
Journal of Parallel and Distributed Computing 131 (2019) 55–68

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Performance evaluation of live virtualmachinemigration in
SDN-enabled cloud data centers
TianZhang He a,∗, Adel N. Toosi b, Rajkumar Buyya a

a Clouds Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne
Parkville, VIC 3010, Australia
b Faculty of Information Technology, Monash University Clayton, VIC 3800, Australia

h i g h l i g h t s

• Comprehensive evaluation of block live migration in SDN-enabled data centers.
• Evaluation of OpenStack downtime adjustment algorithm.
• Modeling the trade-off between sequential and parallel migration.
• Evaluation of the effect of flow scheduling update rate on as TCP/IP.
• Response time pattern of a multi-tier application under various migration strategies.

a r t i c l e i n f o

Article history:
Received 4 July 2018
Received in revised form 1 February 2019
Accepted 17 April 2019
Available online 26 April 2019

MSC:
00-01
99-00

Keywords:
Live VMmigration
Software-Defined Networking
Cloud computing
Virtual machine
Performance measures
OpenStack
OpenDaylight

a b s t r a c t

In Software-Defined Networking (SDN) enabled cloud data centers, live VM migration is a key
technology to facilitate the resource management and fault tolerance. Despite many research focus
on the network-aware live migration of VMs in cloud computing, some parameters that affect live
migration performance are neglected to a large extent. Furthermore, while SDN provides more traffic
routing flexibility, the latencies within the SDN directly affect the live migration performance. In this
paper, we pinpoint the parameters from both system and network aspects affecting the performance
of live migration in the environment with OpenStack platform, such as the static adjustment algorithm
of live migration, the performance comparison between the parallel and the sequential migration, and
the impact of SDN dynamic flow scheduling update rate on TCP/IP protocol. From the QoS view, we
evaluate the pattern of client and server response time during the pre-copy, hybrid post-copy, and
auto-convergence based migration.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid adoption of cloud computing environments
for hosting a variety of applications such as Web, Virtual Real-
ity, scientific computing, and big data, the need for delivering
cloud services with Quality of Service (QoS) guarantees is becom-
ing critical. For cloud data center management, it is important
to prevent the violation of Service Level Agreement (SLA) and
maintain the QoS in heterogeneous environments with different
application contexts. Therefore, there has been a lot of focus on
optimizing the service latency and energy efficiency dynamically
in order to benefit both cloud computing tenants and providers.

∗ Corresponding author.
E-mail addresses: tianzhangh@student.unimelb.edu.au (T. He),

adel.n.toosi@monash.edu (A. N. Toosi), rbuyya@unimelb.edu.au (R. Buyya).

Virtual Machines (VMs), as one of the major virtualization tech-
nologies to host cloud services, can share computing and net-
working resources. In order to alleviate SLA violation and meet
the QoS guarantees, the placement of VMs needs to be optimized
constantly in the dynamic environment. Live VM migration is the
key technology to relocate running VMs between physical hosts
without disrupting the VMs’ availability [8]. Thus, in SDN-enabled
data centers, live VM migration as a dynamic management tool
facilities various objectives of the resource scheduling [12,22,28],
such as load balancing, cloud bursting, resource overbooking, and
energy-saving strategy, fault tolerance, scheduled maintenance
as well as evacuating VMs to other data centers before the in-
cidents like earthquake and flooding which require VM location
adjustment.

The live VM migration technologies can be categorized into
the pre-copy memory [8] and post-copy memory migration

https://doi.org/10.1016/j.jpdc.2019.04.014
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.04.014
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.04.014&domain=pdf
mailto:tianzhangh@student.unimelb.edu.au
mailto:adel.n.toosi@monash.edu
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jpdc.2019.04.014


56 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

[15]. During the pre-copy live migration, the Virtual Machine
Monitor (VMM), such as KVM and Xen, iteratively copy memory
(dirty pages produced in the last round) from the running VM at
the source host to the VM container at the target host. However,
the post-copy live migration first suspends the VM at the source
host and resumes the VM at the target host by migrating a
minimal subset of VM execution state. At the same time, the
source VM still pro-actively pushing the remained pages to the
resumed VM. A page-fault happens when the VM attempt to
access an un-transferred page which can be solved by fetching
the pages from the source VM. However, in many circumstances
such as in Wide Area Network (WAN) environment (inter-data
centers and between edge and core cloud computing), and some
production Data Centers where some servers do not share the
same storage system, there is no Network File System (NFS)
between the source and the target hosts to share ephemeral
disks. The live migration with block storage, also called block live
migration, is used by combining memory migration with live disk
migration. Besides the memory migration of live VM migration,
the live disk migration is used [5,23] to transfer the ephemeral
disk of the VM instance to the target host.

The goal of this paper is to tackle an important aspect in the
field of VM migration, namely understanding the parameters that
affect the performance of live VMmigration in SDN-enabled cloud
computing. The performance of live migration could be evaluated
by measuring three metrics:

• Migration time is the time duration from the initialization
of the pre-migration process on the source host to the
successful completion of the post-migration process on both
hosts.

• Downtime refers to the duration that the VM is suspended
due to the stop-and-copy, Commitment and Activation
phase. From the client perspective, the service is unavail-
able.

• Transferred data is the amount of data transferred be-
tween the source and destination host during the migration
process.

There are continuous efforts to improve live VM migration,
such as improving the performance of live migration algorithm
[26,29], modeling for better prediction of the cost [6,20], network-
aware live migration to alleviate the influence of migration on
SLA and application QoS [9,10,36], optimizing the multiple live
VM migration planning [7,11,30,35], and benchmarking the live
migration effects on applications [17,34]. Nonetheless, many pa-
rameters, such as downtime adjustment and non-network over-
heads, that affect the live migration time and downtime are
neglected to a large extent. During a live VM migration, the
downtime threshold for the last memory-copy iteration could
be changed as time elapses. This will affect the memory-copy
iteration rounds, which leads to different migration time and
downtime. Computing overheads of live VM migration can also
constitute a large portion of total migration time, which will
affect the performance of multiple VM migrations.

On the other hand, some work focus on the live VM migration
in Software-Defined Networking (SDN) scenarios [11,22,35]. By
virtualizing the network resources, we could use SDN to dynam-
ically allocate bandwidth to services and control the route of
network flows. Due to the centralized controller, SDN can provide
a global view of the network topology, states of switches, and
statistics on the links (bandwidth and latency). Based on the in-
formation, orchestrator can calculate the ‘best’ path for each flow
and call SDN controller Northbound APIs to push the forwarding
rules to each switch in the path. However, the latencies of the
flow entry installation on the switch and the communication
between SDN controller and switches could impact the traffic

engineering performance in the SDN-enabled cloud data centers.
Thus, the scheduling update rate of choosing the ‘best’ path will
affect the live migration traffic.

Moreover, although some work [17,34] focus on the impacts
of live migration on the cloud services, such as multi-tier web
application, the worst-case response time pattern as well as the
technologies, such as hybrid post-copy and auto-convergence, for
a successful live migration need to be investigated further. Hybrid
post-copy (H-PC) [15] is the strategy that combines pre-copy
and post-copy migration. The post-copy mode will be activated
after the certain pre-copy phase where most of the memory has
been transferred. Based on the CPU throttling, Auto-convergence
(AC) [14] will decrease the workload where the memory write
speed is relative to the CPU executing speed.

We evaluate the live migration time, downtime, and total
transferred data using OpenStack [25] as the cloud computing
platform. OpenStack uses the pre-copy live migration with the
default driver Libvirt (virtualization API) [3]. Our study is fun-
damentally useful to resource scheduling, such as energy-saving
strategy, load balancing, and fault tolerant, driven by SLA. The
contributions are fourfold, and are summarized as follows:

• Evaluation of the performance of block live migration in
OpenStack with different configuration of static downtime
adjustment algorithm. Experimental results can be used as
reference to dynamically configure optimal migration time
and downtime.

• Modeling and identification of the trade-off between se-
quential and parallel migration when the host evacuation
happens in the same network path.

• Evaluation of the effect of flow scheduling update rate on
the migration performance as well as TCP/IP protocol in
SDN-enabled clouds. Experimental results can guide to op-
timize the update rate and select the best path of SDN
forwarding scheduler in order to achieve better migration
performance.

• Evaluation of the response time of a multi-tier web applica-
tion under pre-copy, hybrid post-copy and auto-convergence
based live migration. Specifically, experimental results
demonstrate the worst-case response time and the situ-
ation when the pre-copy migration could not finish in a
reasonable time.

The rest of the paper is organized as follows. Section 2 intro-
duces the related work and motivations. In Section 3, we present
the system overview of SDN-enabled data centers and details
of the live migration in OpenStack. The mathematical models
of block live migration, sequential and parallel migrations are
presented in Section 4. In Section 5, we describe the objectives,
testbed specifications, metrics, and the experimental setup of
the evaluated parameters. We quantitatively show how these
parameters can dramatically affect the migration time and service
performance. Finally, we conclude our work in Section 6.

2. Related work

Clark et al. [8] firstly proposed the live VM migration com-
paring to the naive stop-and-copy method. During the iterative
memory copy phase of live migration implemented in Xen virtu-
alization platform, rapid dirtying pages which updated extremely
frequently, called Writable Working Set (WWS), was introduced.
These pages will not be transmitted to the destination host in
the iteration round in order to reduce the total migration time
and transferred data. In addition, the authors elaborated the
implementation issues and features with regard to the managed
migration (migration daemons of Xen in host and destination
hosts), self migration (implementation the mechanism within the



T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68 57

OS), dynamic rate-limiting for each iteration round, rapid page
dirtying, and paravirtualized optimizations (stunning rogue pro-
cess, i.e. limit write faults of each process, and freeing page cache
pages, i.e. reclaiming back cold buffer cache pages). Although pre-
copy migration is widely used in various virtualization platforms,
such as Xen, QEMU/KVM, VMWare, it is worth noting that mi-
gration algorithms and performance of different hypervisors are
different in terms of dirty pages detection and transmission and
stop-and-copy threshold [16]. For instance, the page skip (WWS)
mechanism does not be implemented in KVM.

In order to alleviate the overheads caused by live VM mi-
grations, the prediction model is required to estimate the live
migration performance in advance. Akoush et al. [6] proposed
a model to estimate the migration time and downtime of live
VM migration based on the two main functions of migration,
i.e. peek and clean. The peek function returns the dirty bitmap
and the clean function returns the dirty pages and resets them
to clean state. They used both average dirty page rate (AVG) and
history based page dirty rate (HIST) in their prediction algorithms.
The HIST model could capture the variability of live migration
and help to decide the moment at which migration begins to
minimize the migration cost. Moreover, Liu et al. [21] introduced
the rapid page dirtying in its migration performance prediction
model. In order to obtain a more accurate prediction model,
the authors refined the previous prediction model of migration
performance by estimating the size of WWS. Based on the ob-
servation, it is an approximated proportional size of the total
dirty pages in each iterative memory copy round with regard
to previous iteration time and dirty pages rate. The authors also
proposed an energy consumption model of live migration based
on the linear regression between total transferred data and mea-
sured energy consumption. The synthesized cost for migration
decision is based on the estimated values of downtime, migration
time, transferred data, and energy cost. Furthermore, based on
prediction model of migration cost, different migration strate-
gies for load balancing, fault toleration, and server consolidation
are proposed [20]. The algorithms choose the proper migration
candidates in order to minimize the total migration cost while
satisfying the requirements of rescheduling algorithms. Contrary
to their work we focus on the mechanism and performance of
proposed parameters and corresponding models.

Prediction models of live migration which assume a static
downtime threshold [6,20,21] or constant dirty page rate [35]
cannot reflect the real migration time and downtime in Open-
Stack. The downtime threshold in OpenStack uses a static ad-
justment algorithm. It is increased monotonically with a certain
time interval and steps during the migration in order to reduce
the migration time. A misconfigured downtime configuration will
lead to a poor performance of live migration, such as unstable
downtime which results in the SLA violation and a long-time
migration that degrades the network performance. Therefore,
in order to dynamically set optimal configurations, we need to
have a better understanding of the relationship between down-
time adjustment configurations and migration performance in
OpenStack.

Planning of the sequential and parallel migration in intra and
inter-data centers to optimize the server evacuation time and
minimize the influence of live migration has attracted interest
recently [7,11,35]. However, they only focus on the network as-
pect of multiple live migration planning to decide the sequence of
sequential and concurrent live migration in order to minimize the
migration duration. As mentioned in [6], the total migration time
includes pre-migration, pre-copy phase, stop-and-copy phase and
post-migration overheads. The most proportion of migration time
could be the operation overheads. Therefore, in order to have
a better algorithm of the multiple VM evacuation planning, we

need to pinpoint the impacts of non-network overheads on the
parallel and sequential migration in the same path.

Moreover, Software-Defined Networking (SDN) [27] as a pow-
erful feature in Cloud computing provides a centralized view of
topology and bandwidth on every path. We could flexibly imple-
ment network scheduling algorithm and set bandwidth limit for
live migration and other application traffics. In a highly dynamic
network environment, the ‘best’ path decided by scheduling algo-
rithm based on an update rate could change frequently. Therefore,
not only the bandwidth but traffic pattern, SDN control plan [13]
and flow table latency [19] could also affect the live migra-
tion performance. Understanding the SDN latency in the flow
scheduling is very important for achieving better live migration
performance.

With different application context, the impacts of live migra-
tion on application performance could change dramatically. For
instance, the workload of a multi-tier web application with spe-
cific write and communication pattern [17,34] is different with
the workload in scientific computing applications. The response
time should be soft real-time to satisfy the QoS of application.
Therefore, network service suffers more from the disruption due
to the downtime and the performance degradation due to the live
VM migration. As there are few works on this topic, evaluating
the live migration effects on the response time of different types
of network-sensitive applications is desirable. However, current
work did not consider the worst-case response time and the
situation when the pre-copy migration could not finish in a
reasonable time. Thus, we need to evaluate the response time
distribution of the web application during the migration, and the
impacts of strategies, hybrid post-copy, and auto-convergence,
on application response time which perform a successful live
migration.

3. System overview

In SDN-enabled data centers, the computing resources are
under control of cloud management platform, such as OpenStack,
while the networking resources are managed by SDN controller.
The management module (orchestrator) coordinates the SDN con-
troller and the OpenStack services by using northbound RESTful
APIs to perform VM migration planning in resource schedul-
ing algorithm such as the SLA-aware energy-saving strategy as
shown in Fig. 1. In OpenStack, Nova service runs on top of Linux
servers as daemons to provide the ability to provision the com-
pute servers. Meanwhile, Neutron component provides ‘connec-
tivity as a service’ between network interfaces managed by other
services like Nova.

More specifically, the cloud controller of Infrastructure as a
Service (IaaS) platform, OpenStack, is in charge of configuring
and assigning all computing and storage resources, such as allo-
cating flavor (vCPU, memory, storage) to VMs, placing the VMs
on physical hosts using Nova component. It keeps all the in-
formation about physical hosts and virtual machines, such as
residual storage and available computing resources. At the same
time, all computer nodes update the states of hosted VMs to
OpenStack Nova service. Furthermore, Neutron, the OpenStack
network component, provides the management of virtual net-
working, such as start, update and bind the VM’s port, as well
as the communication between VMs. However, the OpenStack
Neutron does not control network devices (switches). It only
controls networking modules in compute nodes and network
nodes.

Therefore, the SDN controller uses OpenFlow [24] protocol
through southbound interfaces to manage the forwarding planes
on network devices (switches). The open-source virtual switch,
Open vSwitch (OVS) [2], provides the virtualization switching



58 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

Fig. 1. System overview.

stack supporting OpenFlow and other standard protocols. There-
fore, without expensive dedicated switches, we could install OVS
in the white box as the OpenFlow switch in SDN-enabled data
centers. Based on the link information between OpenFlow de-
vices, the SDN controller calculates the forwarding tables for all
network traffics. The OpenFlow switches forward the traffic flow
according to the received forwarding tables from SDN controller.
It also measures the received and transmitted data size as well as
the bandwidth and latency between each other.

3.1. Live migration in OpenStack

In this section, we present the details of block live migration
in OpenStack. Providing a comprehensive solution to control the
computing and network resources in the datacenter, OpenStack
uses Libvirt [3] to manage hosts in order to support different
kinds of virtualization. Nova live migration interacts with Neu-
tron to perform the pre- and post-live-migration operations, and
uses Libvirt to handle the actual live migration operations. The
pre-copy live VM migration is used by default driven by libvirt.

Since libvirt 1.0.3, the QEMU’s Network Block Device (NBD)
server and ‘‘drive-mirror" primitive [5] are used to perform live
storage migration (without shared storage setup). Similarly, since
VMWare ESX 5.0, it uses VMKernel data mover (DM) and IO
mirroring to perform live storage migration [23]. It separates
the storage streaming data flows from the instance’s RAM and
hypervisor’s internal state data flows. The disk transmission will
perform concurrently with IO mirroring and VM migration. The
write operation can be categorized into three types: (1) Into the
block has been migrated, the writes will be mirrored to the target.

Fig. 2. OpenStack block live migration.

(2) Into the block being migrated, the writes will be sent to
the target first and wait in the queue until the region migration
finished. (3) Into the block which will be migrated, the writes
are issued to the source disk without mirroring. By caching the
backing file or instance image when it boot in the Nova compute
host, the mirror action could just apply to the top active overlay
in the image chain. Thus, the actual disk transmission will be
reduced.

Similar to the pre-copy migration described in [8], the block
live migration in OpenStack includes 9 steps (Fig. 2):

1. Pre-live migration (PreMig): Creates VM’s port (VIF) on
the target host, updates ports binding, and sets up the
logical router with Neutron server.

2. Initialization (Init): Preselects the target host to speed the
future migration.

3. Reservation (Reserv): Target host sets up the temporary
share file server; and initializes a container for the reserved
resource on the target host.

4. Disk transmission: For live storage migration, starts to
perform storage migration and synchronizes the disk
through IO mirroring.

5. Iterative pre-copy: For pre-copy VM migration, sends dirty
pages that are modified in the previous iteration round to
the target host. The entire RAM is sent in the first round.

6. Stop-and-copy: the VM is paused during the last itera-
tion round according to the downtime threshold (remained
amount is less than the required).

7. Commitment (Commit): Source host gets the commitment
of a successfully received instance copy from the target
host.

8. Activation (Act): Reassigns computing resource to the new
VM and delete the old VM on the source host.

9. Post-live migration (PostMig): On the target host, updates
port state and rebinds the port with Neutron. VIF driver
unplugs the VM’s port on the source host.

Where copying overheads are due to the pre-copy iteration and
downtime is caused by the stop-and-copy, commitment and parts
of the activation and post-migration operations. Although the
network-related phases (disk transmission, pre-copy iteration,
and stop-and-copy) usually dominate the total migration time,
the pre- and post-live-migration, initialization, reservation, com-
mitment, and activation could add a significant overhead to the
migration performance in certain scenarios (large available net-
work bandwidth, small disk size or low dirty page rate). The
pre-live-migration, initialization, reservation could be classified
as pre-migration overheads while the commitment, activation
and post-live-migration as post-migration overheads.

Downtime Adjustment Algorithm: Unlike the stop conditions
that are used in QEMU or Xen migration algorithm, the downtime
threshold in OpenStack live migration increases monotonically
in order to minimize the downtime for lower dirty page rate
VM while increasing the availability of high dirty page rate VM



T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68 59

migration with a reasonable downtime. The downtime adjust-
ment algorithm used in Libvirt is basically based on three static
configuration values (max_downtime, steps, delay):

• live_migration_downtime: The maximum threshold of per-
mitted downtime;

• live_migration_downtime_steps: The total number of adjust-
ment steps until the maximum threshold is reached;

• live_migration_downtime_delay: Multiplies the total data size
with the factor equals to the time interval between two
adjustment steps in seconds.

For example, the setting tuple (400, 10, 30) means that there will
be 10 steps to increase the downtime threshold with 30 s delay
for each step up to the 400 ms maximum. With the total 3 GB
RAM and Disk data size, the downtime threshold at time t, as
Td−thd(t), will be increased at every 90 s starting from 40 ms,
i.e. Td−thd(0) = 40 ms, Td−thd(90) = 76 ms, . . . , Td−thd(900) =

400 ms, . . . , Td−thd(t > 900) = 400 ms. The mathematical
model of downtime adjustment algorithm is shown in Eq. (9).
Although OpenStack only support static downtime adjustment in
configuration files, we could use the virsh command to interact
with the on-going migration based on the elapsed time.

4. Mathematical model

We present the mathematical model of block live migration
as well as the sequential and parallel migrations in the same
network path.

4.1. Block live migration

The mathematical model of block live migration is presented
in this section. According to the OpenStack live migration process,
the components of pre and post-migration overheads can be
represented as:

Tpre = PreMig + Init + Reserv
Tpost = Commit + Act + PostMig (1)

We use D and M to represent the system disk size and the
VM memory size, and let ρ denote the average compression
rate used in memory compression algorithm [31]. Let ρ ′ and R′

denote the average disk compression rate and mirrored disk
write rate. Let Ri and Li denote the average dirty page rate
need to be copied and bandwidth in iteration round i. In total
n round iterative pre-copy and stop-and-copy stages, Ti denotes
the time interval of ith round iteration shown in Fig. 2. Therefore,
the transferred volume Vi in round i can be calculated as:

Vi =

⎧⎨⎩ ρ · M
ρ · Ti−1 · Ri−1

if i = 0

otherwise
(2)

As shown in Fig. 2, the time interval of the ith iteration can be
calculated as:

Ti = ρ · Vi/Li =ρ ·

i−1∏
j=1

Rj · M
/ i∏

j=0

Lj (3)

In [35], they assume that, when Ri, Li are constant, the average
dirty page rate is not larger than the network bandwidth in every
iteration. Let ratio σ = ρ · R/L. Therefore, Ti = M · σ i/L. The total
time of iterative memory pre-copy Tmem can be calculated as:

Tmem =
ρ · M
L

·
1 − σ n+1

1 − σ
(4)

Then, the transmission time of live storage migration Tblk can
be represented as:

Tblk ≤ ρ ′
·
(
D + R′

· Tblk
)
/L (5)

Fig. 3. An example of sequential and parallel migrations.

Thus, the upper bound transmission time of the live storage
migration is:

Tblk ≤
ρ ′

· D
L − ρ ′ · R′

(6)

For a more accurate Tblk, one need to simulate the write behavior
based on the actual workload. The network part of block live
migration is the maximum value of Eqs. (4) and (6):

Tcopy = Max {Tblk, Tmem} (7)

The total migration time of block live migration Tmig can be
represented as:

Tmig = Tpre + Tcopy + Tpost (8)

Let (θ, s, d) denote the setting tuple (max_downtime, steps,
delay) of the downtime adjustment algorithm. Therefore, the live
migration downtime threshold at time t can be represented as:

Td−thd(t) = ⌊t/(d · (D + M))⌋ · (θs − θ)/s2 + θ/s (9)

The downtime threshold of remained dirty pages accordingly
will be

Vd−thd(t) = Td−thd(t) · Ln−1 (10)

where Ln−1 is the n − 1 round bandwidth estimated by the live
migration algorithm and Ln−1 = L when transmission bandwidth
is a constant.

The live migration changes to the stop-and-copy phase when
remained dirty pages is less than the current threshold, as Vn ≤

Vd−thd(t). Using Eq. (2) in the inequality, the total round of mem-
ory iteration can be represented as:

n =

⌈
logσ

Vd−thd(t)
M

⌉
(11)

Therefore, the upper bound of actual migration downtime is
Tdown = Td + T ′

post ≤ Td−thd(t) + T ′
post , where Td is the time that

transfer the remained dirty pages and storage and T ′
post is the time

spent on the part of post-migration overheads to resume the VM.

4.2. Sequential and parallel migrations

When applying energy-saving policy, hardware maintenance,
load balancing or encountering devastating incidents, we need to
evacuate part of or all VMs from several physical hosts to others
through live VMmigrations as soon as possible. In this section, we
establish the mathematical model of sequential and parallel live
VMmigrations which share the same network traffic path. For ex-
ample, there are 4 same live migrations sharing the same network
path as well as source and destination hosts. In Fig. 3, lower graph
shows the sequential live migration. Because each migration fully
uses the path bandwidth, the network transmission part is much
smaller than the part of parallel migration shown in the upper
graph at which 4 migrations share the bandwidth evenly. How-
ever, in this example, the total network bandwidth is extremely
large comparing to the dirty rate and the memory size of each



60 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

VM is relatively small. Therefore, the pre and post migration over-
heads contribute substantially to the total migration time. As the
result, even though sharing the same network path could extend
the memory iteration, parallel migration running the pre and post
migration on multicore in this situation actually outperforms the
sequential algorithm.

Because the pre-live-migration process of next migration is
executed after the completion of current migration, there is a
bandwidth gap between every sequential live migration because
of the non-network overheads. Therefore, the total evacuation
time of N VM sequential migrations could be calculated as the
sum of every migration’s overhead processing time and network
transmission time:

Tseq =

N∑
1

Tmig =

∑
Toverhead +

∑
Tnetwork (12)

The response time of VM migration task refers to the time in-
terval from the point that migration task is released and the point
it is finished. The migration time indicates the real execution
time of the migration task which excludes the waiting time which
is the time interval between the migration task release point and
the actual start point. The evacuation duration refers to the time
interval from the beginning of the first released migration task to
the end of the last finished task of all VM migrations.

Pre- and post-migration overheads refer to the operations that
are not part of the direct network transmission process. These
non-network operations could add a significant overhead to the
total migration time and downtime. For more concise explana-
tion, we assume that every VM in parallel migration has same
dirty page rate and flavor. Let m denote the allowed parallel
number, p denotes the processing speed of one core. We assume
that the largest allowed parallel migration is smaller than the
minimum core number on the hosts, m ≤ Num(cores),m ≤ N .
When m > N , m = N in the corresponding equations. As
every migration sharing the network bandwidth equally, L/m is
the transmission rate for each migration. Therefore, using the
previous equations, the network transmission time of parallel m
migrations can be represented as:

Tm
network = Max

{
m · Tblk,

m · ρ · M
L

·
1 − (mσ )n+1

1 − mσ

}
(13)

It is clear that Tm
network ≥ ΣmT 1

network.
Let Wpre,Wpost denote the workload of pre and post-migration

overheads. As the overheads are significant when the network
bandwidth L allocated to the path is more than sufficient or the
dirty page rate R is small, we assume that:

ΣmWpre/m · p ≥ Tm
network (14)

Let X = ⌊N/m⌋ denote total X busy rounds of m cores. There-
fore, the maximum evacuation time of parallel migration Tpar =

Max(T ′
par , T

′′
par ) can be represented as:

T ′
par =

∑Xm
1 Wpre
m·p +

∑N
Xm+1 Wpre
N−Xm+2 + TN−X

network +

∑N
Xm+1 Wpost
N−Xm+2

=
(⌊N/m⌋+1)·Wpre+Wpost

p + TN−X
network

T ′′
par =

∑m
1 Wpre
m·p + Tm

network +

∑Xm
1 Wpost
m·p +

∑N
Xm+1 Wpost
N−Xm+2

=
(⌊N/m⌋+1)·Wpost+Wpre

p + Tm
network

(15)

As 0 ≤ σ < 1, we could get the upper bound of parallel network
transmission time:

Tm
network ≤ Max

{
m · Tblk,

m · ρ · M
L · (1 − mσ )

}
(16)

Moreover, the average response time of N sequential and parallel
migrations can be represented as:

T seq
response = (N + 1)/2 ·

(
Woverhead/p + T 1

network

)
(17)

T par
response = Woverhead/p + Tm

network (18)

Furthermore, the lost time of network transmission and the
saved time of overhead processing for m concurrent live migra-
tion can be calculated as:

∆network = Tm
network − ΣmT 1

network (19)

∆workload = ΣmToverhead − ΣmToverhead/m · p (20)

Therefore, when ∆network < ∆workload, the evacuation time of
parallel migration is smaller than the sequential migration.

All proposed models and results of single migration and se-
quential and parallel migrations for block live migration also
apply to the general live VM migration with disk sharing by
deleting the live disk transmission parts, Tblk and D, in the models.

5. Performance evaluation

There are several parameters which can influence the live VM
migration performance in SDN-enabled data centers from system
view, such as the flavor, CPU, memory, and static downtime
adjustment, network view, such as parallel and sequential migra-
tions, available bandwidth, and dynamic flow scheduling update
rate, and application view, such as response time under different
migration strategies. In this section, we explore the impacts of
these parameters on migration performance. The migration time,
downtime, and transferred data shown in the results are the
average values. In OpenStack, we can use the nova migration-list
to measure the duration of live migration. The downtime of live
migration could be calculated by the time stamp difference of VM
lifecycle event (VM Paused and VM Resumed) in both Nova log
files. Each configured migration experiment is performed 6 times.

5.1. Testbed and its specification

As current production system will not allow users to access
or modify the low-level infrastructure elements, such as resource
management interfaces and SDN controllers and switches, needed
for experiments, we created our own testbed. CLOUDS-Pi [32], a
low-cost testbed environment for SDN-enabled cloud computing,
is used as the research platform to test virtual machine block live
migration. We use OpenStack combined with OpenDayLight [4]
(ODL) SDN controller to manage the SDN-enabled Data Centers,
which contains 9 heterogeneous physical machines connected
through Raspberry Pis as OpenFlow switches whose specifications
are shown in Table 1. The Raspberry Pis are integrated with
Open vSwitch (OVS) as 4-port switches with 100 Mbps Ethernet
Interfaces. The network physical topology is shown in Fig. 4. The
OpenStack version we used is Ocata and the Nova version is 15.0.4
and the Libvirt version is 3.2.0. The Ubuntu tool stress-ng [18]
is used as the micro-benchmark to stress memory and CPU to
pinpoint the impacts of parameters on migration performance.

It will allow researchers to test any SDN-related technology in
the real environment. Allowed network speed in the testbed is
scaled together with the size of computing cluster. Although the
testbed’s scale is small regarding the number of computer nodes
and the network, it can represent the key elements in the large-
scale systems. The evaluation results produced by the testbed
will be more serious in a large scale environment. Furthermore,
as we do not focus on the IO stress on the migrating storage,
the evaluation results could also benefit the live migration with
shared storage, as well as the live container migration.



T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68 61

Fig. 4. SDN-enabled data center platform.

Table 1
Specifications of physical hosts in CLOUDS-Pi.
Machine CPU Cores Memory Storage Nova

3 × IBM X3500 M4 Xeon(R) E5-2620 @ 2.00 GHz 12 64GB (4 × 16GB DDR3 1333 MHz) 2.9TB compute1-3
4 × IBM X3200 M3 Xeon(R) X3460 @ 2.80 GHz 4 16GB (4 × 16GB DDR3 1333 MHz) 199GB compute4-7
2 × Dell OptiPlex 990 Core(TM) i7-2600 @ 3.40 GHz 4 8GB (4 × 16GB DDR3 1333 MHz) 399GB compute8-9

Table 2
Specifications of VM flavors in OpenStack.
No. Name vCPUs RAM Disk No. Name vCPU RAM Disk

1 Nano 1 64MB 1GB 5 Medium 2 3.5GB 40GB
2 Tiny 1 512MB 1GB 6 Large 4 7GB 80GB
3 Micro 1 1GB 10GB 7 Xlarge 8 15.49GB 160GB
4 Small 1 2GB 20GB

5.2. Primary parameters

First, we evaluate the fundamental parameters, such as flavor,
memory and CPU loads, which affect the migration time, down-
time and total transferred data of block live VM migration in
OpenStack. As we measured, the amount of data from destination
to source can be omitted because it only accounts for around
1.8% of total transferred data. The transferred data is measured by
the SDN controller through OpenFlow protocol. We set 7 flavors
in OpenStack, which are nano, tiny, micro, small, medium, large,
xlarge (Table 2). Not only the RAM size but the ephemeral disk
size can affect the migration time as well as the total trans-
ferred data (Eq. (8)). We evaluate these primary parameters by
migrating instances from compute2 to compute3. In the flavor
experiment, we use two Linux images, CirrOS and Ubuntu-16.04,
and the smallest flavor suitable for the Ubuntu image is micro.
The image size of CirrOS is 12.65 MB, and Ubuntu is 248.38 MB.
In memory stress experiment, we evaluate the migration perfor-
mance of different memory-stressed Ubuntu-16.04 instance with
micro flavor from 0% to 80%. In CPU stress memory experiment,
we compare the migration performance with 0 to 100 stressed
CPU between Ubuntu instance with 0 memory stress (mem0) and
40% memory-stressed (mem40) VMs.

Flavor: Fig. 5(a) illustrates the migration performance (mi-
gration time, downtime, and total transferred data) of idle VMs
with different flavors. Larger RAM and disk sizes lead to longer
migration time and total transferred data. The VM block live
migration cost with the same flavor could be a huge difference
due to the system disk size and the required RAM of different

OS instance. According to the downtime adjustment algorithm, a
longer migration time can lead to a larger downtime. However,
the difference of downtime is small compared to the significant
difference of migration time. From flavor micro to xlarge, the
transferred data is increased linearly. Furthermore, the trans-
ferred data vs. flavor figure illustrates that there is a constant data
size difference between CirrOS and Ubuntu with the same flavor.
With the same flavor, VM with a larger and more complex OS
installed has a longer migration time and larger transferred data
as the data size difference of the OS base image and dirty rate
caused by OS processes.

Memory: The dirty page rate (and dirty block rate) directly
affects the number of pages that are transferred in each pre-
copy iteration. Fig. 5(b) shows that the performance of different
memory-stressed Ubuntu instances from 0% to 80% on the migra-
tion time, downtime, total data transferred from source. As shown
in Eqs. (8) and (9), the relationship between the dirty page rate
and live migration performance is not linear due to the downtime
adjustment algorithm. The downtimes of migrations may be con-
stant with different dirty page rates because of the delay of every
downtime adjustment, such as 0% and 20% memory-stressed VMs.
With the downtime adjustment algorithm, the downtimes of live
migrations with drastically different dirty page rate remain at a
stable range.

CPU: Higher CPU workloads can lead to a migration perfor-
mance degradation because of the page copying operation over-
head during the pre-copy iterations. Meanwhile, the high CPU
workloads can also cause interference among memory-intensive
tasks which leads to a large migration time. We examine the
block live migrations based on various CPU loads from 0% to
100%. Fig. 5(c) shows that, without stressed memory, the CPU
loads inside VMs are irrelevant to the downtime and duration
of live migration with the minor copying overhead due to the
pre-copy iterations. However, as the CPU usage of a 40-percent-
stressed memory task is 100%, an extra CPU workload can lead to
a larger amount of total transferred data and migration time. For
idle VMs, the migration time and transferred data are constant
under various range of CPU workload. For more busy VMs, extra



62 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

Fig. 5. Primary VM parameters.

CPU workload leads to a linear increase in migration time and
transferred data size.

5.3. Downtime configuration effectiveness

In OpenStack, the live VM migration time could shift dra-
matically based on different configuration tuples (max_downtime,
steps, delay). Although only implemented in OpenStack, the down-
time adjustment algorithm can also apply to other cloud comput-
ing platforms. In this experiment, the Ubuntu-16.04 instance with
micro flavor is migrated between NOVA compute node compute2
and compute3. We perform migrations based on the different step
or delay settings and other two default values, i.e., (500, 4, 75) and
(500, 10, 5), with 0% to 75% stressed memory VM.

Fig. 6 indicates that for less memory stressed VMs (low dirty
page rate), the static algorithm based on short delay could lead
to a higher downtime with a slightly different migration time.
However, for heavy memory stressed VMs (high dirty page rate),
the adjustment of large delay setting, such as delay40, delay110,
leads to an extremely long migration duration. The larger adjust-
ment step setting leads to a larger migration time with a smaller
downtime. However, step8 (500, 8, 75) leads to a better result in
migration time compared to step12 and in downtime compared
to step4 when VM memory is 75% stressed. We also notice that
the setting (500, 10, 5) is a better choice when VM has high dirty
page rate and (500, 4, 75) is better when the rate gets lower.
When the dirty page rate is high, the migration time gets benefits
from quickly raised downtime threshold while the downtime
remains at a stable range. When it is low, the downtime gets
benefits from smaller downtime threshold with slow adjustment.
We should dynamically configure the optimal downtime setting
tuple to improve both migration time and downtime based on the
migration model for every live migration task.

5.4. Live VM migration in parallel

The default NOVA configuration of max allowed parallel mi-
gration is max_concurrent_live_migrations=1, which means only
one live migration could be performed at the same time. In this
experiment, we evaluate the migration duration of one compute
host that needs to evacuate all VMs to another. First, we need
to change the default max allowed parallel migration to perform
maximum m live migrations in parallel. The CirrOS instances with
tiny flavor are migrated between node compute2 and compute3.
All migration operations are released at the same time with
different maximum parallel migration. We measure the response
time of each migration task and the total evacuation time of 10
idle CirrOS VMs. We also examined the sequential live migration
with several VMs from 2 to 10.

Fig. 7(a) indicates that the response time (rt), migration time
(mt) and evacuation duration (dur) of sequential live migrations
increase linearly with the number of VMs. Fig. 7(b) only demon-
strates the rt and dur, as the mt equals to the rt in this parallel
migration experiments. However, the parallel migrations could
significantly reduce the total evacuation time and each migration
time of 10 idle VMs. With the max allowed concurrent migration
increasing from 1 to 10, the total live migration evacuation time
decreases by 59.6%. Meanwhile, the migration time of each VM
decreases up to 50%.

As shown in Eq. (19), (20), when ∆network < ∆workload, the pre-
and post-migration overheads constitute a large portion of the
total migration time, e.g., parallel migration of the tiny flavor Cir-
rOS VMs with 100Mbps bandwidth (Fig. 7(b)). Therefore, several
pre- and post-live-migration processes concurrently running on
both hosts can reduce the total evacuation time (15) and average
response time (18) compared to the sequential live migrations
(12), (17). Therefore, when the multiple VM evacuation happens



T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68 63

Fig. 6. Live migrations based on different step and delay settings.

Fig. 7. (a) Sequential migrations with different number of VMs; and (b) Multiple live migrations of 10 VMs where x-axis indicates the max allowed concurrent
migration.

in the same network path, we need to decide the sequential and
parallel live migration based on both network and computing
aspects to achieve a better total migration time (duration).

5.5. Network-aware live migration

As the networking resources are limited, we pinpoint the es-
sential network aspects that influence the efficiency of block live
migration in SDN-enabled cloud computing, such as, the avail-
able network bandwidth, network patterns, SDN flow scheduling
algorithms.

TCP and UDP traffic: Block live Migration is highly relative
to the network bandwidth as well as the background traffic on
the links. The total migration time and downtime are negatively

correlated with the network bandwidth. Therefore, we measure
the migration performance under the default downtime con-
figuration with various network traffic scenarios with different
constant bandwidth rate (CBR) in TCP and burst transmission in
UDP. UDP datagrams are sent in the same data size in every 10 s.
The iperf3 [1] is used to generate background traffic between
live migration source and destination hosts through the same
path in SDN-enabled data center network. The image of VM is
Ubuntu-16.04 with micro flavor under no stressed memory. Fig. 8
indicates that, when the dirty page rate is 0, the transferred data
is not linearly increased with the migration time. The migration
time is increased linearly with the bandwidth decreasing.

Dynamic SDN flow scheduling: In this experiment, we pin-
point the impact of the flow scheduling algorithm update rate
on block live migration in SDN-enabled cloud computing. When



64 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

Fig. 8. Block live migrations with TCP and UDP background traffic.

Fig. 9. Live migrations based on different SDN scheduling update rate.

SDN controller is proactively scheduling the flows, latencies ex-
ist between controller and switches (PacketOut message send
to the switches and PacketIn to the controller). Moreover, in
the flow tables, latencies occur when installing, deleting flow
entities. The scheduler based on SDN controller (OpenDayLight)
REST APIs proactively pushes the end-to-end flow in a certain
time period to dynamically set the best path. The idle Ubuntu-
16.04 instance with micro flavor is migrated from compute3
to compute9. As shown in Fig. 4, there are two shortest paths
between compute3 and compute9 that each one contains 5 Open-
Flow nodes (OpenFlow-enabled switches). A round-robin sched-
uler rescheduling the traffic of live migration periodically based
on these paths. We also use iperf3 to generate TCP and UDP traffic
to evaluate the latency, TCP window size, and packet loss rate.

Fig. 9(a) shows that the migration time is positively correlated
with the update rate while the transferred data is just slightly
increased. As the dynamic scheduling update rate increases, the
link bandwidth rapidly decreases which leads to a large migration
time. Meanwhile, Fig. 9(b) indicates that the TCP throughput
goes down more frequently with high flow update rate. The
TCP congestion window size decreases to 1.41 KBytes when the
bandwidth is 0 bits/s. Fig. 10 shows the TCP and UDP protocol
performance with different update rates from 0.1 Hz to 10 Hz.
The packet loss rate increases linearly with the update rate and
the average maximum TCP latency (Round-Trip Time) is 2 times
larger at 2 Hz than the minimum value at 0.1 Hz. When the
TCP traffic suffers the bandwidth degradation, the UDP transmis-
sion rate is always around 90 Mbps regardless of the scheduling
update rate.

With the high flow entries updating in OpenFlow-enabled
switches, the latencies between SDN controller and switches,
and inside the switch flow tables have a significant influence
on traffic forwarding performance. The network congestion leads
to the high packet loss rate. The period of no traffic interval is
caused by the TCP congestion avoidance algorithm. It decreases
the data transfer rate when encounters packet loss based on the
assumption that the loss due to the high latency and network
congestion. Furthermore, the flow update rate could also impact
the TCP window size that causes the bandwidth jitters due to
the TCP slow start. In a highly dynamic network, the available
bandwidth and delays in the routing paths can change frequently.
Therefore, it is essential that optimize the update rate and best
path selection of SDN forwarding scheduler based on the trade-off
between OpenFlow-enabled switches performance (bandwidth
degradation due to delays inside switches and between controller
and switches) and the available network bandwidths and delays.

5.6. Impacts on multi-tier application response time

In this experiment, we evaluate the impact of VM live mi-
gration on the real web application, such as MediaWiki, using
WikiBench [33]. It uses MediaWiki in the application server and
real database dumps in the database server. In client VM, the
wikijector as traffic injector controls the simulated client to re-
ply the traces of real Wikipedia traffic. Regarding the scale of
the testbed, we use 10% of Wikipedia trace to simulate the real
traffic. The database and MediaWiki Apache servers are allocated
in compute3, and one WikiBench injector as the client VM located



T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68 65

Fig. 10. Network performance with different SDN scheduling update rate.

Fig. 11. Response time of Wikipedia in 400 s.

Table 3
Request response time without VM migration.
Exp. Duration(s) RT(ms) HTTP0 HTTP200 Total

Initial 1200 74.21 35 42310 51634
Initial 500 75.90 22 17435 21438
Initial 400 75.77 22 13893 17088
Scheduled 400 65.380 17 14175 17357

Table 4
Application performance in 400 s.
Exp. MT(s) RT(ms) HTTP0 HTTP200 Total

c-93 248.34 84.201 20 14166 17348
s-39 N/A 192.273 109 13410 16558

in compute9. The client and server VMs are the Ubuntu instances
with micro flavor and database server is with large flavor. The
first scenario (c-93) is migrating the client VM to compute3 to
simulate the consolidation (scheduled) to reduce the latency. The
second one (s-39) is migrating the application server to compute9
in order to evaluate the effect of live migration on application
response time.

In the scenario c-93, the major application traffic is outbound
traffic from the destination host. Therefore, the live migration
traffic would just slightly affect the QoS of web service. Table 3

indicates that the application response time (RT) is improved af-
ter the VM consolidation (scheduled). Fig. 11(a) shows the initial
response time (std-200) of the success requests (HTTP 200) and
the response time of success requests during the client VMmigra-
tion (mig-200). It indicates that the response time is increased
during the migration and the worst-case response time occurs
after the downtime of client’s live VM migration because the
application server needs to process extra requests and migration
downtime postpones the response time of the requests which are
sent before and during the downtime. On the other hand, if the
injector and application server are located in the same host when
the migration is performing, due to all requests happened inside
the host, the live migration traffic will not affect the application
response time.

However, in scenario s-39, i.e., the application traffic is sent
to client VM (compute9), the pre-copy live migration traffic flow
will contend for the shared bandwidth due to the same traffic
direction. Therefore, theworst case response timemay occur not
only after downtime but during the migration time as shown in
Fig. 11(b). Meanwhile, Table 4 shows that the average response
time of requests is dramatically larger than the migration of client
VM. The request timeout (HTTP 0) happens much often due to the
server migration.

We notice that the server migration from compute3 to com-
pute9 cannot finish in 20 min. For memory-intensive instances,



66 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

Fig. 12. Response time of successful server migrations.

Table 5
Server migration under different strategies.
Exp. MT(s) Duration(s) RT(ms) HTTP0 HTTP200 Total

s-39 N/A 400 192.27 109 13410 16558
AC 908 1200 245.33 6722 18461 29915
H-PC 237 500 156.73 190 16906 20912

like the Wikipedia server, there are two optional strategies to
perform a successful live migration: Hybrid post-copy (H-PC)
and Auto-convergence (AC). Thus, we evaluate the migration
performance and impacts on the response time of the hybrid
post-copy and auto-convergence strategies for Wikipedia server
in the scenario s-39. Table 3 shows the initial response time of
1200 s, 500 s and 400 s time intervals without any migration as
well as the average migration time (Duration), response time (RT),
and the number of success (HTTP200), timeout (HTTP0), and total
requests.

Hybrid post-copy: With the start of pre-copy mode, the post-
copy migration will be activated if the memory copy iteration
does not make at least 10% increase over the last iteration. It
will suspend the VM and process state on the source host. The
VM will resume on the target host and fetch all missing pages
as needed. However, the post-copy page fetching will slow down
the VM which degrades the service performance and the VM will
reboot if the network is unstable. The average response time of
hybrid post-copy is better than the pre-copy migration as shown
in Table 5. The timeout requests are slightly increased during the
post-copy migration. Furthermore, Fig. 12(a) indicates response
time of success and timeout requests without migration (std-
200, std-0) and during the hybrid post-copy (mig-200, mig-0). It
illustrates that under a stable network environment, the impacts
of missing page fetching on application response time is less than
pre-copy iteration traffic.

Auto-convergence: By throttling down the VM’s virtual CPU,
auto-convergence will only influence the workloads where the
memory write speed is dependent on the CPU execution speed.
As migration time flows it will continually increase the amount

of CPU throttling until the dirty page rate is low enough for
migration to finish. Fig. 12(b) indicates that the task of Wikipedia
request has a worse response time under a larger throttling
amount. The request tasks are highly related to the CPU execution
speed. Therefore, the throttling down leads to a successful migra-
tion of the Wikipedia server. However, as the timeout threshold
of a request is 2 s, the performance of the server is devastated
under the last throttling down, i.e., most requests are timed out
(mig-0). A larger timeout threshold for requests should be set
according to the amount of throttling down. Although it can
successfully perform the live server migration, the average re-
sponse time is even larger than the pre-copy migration requests’
(Table 5). Moreover, compare to the hybrid post-copy strategy,
the auto-convergence leads to a much larger migration time.

For memory-intensive VMs, H-PC is a better strategy in a
stable network environment. Otherwise, AC is the option for
applications that dirty page rate is highly related to the CPU
speed. Due to the throttling down, service time out should be
increased accordingly.

6. Conclusions and future work

We established the mathematical model of block live mi-
gration to have a better understanding of the static downtime
adjustment algorithm in OpenStack, as well as the parallel and
sequential migration cost in the same network path. For the
downtime adjustment algorithm, we should dynamically set the
downtime configuration (maximum downtime, adjustment steps,
and delays) to achieve the optimal migration performance. When
non-network overheads, such as pre- and post-migration work-
loads, constitute a large portion of total migration time, parallel
migration should be chosen to reduce the response time, down-
time, and the total evacuation time of multiple migrations in the
same path. We also evaluated the impacts of SDN scheduling
update rate on live migration performance. The result suggests
that a high update rate leads to a large TCP/UDP packet loss which
will affect the migration performance.

From the QoS perspective, we investigated the response time
pattern of client and server live migrations with pre-copy,



T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68 67

hybrid post-copy, and auto-convergence strategies. For memory-
intensive VM, as the pre-copy migration cannot finish in a rea-
sonable time, we should choose hybrid post-copy to perform a
successful migration if the network environment is stable. Other-
wise, we could perform the auto-convergence feature during the
pre-copy migration. However, the auto-convergence dramatically
influences the application response time, i.e., requests are timed
out because of the CPU slowdown. Moreover, for the pre-copy
migration of server VM, as the migration and application traffic
flows contend with each other, the worst-case response time
will not just occur after the downtime but during the migration.
Moreover, the models and parameters in our paper are com-
patible with other optimization technologies for single live VM
migration [8,12,26,29] or algorithms of multiple migrations [7,9,
11,30,35,36] because these work focus on different optimization
factors. Therefore, the results in our paper still stand and can
benefit other optimization methods and algorithms.

In the future, we plan to investigate the impact of these
parameters’ evaluation outcomes on the resource management
in SDN-enabled cloud computing. In particular, we intend to
investigate and develop: (a) the prediction model of live VM
migration with static downtime adjustment algorithm and the
optimal downtime adjustment configuration for different live
migration tasks; (b) Deadline-aware multiple live VM migration
planning by considering the parallel and sequential sequence in
multiple and one network path; (c) SDN latency-aware traffic
scheduling algorithm based on the trade-off between bandwidth
increasing and rescheduling rate; and (d) QoS-aware resource
scheduling strategy by considering application traffic pattern to
minimize the influence of live migrations on application response
time.

Acknowledgments

This work is partially supported by an Australian Research
Council (ARC) Discovery Project and the China Scholarship Coun-
cil (CSC).

Conflict of interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.04.014.

References

[1] Iperf3, 2016, https://iperf.fr/. (Accessed 11 February 2018).
[2] Open vSwitch, 2016, https://www.openvswitch.org/. (Accessed 15 January

2018).
[3] Libvirt Virtualization API, 2017, https://libvirt.org/. (Accessed 25 January

2018).
[4] Opendaylight Carbon release, 2017, https://docs.opendaylight.org/en/

stable-carbon/index.html. (Accessed 25 January 2018).
[5] QEMu project, Live block operation documentation, 2017, https://

kashyapc.fedorapeople.org/QEMU-Docs/_build/html/index.html. (Accessed
11 February 2018).

[6] S. Akoush, R. Sohan, A. Rice, A.W. Moore, A. Hopper, Predicting the
performance of virtual machine migration, in: Proceedings of 2010 IEEE
International Symposium on Modeling Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), IEEE, 2010, pp. 37–46.

[7] M.F. Bari, M.F. Zhani, Q. Zhang, R. Ahmed, R. Boutaba, Cqncr: Optimal vm
migration planning in cloud data centers, in: Proceedings of Networking
Conference, 2014 IFIP, IEEE, 2014, pp. 1–9.

[8] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, Live migration of virtual machines, in: Proceedings of
the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2, USENIX Association, 2005, pp. 273–286.

[9] U. Deshpande, K. Keahey, Traffic-sensitive live migration of virtual
machines, Future Gener. Comput. Syst. 72 (2017) 118–128.

[10] M. Forsman, A. Glad, L. Lundberg, D. Ilie, Algorithms for automated live
migration of virtual machines, J. Syst. Softw. 101 (2015) 110–126.

[11] S. Ghorbani, M. Caesar, Walk the line: consistent network updates with
bandwidth guarantees, in: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ACM, 2012, pp. 67–72.

[12] T. Guo, U. Sharma, P. Shenoy, T. Wood, S. Sahu, Cost-aware cloud bursting
for enterprise applications, ACM, Trans. Internet Tech. 13 (3) (2014) 10.

[13] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L.E. Li,
M. Thottan, Measuring control plane latency in sdn-enabled switches, in:
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, ACM, 2015, p. 25.

[14] J.J. Herne, Auto-convergence feature, 2015, https://wiki.qemu.org/Features/
AutoconvergeLiveMigration. (Accessed 11 February 2018).

[15] M.R. Hines, U. Deshpande, K. Gopalan, Post-copy live migration of virtual
machines, ACM SIGOPS, Oper. Syst. Rev. 43 (3) (2009) 14–26.

[16] W. Hu, A. Hicks, L. Zhang, E.M. Dow, V. Soni, H. Jiang, R. Bull, J.N. Matthews,
A quantitative study of virtual machine live migration, in: Proceedings of
the 2013 ACM Cloud and Autonomic Computing Conference, ACM, 2013,
p. 11.

[17] S. Kikuchi, Y. Matsumoto, Impact of live migration on multi-tier application
performance in clouds, in: Proceedings of 2012 IEEE 5th International
Conference on Cloud Computing (CLOUD), IEEE, 2012, pp. 261–268.

[18] C. King, Stress-ng, 2018, http://kernel.ubuntu.com/cking/stress-ng/. (Ac-
cessed 24 February 2018).

[19] M. Kuźniar, P. Perešíni, D. Kostić, What you need to know about sdn flow
tables, in: Proceedings of International Conference on Passive and Active
Network Measurement, Springer, 2015, pp. 347–359.

[20] Z. Li, G. Wu, Optimizing vm live migration strategy based on migra-
tion time cost modeling, in: Proceedings of the 2016 Symposium on
Architectures for Networking and Communications Systems, ACM, 2016,
pp. 99–109.

[21] H. Liu, C.-Z. Xu, H. Jin, J. Gong, X. Liao, Performance and energy modeling
for live migration of virtual machines, in: Proceedings of the 20th Inter-
national Symposium on High Performance Distributed Computing, ACM,
2011, pp. 171–182.

[22] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar, A. Iyer,
Remedy: Network-aware steady state vm management for data centers,
in: Proceedings of International Conference on Research in Networking,
Springer, 2012, pp. 190–204.

[23] A. Mashtizadeh, E. Celebi, T. Garfinkel, M. Cai, et al., The design and
evolution of live storage migration in vmware esx, in: Usenix Atc,
Vol. 11, 2011, pp. 1–14.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus
networks, ACM SIGCOMM, Comput. Commun. Rev. 38 (2) (2008) 69–74.

[25] O. Sefraoui, M. Aissaoui, M. Eleuldj, Openstack: toward an open-source
solution for cloud computing, Int. J. Comput. Appl. 55 (3) (2012) 38–42.

[26] A. Shribman, B. Hudzia, Pre-copy and post-copy vm live migration for
memory intensive applications, in: Proceedings of European Conference
on Parallel Processing, Springer, 2012, pp. 539–547.

[27] J. Son, R. Buyya, A taxonomy of software-defined networking (sdn)-enabled
cloud computing, ACM Comput. Surv. 51 (3) (2018) 59:1–59:36, http:
//dx.doi.org/10.1145/3190617, http://doi.acm.org/101145/3190617.

[28] J. Son, A.V. Dastjerdi, R.N. Calheiros, R. Buyya, Sla-aware and energy-
efficient dynamic overbooking in sdn-based cloud data centers, IEEE Trans.
Sustain. Comput. 2 (2) (2017) 76–89.

[29] X. Song, J. Shi, R. Liu, J. Yang, H. Chen, Parallelizing live migration of virtual
machines, ACM, SIGPLAN Not. 48 (7) (2013) 85–96.

[30] G. Sun, D. Liao, V. Anand, D. Zhao, H. Yu, A new technique for efficient
live migration of multiple virtual machines, Future Gener. Comput. Syst.
55 (2016) 74–86.

[31] P. Svärd, B. Hudzia, J. Tordsson, E. Elmroth, Evaluation of delta compression
techniques for efficient live migration of large virtual machines, ACM,
SIGPLAN Not. 46 (7) (2011) 111–120.

[32] A.N. Toosi, J. Son, R. Buyya, Clouds-pi: A low-cost raspberry-pi based micro
data center for software-defined cloud computing, IEEE Cloud Comput. 5
(5) (2018) 81–91.

[33] E.-J. Van Baaren, Wikibench: A distributed wikipedia based web application
benchmark, Master’s Thesis, VU University Amsterdam, 2009.

[34] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual ma-
chine live migration in clouds: A performance evaluation, in: Proceedings
of IEEE International Conference on Cloud Computing, Springer, 2009,
pp. 254–265.

[35] H. Wang, Y. Li, Y. Zhang, D. Jin, Virtual machine migration planning in
software-defined networks, in: INFOCOM, IEEE, 2015, pp. 487–495, http:
//dblp.uni-trier.de/db/conf/infocom/infocom2015html#WangLZJ15.

[36] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, B. Li, Iaware: Making live migration of
virtual machines interference-aware in the cloud, IEEE Trans. Comput. 63
(12) (2014) 3012–3025.

https://doi.org/10.1016/j.jpdc.2019.04.014
https://iperf.fr/
https://www.openvswitch.org/
https://libvirt.org/
https://docs.opendaylight.org/en/stable-carbon/index.html
https://docs.opendaylight.org/en/stable-carbon/index.html
https://docs.opendaylight.org/en/stable-carbon/index.html
https://kashyapc.fedorapeople.org/QEMU-Docs/_build/html/index.html
https://kashyapc.fedorapeople.org/QEMU-Docs/_build/html/index.html
https://kashyapc.fedorapeople.org/QEMU-Docs/_build/html/index.html
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb6
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb7
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb7
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb7
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb7
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb7
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb8
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb9
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb9
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb9
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb10
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb10
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb10
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb11
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb11
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb11
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb11
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb11
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb12
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb12
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb12
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb13
https://wiki.qemu.org/Features/AutoconvergeLiveMigration
https://wiki.qemu.org/Features/AutoconvergeLiveMigration
https://wiki.qemu.org/Features/AutoconvergeLiveMigration
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb15
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb15
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb15
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb16
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb17
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb17
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb17
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb17
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb17
http://kernel.ubuntu.com/cking/stress-ng/
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb19
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb19
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb19
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb19
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb19
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb20
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb21
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb22
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb24
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb24
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb24
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb24
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb24
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb25
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb25
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb25
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb26
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb26
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb26
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb26
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb26
http://dx.doi.org/10.1145/3190617
http://dx.doi.org/10.1145/3190617
http://dx.doi.org/10.1145/3190617
http://doi.acm.org/101145/3190617
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb28
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb28
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb28
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb28
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb28
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb29
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb29
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb29
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb30
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb30
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb30
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb30
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb30
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb31
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb31
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb31
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb31
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb31
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb32
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb32
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb32
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb32
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb32
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb33
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb33
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb33
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb34
http://dblp.uni-trier.de/db/conf/infocom/infocom2015html#WangLZJ15
http://dblp.uni-trier.de/db/conf/infocom/infocom2015html#WangLZJ15
http://dblp.uni-trier.de/db/conf/infocom/infocom2015html#WangLZJ15
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb36
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb36
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb36
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb36
http://refhub.elsevier.com/S0743-7315(18)30474-X/sb36


68 T. He, A. N. Toosi and R. Buyya / Journal of Parallel and Distributed Computing 131 (2019) 55–68

TianZhang He received the B.Sc. degree in 2014 and
the M.Sc. degree in 2017, both in computer sci-
ence and technology from Northeastern University,
China. He is working towards the Ph.D. degree at the
Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information Sys-
tems, the University of Melbourne, Australia. His
research interests include resource scheduling and op-
timization in Software-Defined Networking (SDN) and
Network Function Virtualization (NFV)-enabled cloud
computing.

Adel Nadjaran Toosi Dastjerdi is a lecture in com-
puter systems at Faculty of Information Technology,
Monash University, Australia. He received his B.Sc.
degree in 2003 and his M.Sc. degree in 2006 both
in Computer Science and Software Engineering from
Ferdowsi University of Mashhad, Iran and his Ph.D.
degree in 2015 from the University of Melbourne.
Adel’s Ph.D. studies were supported by International
Research Scholarship (MIRS) and Melbourne Interna-
tional Fee Remission Scholarship (MIFRS). His Ph.D.
thesis was nominated for CORE John Makepeace Ben-

nett Award for the Australasian Distinguished Doctoral Dissertation and John
Melvin Memorial Scholarship for the Best Ph.D. thesis in Engineering. His

research interests include scheduling and resource provisioning mechanisms
for distributed systems. Currently, he is working on resource management in
Software-Defined Networks (SDN)-enabled Cloud Computing.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations in
Cloud Computing. He served as a Future Fellow of the
Australian Research Council during 2012–2016. He has
authored over 625 publications and seven text books
including ‘‘Mastering Cloud Computing’’ published by
McGraw Hill, China Machine Press, and Morgan Kauf-

mann for Indian, Chinese and international markets respectively. He is one of the
highly cited authors in computer science and software engineering worldwide
(h-index = 114, g-index = 245, 66,900+ citations). Dr. Buyya is recognized as a
‘‘Web of Science Highly Cited Researcher’’ in 2016 and 2017 by Thomson Reuters,
a Fellow of IEEE, and Scopus Researcher of the Year 2017 with Excellence in
Innovative Research Award by Elsevier for his outstanding contributions to Cloud
computing. He served as the founding Editor-in-Chief of the IEEE Transactions
on Cloud Computing. He is currently serving as Co-Editor-in-Chief of Journal of
Software: Practice and Experience, which was established over 45 years ago. For
further information on Dr. Buyya, please visit his cyberhome: www.buyya.com

http://www.buyya.com

	Performance evaluation of live virtual machine migration in SDN-enabled cloud data centers
	Introduction
	Related work
	System overview
	Live migration in OpenStack

	Mathematical model
	Block live migration
	Sequential and parallel migrations

	Performance evaluation
	Testbed and its specification
	Primary parameters
	Downtime configuration effectiveness
	Live VM migration in parallel
	Network-aware live migration
	Impacts on multi-tier application response time

	Conclusions and future work
	Acknowledgments
	Conflict of interest
	References


