al., 2014) and RRSE (Wang et al., 2012).
Because existing use large key size for generating trapdoor.
7. Discussion on future enhancement

The above discussions have shown how to achieve an efficient
ESPP approach. In this section, we give further discussions on how
to make the ESPP approach more readily deployable in practice.
Based on the current research, there are two interesting research
issues to be addressed in ESPP approach.

7.1. Efficiency improvement

During the implementation, we observe that proposed
approach achieved the efficiency at the Data Owner side and user
side. However, our ranked keyword search mechanism at server
side is inefficient when searching for large volumes of data,
especially in Big Data environment, which will lead to significant
search accuracy performance degradation. This will make it even
more challenging to design ranked keyword search schemes that
can provide efficient and reliable online information retrieval on
large volume of encrypted data.

To solve this problem and, thus, improve efficiency, a tradeoff
of the efficiency of ranked search mechanism is needed.

7.2. Dynamic data updates

In Cloud storage, the outsourced file collection may be updated
in addition to being retrieved for practical importance. There are
three main dynamic data operations such as insertion, modifica-
tion and deletion for updating documents and corresponding
index. Since dynamic data operations also affect the document
frequency of corresponding keywords, we also need to update the
dictionary and relevance score.

In a practical cloud computing system, data updates like add-
ing, modifying or deleting files and index lead to a new challenge
to the ESPP without introducing re-computation overhead on data
owners.

Hence, an ESPP approach should support efficient dynamic data
operations on documents and index without violating privacy.

8. Conclusions and future directions

In this paper, we addressed the problem of supporting efficient
and secure privacy-preserving ranked keyword search over the



S.K. Pasupuleti et al. / Journal of Network and Computer Applications 64 (2016) 12–2222
encrypted data for achieving effective data utilization of out-
sourced encrypted data of resource-constrained mobile devices in
cloud. The user’s data protected against privacy violations. We first
presented a basic survey on existing schemes and shown that
those are very inefficient to achieve privacy of outsourced data and
not suitable for resource constrained mobile devices. Then, we
proposed an Efficient and Secure Privacy-Preserving approach
based on probabilistic public key encryption and ranked multi-
keyword search. We first created an index for file collection and
stored both index and file collection in the cloud in an encrypted
form. Later, to retrieve data files, the authorized user creates a
trapdoor and sends it to the server. Then, server starts search for
corresponding files over the encrypted data via trapdoor. The
server returns the matching files back to the user, if any file
matches with keywords. We appropriately increase the efficiency
of our scheme by using probabilistic public key encryption tech-
nique rather than other encryption technique for file encryption.
Moreover, our scheme also verifies the integrity of data. Finally, we
have proved that ESPPA satisfies the security and efficient
requirements through the security and performance analysis.

ESPPA is a mechanism that allows a user to search by ranked
keywords on encrypted data. It aims at preserving the privacy of
the outsourced data of owner while providing a way that allows a
user to search efficiently without the need of decrypting the
cipher text. Thus, ESPPA has become more important in storage
and retrieval of encrypted outsourced data of resource-
constrained mobile devices in cloud computing

In our future work, we will enhance ESPP to support efficient
dynamic data operations and ranked keyword search over the
encrypted big data in cloud (as identified in Section 7).
References

Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, A. Konwinski A, Lee G, Patterson
DA, Rabkin A, Stoica I, Zaharia M. Above the clouds: a Berkeley view of cloud
computing, Technical Report UCB-EECS-2009-28. Berkeley: University of Cali-
fornia; 2009. p. 1–23.

Attrapadung N, Li Bert B. Functional encryption for inner product: achieving con-
stant size cipher text switch adaptive security or support for negation. In:
Nguyen P, Pointcheval D, editors. Public Key Cryptography, 6056 LNCS. Springer
Berlin/Heidelberg; 2010. p. 384–402.

Bao F, Deng R, Ding X, Yang Y. Private query on encrypted data in multi-user set-
tings. In: Proceedings of 4th international conference on information security
practice and experience. Sydney; 2008. p. 71–85.

Bellare M, Boldyreva A, Neill AO. Deterministic and efficient searchable encryption.
In: Menezes A, editor. Advances in Cryptology-CRYPTO 2007, 4622 LNCS. Berlin/
Heidelberg: Springer; 2007. p. 535–52.

Boldyreva A, Chenette N, Lee Y, O’Neill A. Order-preserving symmetric encryption.
In: Proceedings of 28th annual international conference on theory and appli-
cations of cryptography techniques. Springer, Germany; 2009. p. 224–41.

Boneh D, Crescenzo GD, Ostrovsky R, Persiano G. Public key encryption with key-
word search. In Proceedings of international conference on theory and appli-
cations of cryptographic techniques: advances in cryptology. Switzerland;
2004. p. 506–22.
Cao N, Wang C, Li M, Ren K, Lou W. Privacy-preserving multi-keyword ranked
search over encrypted cloud data. IEEE Trans Parallel Distrib Syst 2014;25
(1):222–33.

Chang Y-C, Mitzenmacher M. Privacy preserving keyword searches on remote
encrypted data. In: Proceeding of Third International Conference on Applied
Cryptography and Network Security. New York; 2005. p. 442–55.

Cloud Security Alliance, Security Guidance for Critical Areas of Focus in Cloud
Computing; 2009. 〈http://www.cloudsecurityalliance.org〉.

Cohen WW. Enron email data set; 2013 〈http://www.cs.cmu.edu/�enron/〉.
Curtmola R, Garay JA, Kamara S, Ostrovsky R. Searchable symmetric encryption:

improved definitions and efficient constructions. In: Proceedings of 13th ACM
conference on computer and communication security. Alexandaria; 2006. p.
79–88.

Goh E-J. Secure indexes, Technical Report 2003/216, Cryptology, ePrint Archive;
2003 〈http://eprint.iacr.org〉.

Haclgiimfi H, Iyer B, Li C, Mehrotra S. Executing SQL over encrypted data in
database-service-provider model, Technical Report TR-DB�02�02. Irvine:
Database Research Group at University of California; 2002.

Jaeger PT, Lin J, Grimes JM. Cloud computing and information policy: computing in
a policy cloud? J Inform Technol Polit 2009;5(3):269–83.

Jaeger T, Schiffman J. Outlook: Cloudy with a chance of security challenges and
improvements. IEEE Secur Priv 2010;8(1):77–80.

Katz J, Sahai A, Waters B. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: Proceedings of 27th annual international
conference on the theory and applications of cryptographic techniques. Berlin,
Heidelberg; 2008. p. 146–62.

Krebs B. Payment processor breach may be largest ever; 2009. 〈http://voices.
washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.
html〉.

Kuzu M, Saiful Islam M, Kantarcioglu M. Efficient similarity search over encrypted
data. In: Proceedings of IEEE international conference on data engineering.
Washington; 2012. p. 1156–67.

Li J, Wang Q, Wang C, Cao N, Ren K, Lou W. Fuzzy keyword search over encrypted
data in cloud computing. In: Proceedings of of IEEE 29th international con-
ference on computer communications. San Diego; 2010. p. 441–5.

Liu Q, Wang G, Wu J. Secure and efficient privacy preserving keyword searching for
cloud services. J Netw Comput Appl, 35. Elsevier; 927–33.

Lu Y. Privacy-preserving logarithmic- time search on encrypted data in cloud. In:
Proceedings of 19th NDSS. San Diego, California, USA; 2012.

Menezes Alfred J, van Oorschot Paul C, Vanstone Scott A. A hand book of applied
cryptography. FL: CRC Press; 1996.

Ogata W, Kurosawa K. Oblivious keyword search. J Complex 2004;20:356–71.
Orencik C, Savas E. An efficient privacy-preserving multi-keyword search over

encrypted cloud data with ranking. Parallel and Distributed Databases, 32.
Springer; 119–60.

RFC: Request for comments database; 2012 〈http://www.ietf.org/rfc.html〉.
Shi E, Bethencourt J, Chan H, Song D, Perrig A. Multi-dimensional range query over

encrypted data. In: Proceedings of IEEE symposium on security and privacy.
California; 2007. p. 350–64.

Slocum Z. Your Google docs: soon in search results?; 2009. 〈http://news.cnet.com/
8301-17939_109-10357137-2.html〉.

Song D, Wagner D, Perrig A. Practical techniques for searches on encrypted data. In:
Proceedings of the IEEE symposium on security and privacy. California; 2000. p.
44–55.

Wang C, Cao N, Ren K, Lou W. Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE Trans Parallel Distrib Syst 2012;23
(8):1467–79.

Waters B, Balfanz D, Durfee G, Smetters D. Building an encrypted and searchable
audit log. In: Proceedings of annual network and distributed security sympo-
sium. California; 2004.

Witten IH, Moffat A, Bell TC. Managing gig a bytes: compressing and indexing
documents and images. Second ed. CA, USA: Morgan Kaufmann Series; 1999.

Yu J, Lu P, Zhu Y, Xue G, Li M. Toward secure multi-keyword top-k retrieval over
encrypted cloud data. IEEE Trans Depend Secur Comput 2013;10(4):239–50.

http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref2
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref2
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref2
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref2
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref3
http://www.cloudsecurityalliance.org
http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/
http://eprint.iacr.org
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref6
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref6
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref6
http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref7
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref7
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref7
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref8
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref8
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref9
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref9
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref10
http://www.ietf.org/rfc.html
http://news.cnet.com/8301-17939_109-10357137-2.html
http://news.cnet.com/8301-17939_109-10357137-2.html
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref12
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref12
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref13
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref13
http://refhub.elsevier.com/S1084-8045(16)00054-0/sbref13

	An efficient and secure privacy-preserving approach for outsourced data of resource constrained mobile devices in cloud...
	Introduction
	Related work
	Searchable encryption schemes based on symmetric key encryption
	Searchable encryption based on public-key encryption

	Problem statement
	System architecture
	System model
	Threat model
	System goals
	Preliminaries and notations

	Efficient and Secure Privacy-Preserving Approach(ESPPA)
	Setup phase
	Key generation
	Index creation
	Privacy-preserving

	Retrieval phase
	Trapdoor Generation
	Ranked Keyword Search
	Data Decryption

	Integrity verification

	Security analysis
	Performance evaluation
	Computation cost
	Data Owner
	Authorized users
	Trapdoor generation
	Data decryption

	Cloud server

	Communication cost
	Experimental results on real mobiles devices

	Discussion on future enhancement
	Efficiency improvement
	Dynamic data updates

	Conclusions and future directions
	References




