
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 24:1397–1420
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1867

Optimal Online Deterministic Algorithms and Adaptive Heuristics
for Energy and Performance Efficient Dynamic Consolidation of

Virtual Machines in Cloud Data Centers

Anton Beloglazov∗ and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia

SUMMARY

The rapid growth in demand for computational power driven by modern service applications combined
with the shift to the Cloud computing model have led to the establishment of large-scale virtualized data
centers. Such data centers consume enormous amounts of electrical energy resulting in high operating costs
and carbon dioxide emissions. Dynamic consolidation of virtual machines (VMs) using live migration and
switching idle nodes to the sleep mode allow Cloud providers to optimize resource usage and reduce energy
consumption. However, the obligation of providing high quality of service to customers leads to the necessity
in dealing with the energy-performance trade-off, as aggressive consolidation may lead to performance
degradation. Due to the variability of workloads experienced by modern applications, the VM placement
should be optimized continuously in an online manner. To understand the implications of the online nature
of the problem, we conduct competitive analysis and prove competitive ratios of optimal online deterministic
algorithms for the single VM migration and dynamic VM consolidation problems. Furthermore, we propose
novel adaptive heuristics for dynamic consolidation of VMs based on an analysis of historical data from the
resource usage by VMs. The proposed algorithms significantly reduce energy consumption, while ensuring
a high level of adherence to the Service Level Agreements (SLA). We validate the high efficiency of the
proposed algorithms by extensive simulations using real-world workload traces from more than a thousand
PlanetLab VMs. Copyright c© 2012 John Wiley & Sons, Ltd.

Received 16 May 2011; Accepted 1 September 2011

KEY WORDS: Green IT; Cloud computing; resource management; virtualization; dynamic consolidation

1. INTRODUCTION

The Cloud computing model leverages virtualization of computing resources allowing customers to
provision resources on-demand on a pay-as-you-go basis [1]. Instead of incurring high upfront costs
in purchasing IT infrastructure and dealing with the maintenance and upgrades of both software and
hardware, organizations can outsource their computational needs to the Cloud. The proliferation of
Cloud computing has resulted in the establishment of large-scale data centers containing thousands
of computing nodes and consuming enormous amounts of electrical energy. Based on the trends
from American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [2],
it has been estimated that by 2014 infrastructure and energy costs would contribute about 75%,
whereas IT would contribute just 25% to the overall cost of operating a data center [3].

∗Correspondence to: CLOUDS Lab, Department of Computer Science and Software Engineering, The University of
Melbourne, Australia. Email: abe@csse.unimelb.edu.au

Copyright c© 2012 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 A. BELOGLAZOV AND R. BUYYA

Power On Power Off

Pool of

physical

computer

nodes

Virtualization layer
(VMMs, local resources managers)

Consumer, scientific and business
applications

Global resource managers

User User User

VM provisioning SLA negotiation Application requests

Virtual

Machines

and

users’

applications

Figure 1. The system view

The reason for this extremely high energy consumption is not just the quantity of computing
resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these
resources. Data collected from more than 5000 production servers over a six-month period have
shown that although servers usually are not idle, the utilization rarely approaches 100% [4].
Most of the time servers operate at 10-50% of their full capacity, leading to extra expenses on
over-provisioning, and thus extra Total Cost of Acquisition (TCA) [4]. Moreover, managing and
maintaining over-provisioned resources results in the increased Total Cost of Ownership (TCO).
Another problem is the narrow dynamic power range of servers: even completely idle servers
still consume about 70% of their peak power [5]. Therefore, keeping servers underutilized is
highly inefficient from the energy consumption perspective. Assuncao et al. [6] have conducted
a comprehensive study on monitoring energy consumption by the Grid’5000 infrastructure. They
have shown that there exist significant opportunities for energy conservation via techniques utilizing
switching servers off or to low power modes. There are other crucial problems that arise from
high power and energy consumption by computing resources. Power is required to feed the cooling
system operation. For each watt of power consumed by computing resources, an additional 0.5-1 W
is required for the cooling system [7]. In addition, high energy consumption by the infrastructure
leads to substantial carbon dioxide (CO2) emissions contributing to the greenhouse effect [8].

One of the ways to address the energy inefficiency is to leverage the capabilities of the
virtualization technology [9]. The virtualization technology allows Cloud providers to create
multiple Virtual Machine (VMs) instances on a single physical server, thus improving the utilization
of resources and increasing the Return On Investment (ROI). The reduction in energy consumption
can be achieved by switching idle nodes to low-power modes (i.e. sleep, hibernation), thus
eliminating the idle power consumption (Figure 1). Moreover, by using live migration [10] the VMs
can be dynamically consolidated to the minimal number of physical nodes according to their current
resource requirements. However, efficient resource management in Clouds is not trivial, as modern
service applications often experience highly variable workloads causing dynamic resource usage
patterns. Therefore, aggressive consolidation of VMs can lead to performance degradation when
an application encounters an increasing demand resulting in an unexpected rise of the resource
usage. If the resource requirements of an application are not fulfilled, the application can face
increased response times, time-outs or failures. Ensuring reliable Quality of Service (QoS) defined
via Service Level Agreements (SLAs) established between Cloud providers and their customers

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 3

is essential for Cloud computing environments; therefore, Cloud providers have to deal with the
energy-performance trade-off – the minimization of energy consumption, while meeting the SLAs.

The focus of this work is on energy and performance efficient resource management strategies that
can be applied in a virtualized data center by a Cloud provider (e.g. Amazon EC2). We investigate
performance characteristics of online algorithms for the problem of energy and performance
efficient dynamic VM consolidation. First, we study a simplified problem of determining the time
to migrate a VM from an oversubscribed host to minimize the cost consisting of the cost of energy
consumption and the cost incurred by the Cloud provider due to the SLA violation. We determine
and prove the cost of the optimal offline algorithm for this problem, as well as the competitive
ratio of the optimal online deterministic algorithm. Next, we investigate a more complex problem
of dynamic consolidation of VMs considering multiple hosts and multiple VMs. We find and prove
the competitive ratio of the optimal online deterministic algorithm for this problem.

It is widely known that randomized online algorithms usually provide better performance than
deterministic algorithms designed for the same problems [11]. Therefore, we enhance deterministic
algorithms and propose and evaluate novel heuristics that adapt their behavior based on an analysis
of historical data from the resource usage by VMs. We evaluate the proposed algorithms by
extensive simulation using the CloudSim toolkit and the workload data from 10 days of the resource
usage by more than a thousand PlanetLab VMs provisioned for multiple users. The algorithms
significantly reduce energy consumption, while providing a high level of adherence to the SLAs.
The main contributions of this paper are the following.

1. Formal definitions of optimal online deterministic and offline algorithms for the single VM
migration and dynamic VM consolidation problems.

2. A proof of the cost incurred by the optimal offline algorithm for the single VM migration
problem.

3. Competitive analysis and proofs of the competitive ratios of the optimal online deterministic
algorithms for the single VM migration and dynamic VM consolidation problems.

4. Novel adaptive heuristics for the problem of energy and performance efficient dynamic
consolidation of VMs that outperform the optimal online deterministic algorithm.

5. An extensive simulation-based evaluation and performance analysis of the proposed
algorithms.

The remainder of the paper is organized as follows. In Section 2 we discuss the related work.
In Sections 3 and 4 we present a thorough analysis of the single VM migration and dynamic
VM consolidation problems respectively. In Section 5 we introduce the system model used in the
development of heuristics for the dynamic VM consolidation problem. We propose our adaptive
heuristics in Section 6, continuing with an evaluation in Section 7 and analysis of the obtained
experiment results in Section 7. We discuss future research directions and conclude the paper in
Section 8.

2. RELATED WORK

One of the first works, in which power management has been applied in the context of virtualized
data centers, has been done by Nathuji and Schwan [12]. The authors have proposed an architecture
of a data center’s resource management system where resource management is divided into local and
global policies. At the local level the system leverages the guest OS’s power management strategies.
The global manager gets the information on the current resource allocation from the local managers
and applies its policy to decide whether the VM placement needs to be adapted. However, the
authors have not proposed a specific policy for automatic resource management at the global level.

Kusic et al. [13] have defined the problem of power management in virtualized heterogeneous
environments as a sequential optimization and addressed it using Limited Lookahead Control
(LLC). The objective is to maximize the resource provider’s profit by minimizing both power
consumption and SLA violation. Kalman filter is applied to estimate the number of future requests
to predict the future state of the system and perform necessary reallocations. However, in contrast

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

4 A. BELOGLAZOV AND R. BUYYA

to heuristic-based approaches, the proposed model requires simulation-based learning for the
application-specific adjustments, which cannot be implemented by Infrastructure as a Service (IaaS)
Cloud providers, such as Amazon EC2. Moreover, due to the model complexity the execution time
of the optimization controller reaches 30 minutes even for 15 nodes, which is not suitable for large-
scale real-world systems. On the contrary, our approach is heuristic-based, which does not require
simulation based learning prior to the application deployment and allows the achievement of high
performance even for a large scale as shown by our experiments.

Srikantaiah et al. [14] have studied the problem of request scheduling for multi-tier web-
applications in virtualized heterogeneous systems to minimize energy consumption, while meeting
performance requirements. The authors have investigated the effect of performance degradation
due to high utilization of different resources when the workload is consolidated. They have found
that the energy consumption per transaction results in a “U”-shaped curve, and it is possible to
determine the optimal utilization point. To handle the optimization over multiple resources, the
authors have proposed a heuristic for the multidimensional bin packing problem as an algorithm
for the workload consolidation. However, the proposed approach is workload type and application
dependent, whereas our algorithms are independent of the workload type, and thus are suitable
for a generic Cloud environment. Cardosa et al. [15] have proposed an approach for the problem
of power-efficient allocation of VMs in virtualized heterogeneous computing environments. They
have leveraged the min, max and shares parameters of Xen’s VMM, which represent minimum,
maximum and proportion of the CPU allocated to VMs sharing the same resource. However, the
approach suits only enterprise environments as it does not support strict SLAs and requires the
knowledge of application priorities to define the shares parameter. Other limitations are that the
allocation of VMs is not adapted at run-time (the allocation is static).

Verma et al. [16] have formulated the problem of power-aware dynamic placement of applications
in virtualized heterogeneous systems as continuous optimization: at each time frame, the placement
of VMs is optimized to minimize power consumption and maximize performance. Like in [14],
the authors have applied a heuristic for the bin packing problem with variable bin sizes and costs.
Similarly to [12], live migration of VMs is used to achieve a new placement at each time frame.
The proposed algorithms, on the contrary to our approach, do not support SLAs: the performance
of applications can be degraded due to the workload variability. In their more recent work [17],
Verma et al. have proposed dividing VM consolidation strategies into static (monthly, yearly), semi-
static (days, weeks) and dynamic (minutes, hours) consolidation. In the paper, the authors have
focused on static and semi-static consolidation techniques, as these types of consolidation are easier
to implement in an enterprise environment. In contrast, in this work we investigate the problem
of dynamic consolidation to take advantage of fine-grained optimization. Gandhi et al. [18] have
investigated the problem of allocating an available power budget among servers in a virtualized
heterogeneous server farm, while minimizing the mean response time. To investigate the effect of
different factors on the mean response time, a queuing theoretic model has been introduced, which
allows the prediction of the mean response time as a function of the power-to-frequency relationship,
arrival rate, peak power budget, etc. The model is used to determine the optimal power allocation
for every configuration of the above factors.

Jung et al. [19], [20] have investigated the problem of dynamic consolidation of VMs running
a multi-tier web-application using live migration, while meeting SLA requirements. The SLA
requirements are modeled as the response time precomputed for each type of transactions specific
to the web-application. A new VM placement is produced using bin packing and gradient search
techniques. The migration controller decides whether there is a reconfiguration that is effective
according to the utility function that accounts for the SLA fulfillment. However, this approach can
be applied only to a single web-application setup and, therefore, cannot be utilized for a multi-
tenant IaaS environment. Zhu et al [21] have studied a similar problem of automated resource
allocation and capacity planning. They have proposed three individual controllers each operating
at a different time scale: longest time scale (hours to days); shorter time scale (minutes); and
shortest time scale (seconds). These three controllers place compatible workloads onto groups of
servers, react to changing conditions by reallocating VMs, and allocate resources to VMs within

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 5

the servers to satisfy the SLAs. The middle-scale controller is the closest to the scope of our work.
This approach is in line with our previous work [22] and applies an approach based on the idea of
setting fixed utilization thresholds. However, fixed utilization thresholds are not efficient for IaaS
environments with mixed workloads that exhibit non-stationary resource usage patterns.

Kumar et al. [23] have proposed an approach for dynamic VM consolidation based on an
estimation of “stability” – the probability that a proposed VM reallocation will remain effective
for some time in the future. Predictions of future resource demands of applications are done
using a time-varying probability density function. The problem is that the authors assume that
the parameters of the distribution, such as the mean and standard deviation, are known a
priori. They assume that these values can be obtained using offline profiling of applications and
online calibration. However, offline profiling is unrealistic for IaaS environments. Moreover, the
authors assume that the resource utilization follows a normal distribution, whereas numerous
studies [24], [25], [26] have shown that resource usage by applications is more complex and
cannot be modeled using simple probability distributions. Berral et al [27] have studied the problem
of dynamic consolidation of VMs running applications with deadlines that are set in the SLAs.
Using machine learning techniques they optimize the combination of energy consumption and SLA
fulfillment. The proposed approach is designed for specific environments, such as High Performance
Computing (HPC), where applications have deadline constraints. Therefore, such an approach is not
suitable for environments with mixed workloads.

In contrast to the discussed studies, we propose efficient adaptive heuristics for dynamic adaption
of VM allocation at run-time according to the current utilization of resources applying live
migration, switching idle nodes to the sleep mode, and thus minimizing energy consumption. The
proposed approach can effectively handle strict QoS requirements, multi-core CPU architectures,
heterogeneous infrastructure and heterogeneous VMs. The algorithms adapt the behavior according
to the observed performance characteristics of VMs. Moreover, to the best of our knowledge, in the
literature there have not been results in competitive analysis of online algorithms for the problem of
energy and performance efficient dynamic consolidation of VMs.

3. THE SINGLE VM MIGRATION PROBLEM

In this section we apply competitive analysis [28] to analyze a subproblem of the problem of energy
and performance efficient dynamic consolidation of VMs. There is a single physical server, or host,
and M VMs allocated to that host. In this problem the time is discrete and can be split into N
time frames, where each time frame is 1 second. The resource provider pays the cost of energy
consumed by the physical server. It is calculated as Cptp, where Cp is the cost of power (i.e.
energy per unit of time), and tp is a time period. The resource capacity of the host and resource
usage by VMs are characterized by a single parameter, the CPU performance. The VMs experience
dynamic workloads, which means that the CPU usage by a VM arbitrarily varies over time. The
host is oversubscribed, i.e. if all the VMs request their maximum allowed CPU performance, the
total CPU demand will exceed the capacity of the CPU. We define that when the demand of the
CPU performance exceeds the available capacity, a violation of the SLAs established between the
resource provider and customers occurs. An SLA violation results in a penalty incurred by the
provider, which is calculated as Cvtv, where Cv is the cost of SLA violation per unit of time, and
tv is the time duration of the SLA violation. Without loss of generality, we can define Cp = 1 and
Cv = s, where s ∈ R+. This is equivalent to defining Cp = 1/s and Cv = 1.

At some point in time v, an SLA violation occurs and continues until N . In other words, due to
the over-subscription and variability of the workload experienced by VMs, at the time v the overall
demand for the CPU performance exceeds the available CPU capacity and does not decrease until
N . It is assumed that according to the problem definition, a single VM can be migrated out of the
host. This migration leads to a decrease of the demand for the CPU performance and makes it lower
than the CPU capacity. We define n to be the stopping time, which is equal to the latest of either
the end of the VM migration or the beginning of the SLA violation. A VM migration takes time T .
During a migration an extra host is used to accommodate the VM being migrated, and therefore,

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

6 A. BELOGLAZOV AND R. BUYYA

the total energy consumed during a VM migration is 2CpT . The problem is to determine the time
m when a VM migration should be initiated to minimize the total cost consisting of the energy cost
and the cost caused by an SLA violation if it takes place. Let r be the remaining time since the
beginning of the SLA violation, i.e. r = n− v.

3.1. The Cost Function

To analyze the problem, we define a cost function as follows. The total cost includes the cost caused
by the SLA violation and the cost of the extra energy consumption. The extra energy consumption
is the energy consumed by the extra host where a VM is migrated to, and the energy consumed by
the main host after the beginning of the SLA violation. In other words, all the energy consumption
is taken into account except for the energy consumed by the main host from t0 (the starting time)
to v. The reason is that this part of energy cannot be eliminated by any algorithm by the problem
definition. Another restriction is that the SLA violation cannot occur until a migration starting at t0
can be finished, i.e. v > T . According to the problem statement, we define the cost function C(v,m)
as shown in (1).

C(v,m) =

(v −m)Cp if m < v, v −m ≥ T ,
(v −m)Cp + 2(m− v + T)Cp + (m− v + T)Cv if m ≤ v, v −m < T,

rCp + (r −m+ v)Cp + rCv if m > v.

(1)

The cost function C defines three cases, which cover all possible relationships between v and m.
We denote the cases of (1) as C1, C2, and C3 respectively. C1 describes the case when the migration
occurs before the occurrence of the SLA violation (m < v), but the migration starts not later than
T before the beginning of the SLA violation (v −m ≥ T). In this case the cost is just (v −m)Cp,
i.e. the cost of energy consumed by the extra host from the beginning of the VM migration to the
beginning of the potential SLA violation. There is no cost of SLA violation, as according to the
problem statement the stopping time is exactly the beginning of the potential SLA violation, so the
duration of the SLA violation is 0.
C2 describes the case when the migration occurs before the occurrence of the SLA violation

(m ≤ v), but the migration starts later than T before the beginning of the SLA violation (v −m <
T). C2 contains three terms: (a) (v −m)Cp, the cost of energy consumed by the extra host from the
beginning of the migration to the beginning of the SLA violation; (b) 2(m− v + T)Cp, the cost of
energy consumed by both the main host and the extra host from the beginning of the SLA violation
to n; (c) (m− v + T)Cv, the cost of the SLA violation from the beginning of the SLA violation to
the end of the VM migration. C3 describes the case when the migration starts after the beginning of
the SLA violation. In this case the cost consists of three terms: (a) rCp, the cost of energy consumed
by the main host from the beginning of the SLA violation to n; (b) (r −m+ v)Cp, the cost of
energy consumed by the extra host from the beginning of the VM migration to n; (c) rCv, the cost
of SLA violation from the beginning of the SLA violation to n.

3.2. The Optimal Offline Algorithm

Theorem 1
The optimal offline algorithm for the single VM migration problem incurs the cost of T

s , and is
achieved when v−m

T = 1.

Proof
To find the cost of the optimal offline algorithm, we analyze the range of the cost function for
the domain of all possible algorithms. The quality of an algorithm for this problem depends of
the relation between v and m, i.e. on the difference between the time when the VM migration is
initiated by the algorithm and the time when the SLA violation starts. We can define v −m = aT ,
where a ∈ R. Therefore, m = v − aT , and a = v−m

T . Further, we analyze the three cases defined by
the cost function (1).

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 7

1. m < v, v −m ≥ T . Thus, aT ≥ T and a ≥ 1. By the substitution of m in the second case
of (1), we get (2).

C1(v, a) = (v − v + aT)Cp = aTCp (2)

2. m ≤ v, v −m < T . Thus, a ≥ 0 and aT < T . Therefore, 0 ≤ a < 1. By the substitution of m
in the first case of (1), we get (3).

C2(v, a) = (v − v + aT)Cp + 2(v − aT − v + T)Cp + (v − aT − v + T)Cv

= aTCp + 2T (1− a)Cp + T (1− a)Cv

= T (2− a)Cp + T (1− a)Cv

(3)

3. m > v. Thus, a < 0. By simplifying the third case of (1), we get (4).

C3(v,m) = rCp + (r −m+ v)Cp + rCv

= (2r −m+ v)Cp + rCv

(4)

For this case, r is the time from the beginning of the SLA violation to the end of the migration.
Therefore, r = m− v + T . By the substitution ofm, we get r = T (1− a). By the substitution
of m and r in (4), we get (5).

C3(v, a) = (2T − 2aT − v + aT + v)Cp + T (1− a)Cv

= T (2− a)Cp + T (1− a)Cv

= C2(v, a)

(5)

As C3(v, a) = C2(v, a), we simplify the function to just two case. Both of the cases are linear in
a and do not depend on v (6).

C(a) =

{
T (2− a)Cp + T (1− a)Cv if a < 1,

aTCp if a ≥ 1.
(6)

According to the problem definition, we can make the following substitutions: Cp = 1/s and
Cv = 1 (7).

C(a) =

{
T (2−a)

s + T (1− a) if a < 1,
aT
s if a ≥ 1.

(7)

It is clear that (7) reaches its minimum T
s at a = 1, i.e. when v−m

T = 1. This solution corresponds
to an algorithm that always initiates the VM migration exactly at m = v − T . Such an algorithm
must have perfect knowledge of the time when the SLA violation will occur before it actually
occurs. This algorithm is the optimal offline algorithm for the single VM migration problem.

3.3. The Optimal Online Deterministic Algorithm

In a real world setting, a control algorithm does not have complete knowledge of future events, and
therefore, has to deal with an online problem. According to Borodin and El-Yaniv [28], optimization
problems in which the input is received in an online manner and in which the output must be
produced online are called online problems. Algorithms that are designed for online problems are
called online algorithms. One of the ways to characterize the performance and efficiency of online
algorithms is to apply competitive analysis. In the framework of competitive analysis, the quality
of online algorithms is measured relatively to the best possible performance of algorithms that have
complete knowledge of the future. An online algorithm ALG is c-competitive if there is a constant
a, such that for all finite sequences I:

ALG(I) ≤ c ·OPT (I) + a, (8)

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

8 A. BELOGLAZOV AND R. BUYYA

where ALG(I) is the cost incurred by ALG for the input I; OPT (I) is the cost of the optimal
offline algorithm for the input sequence I; and a is a constant. This means that for all possible
inputs, ALG incurs a cost within the constant factor c of the optimal offline cost plus a constant
a. c can be a function of the problem parameters, but it must be independent of the input I . If
ALG is c-competitive, we say that ALG attains a competitive ratio c. In competitive analysis, an
online deterministic algorithm is analyzed against the input generated by an omnipotent malicious
adversary. Based on the knowledge of the online algorithm, the adversary generates the worst
possible input for the online algorithm, i.e. the input that maximizes the competitive ratio. An
algorithm’s configuration is the algorithm’s state with respect to the outside world, which should
not be confused with the algorithm’s internal state consisting of its control and internal memory.

We continue the analysis of the single VM migration problem by finding the optimal online
deterministic algorithm and its competitive ratio.

Theorem 2
The competitive ratio of the optimal online deterministic algorithm for the single VM migration
problem is 2 + s, and the algorithm is achieved when m = v.

Proof

Using the cost function found in Theorem 1, the competitive ratio of any online algorithm is
defined as in (9).

ALG(I)

OPT (I)
=

{
T (2−a)+sT (1−a)

s · s
T = 2 + s− a(1 + s) if a < 1,

aT
s ·

s
T = a if a ≥ 1,

(9)

where a = v−m
T . The configuration of any online algorithm for the single VM migration problem is

the current time i; the knowledge of whether an SLA violation is in place; and v if i ≥ v. Therefore,
there are two possible classes of online deterministic algorithms for this problem:

1. Algorithms ALG1 that define m as a function of i, i.e. m = f(i) and a = v−f(i)
T .

2. Algorithms ALG2 that define m as a function of v, i.e. m = g(v) and a = v−g(v)
T .

For algorithms from the first class, a can grow arbitrarily large, as m is not a function of v, and
the adversary will select v such that it is infinitely greater than f(i). As a→∞, ALG1(I)

OPT (I) →∞;
therefore, all algorithms from the first class are not competitive.

For the second class,m ≥ v, asm is a function of v, and v becomes known for an online algorithm
when i = v. Therefore ALG2(I)

OPT (I) = 2 + s− a(1 + s), where a ≤ 0. The minimum competitive ratio
of 2 + s is obtained at a = 0. Thus, the optimal online deterministic algorithm for the single VM
migration problem is achieved when a = 0, or equivalentlym = v, and its competitive ratio is 2 + s.

4. THE DYNAMIC VM CONSOLIDATION PROBLEM

In this section we analyze a more complex problem of dynamic VM consolidation considering
multiple hosts and multiple VMs. For this problem, we define that there are n homogeneous hosts,
and the capacity of each host is Ah. Although VMs experience variable workloads, the maximum
CPU capacity that can be allocated to a VM is Av. Therefore, the maximum number of VMs
allocated to a host when they demand their maximum CPU capacity is m = Ah

Av
. The total number

of VMs is nm. VMs can be migrated between hosts using live migration with a migration time tm.
As for the single VM migration problem defined in Section 3, an SLA violation occurs when the
total demand for the CPU performance exceeds the available CPU capacity, i.e. Ah. The cost of
power is Cp, and the cost of SLA violation per unit of time is Cv. Without loss of generality, we
can define Cp = 1 and Cv = s, where s ∈ R+. This is equivalent to defining Cp = 1/s and Cv = 1.
We assume that when a host is idle, i.e. there is no allocated VMs, it is switched off and consumes

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 9

no power, or switched to the sleep mode with negligible power consumption. We call non-idle hosts
active. The total cost C is defined as follows:

C =

T∑
t=t0

(
Cp

n∑
i=0

ati + Cv

n∑
j=0

vtj

)
, (10)

where t0 is the initial time; T is the total time; ati ∈ {0, 1} indicating whether the host i is active at
the time t; vtj ∈ {0, 1} indicating whether the host j is experiencing an SLA violation at the time t.
The problem is to determine what time, which VMs and where should be migrated to minimize the
total cost C.

4.1. The Optimal Online Deterministic Algorithm

Theorem 3
The upper bound of the competitive ratio of the optimal online deterministic algorithm for the
dynamic VM consolidation problem is ALG(I)

OPT (I) ≤ 1 + ms
2(m+1) .

Proof

Similarly to the single VM migration problem, the optimal online deterministic algorithm for the
dynamic VM consolidation problem migrates a VM from a host when an SLA violation occurs at
this host. The algorithm always consolidates VMs to the minimum number of hosts, ensuring that
the allocation does not cause an SLA violation. The omnipotent malicious adversary generates the
CPU demand by VMs in a way that cause as much as possible SLA violation, while keeping as
many as possible hosts active, i.e. consuming energy.

As mAv = Ah, for any k > m, k ∈ N, kAv > Ah. In other words, an SLA violation occurs at a
host when at least m+ 1 VMs are allocated to this host, and these VMs demand their maximum
CPU capacity Av. Therefore, the maximum number of hosts that experience an SLA violation
simultaneously nv is defined as in (11).

nv =
⌊ nm

m+ 1

⌋
. (11)

In a case of a simultaneous SLA violation at nv hosts, the number of hosts not experiencing an
SLA violation is nr = n− nv. The strategy of the adversary is to make the online algorithm keep
all the hosts active all the time and make nv hosts experience an SLA violation half of the time. To
show how this is implemented, we split the time into periods of length 2tm. Then T − t0 = 2tmτ ,
where τ ∈ R+. Each of these periods can be split into two equal parts of length tm. The adversary
acts as follows for these two parts of each period:

1. During the first tm, the adversary sets the CPU demand by the VMs in a way to allocate
exactly m+ 1 VMs to nv hosts by migrating VMs from nr hosts. As the VM migration time
is tm, the total cost during this period of time is tmnCp, as all the hosts are active during
migrations, and there is no SLA violation.

2. During the next tm, the adversary sets the CPU demand by the VMs to the maximum causing
an SLA violation at nv hosts. The online algorithm reacts to the SLA violation, and migrates
the necessary number of VMs back to nr hosts. During this period of time, the total cost is
tm(nCp + nvCv), as all the hosts are again active, and nv hosts are experiencing an SLA
violation.

Therefore, the total cost during a time period 2tm is defined as follows:

C = 2tmnCp + tmnvCv. (12)

This leads to the following total cost incurred by the optimal online deterministic algorithm
(ALG) for the input I:

ALG(I) = τtm(2nCp + nvCv). (13)

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

10 A. BELOGLAZOV AND R. BUYYA

The optimal offline algorithm for this kind of workload will just keep m VMs at each host all the
time without any migrations. Thus, the total cost incurred by the optimal offline algorithm is defined
as shown in (14).

OPT (I) = 2τtmnCp. (14)

Having determined both costs, we can find the competitive ratio of the optimal offline
deterministic algorithm (15).

ALG(I)

OPT (I)
=
τtm(2nCp + nvCv)

2τtmnCp
=

2nCp + nvCv

2nCp
= 1 +

nvCv

2nCp
. (15)

Via the substitution of Cp = 1/s and Cv = 1, we get (16).
ALG(I)

OPT (I)
= 1 +

nvs

2n
. (16)

First, we consider the case when mod nm
m+1 = 0, and thus nv = nm

m+1 . For this case the
competitive ratio is shown in (17).

ALG1(I)

OPT (I)
= 1 +

nms

2n(m+ 1)
= 1 +

ms

2(m+ 1)
. (17)

If mod nm
m+1 6= 0, then due to the remainder, nv is less than in the first case. Therefore, the

competitive ratio is defined as in (18).
ALG2(I)

OPT (I)
< 1 +

ms

2(m+ 1)
. (18)

If we combine both cases, the competitive ratio can be defined as in (19), which is an upper
bound of the competitive ratio of the optimal online deterministic algorithm for the dynamic VM
consolidation problem.

ALG(I)

OPT (I)
≤ 1 +

ms

2(m+ 1)
. (19)

4.2. Non-Deterministic Online Algorithms

It is known that non-deterministic, or randomized, online algorithms typically improve upon the
quality of their deterministic counterparts [29]. Therefore, it can be expected that the competitive
ratio of online randomized algorithms for the single VM migration problem (Section 3), which falls
back to the optimal online deterministic algorithm when i ≥ v, lies between T

s and 2 + s. Similarly,
it can be expected that the competitive ratio of online randomized algorithms for the dynamic VM
consolidation problem should be improved relatively to the upper bound determined in Theorem 3.
In competitive analysis, randomized algorithms are analyzed against different types of adversaries
than the omnipotent malicious adversary used for deterministic algorithms. For example, one of
these adversaries is the oblivious adversary that generates a complete input sequence prior to the
beginning of the algorithm execution. It generates an input based on knowledge of probability
distributions used by the algorithm.

Another approach to analyzing randomized algorithms is finding the average-case performance
of an algorithm based on distributional models of the input. However, in a real world setting, the
workload experienced by VMs is more complex and cannot be modeled using simple statistical
distributions [24]. For example, it has been shown that web workloads have such properties as
correlation between workload attributes, non-stationarity, burstiness, and self-similarity [25]. Job
arrival times in Grid and cluster workloads have been identified to exhibit such patterns as pseudo-
periodicity, long range dependency, and multifractal scaling [26]. In Section 6, we propose adaptive
algorithms that rely on statistical analysis of historical data of the workload. One of the assumptions
is that workloads are not completely random, and future events can be predicted based on the
past data. However, such algorithms cannot be analyzed using simple distributional or adversary
models, such as oblivious adversary, as realistic workloads require more complex modeling, e.g.
using Markov chains [30]. We plan to investigate these workload models in future work.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 11

5. THE SYSTEM MODEL

In this paper, the targeted system is an IaaS environment, represented by a large-scale data
center consisting of N heterogeneous physical nodes. Each node i is characterized by the CPU
performance defined in Millions Instructions Per Second (MIPS), amount of RAM and network
bandwidth. The servers do not have local disks, the storage is provided as a Network Attached
Storage (NAS) to enable live migration of VMs. The type of the environment implies no knowledge
of application workloads and time for which VMs are provisioned. Multiple independent users
submit requests for provisioning of M heterogeneous VMs characterized by requirements to
processing power defined in MIPS, amount of RAM and network bandwidth. The fact that the VMs
are managed by independent users implies that the resulting workload created due to combining
multiple VMs on a single physical node is mixed. The mixed workload is formed by various types
of applications, such as HPC and web-applications, which utilize the resources simultaneously. The
users establish SLAs with the resource provider to formalize the QoS delivered. The provider pays
a penalty to the users in cases of SLA violations.

Physical node 1

VM 1 VM 2 VMM

Local Manager VMM

55

4

Physical node N

VM 1 VM 2 VMM

Local Manager VMM

55

4

Global Manager

2 3 2 3

... ...
5 5

1

Users

...

Figure 2. The system model

The software layer of the system is tiered comprising local and global managers (Figure 2). The
local managers reside on each node as a module of the VMM. Their objective is the continuous
monitoring of the node’s CPU utilization, resizing the VMs according to their resource needs, and
deciding when and which VMs should to be migrated from the node (4). The global manager resides
on the master node and collects information from the local managers to maintain the overall view
of the utilization of resources (2). The global manager issues commands for the optimization of the
VM placement (3). VMMs perform actual resizing and migration of VMs as well as changes in
power modes of the nodes (5).

5.1. Multi-Core CPU Architectures

In our model, physical servers are equipped with multi-core CPUs. We model a multi-core CPU
with n cores each having m MIPS as a single-core CPU with the total capacity of nm MIPS. This is
justified as applications, as well as VMs, are not tied down to processing cores and can be executed
on an arbitrary core using a time-shared scheduling algorithm. The only limitation is that the CPU
capacity required for a VM must be less or equal to the capacity of a single core. The reason is that
if the CPU capacity required for a VM higher than the capacity of a single core, then a VM must be
executed on more than one core in parallel. However, we do not assume that VMs can be arbitrarily
parallelized, as there is no a priori knowledge of the applications running on a VM and automatic
parallelization is a complex research problem.

5.2. Power Model

Power consumption by computing nodes in data centers is mostly determined by the CPU, memory,
disk storage, power supplies and cooling systems [31]. Recent studies [5], [13] have shown that
the power consumption by servers can be accurately described by a linear relationship between
the power consumption and CPU utilization, even when Dynamic Voltage and Frequency Scaling

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

12 A. BELOGLAZOV AND R. BUYYA

Table I. Power consumption by the selected servers at different load levels in Watts

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

(DVFS) is applied. The reason lies in the limited number of states that can be set to the frequency
and voltage of a CPU and the fact that voltage and performance scaling is not applied to other
system components, such as memory and network interfaces. However, due to the proliferation of
multi-core CPUs and virtualization, modern servers are typically equipped with large amounts of
memory, which begins to dominate the power consumption by a server [31]. This fact combined
with the difficulty of modeling power consumption by modern multi-core CPUs makes building
precise analytical models a complex research problem. Therefore, instead of using an analytical
model of power consumption by a server, we utilize real data on power consumption provided by
the results of the SPECpower benchmark†.

We have selected two server configurations with dual-core CPUs published in February 2011:
HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores × 1860 MHz, 4 GB), and HP ProLiant ML110
G5 (Intel Xeon 3075, (2 cores × 2660 MHz, 4 GB). The configuration and power consumption
characteristics of the selected servers are shown in Table I. The reason why we have not chosen
servers with more cores is that it is important to simulate a large number of servers to evaluate the
effect of VM consolidation. Thus, simulating less powerful CPUs is advantageous, as less workload
is required to overload a server. Nevertheless, dual-core CPUs are sufficient to evaluate resource
management algorithms designed for multi-core CPU architectures.

5.3. Cost of VM Live Migration

Live migration of VMs allows transferring a VM between physical nodes without suspension and
with a short downtime. However, live migration has a negative impact on the performance of
applications running in a VM during a migration. Voorsluys et al. have performed an experimental
study to investigate the value of this impact and find a way to model it [32]. They have found
that performance degradation and downtime depend on the application’s behavior, i.e. how many
memory pages the application updates during its execution. However, for the class of applications
with variable workloads, such as web-applications, the average performance degradation including
the downtime can be estimated as approximately 10% of the CPU utilization. Moreover, in our
simulations we model that the same amount of CPU capacity is allocated to a VM on the destination
node during the course of migration. This means that each migration may cause some SLA violation;
therefore, it is crucial to minimize the number of VM migrations. The length of a live migration
depends on the total amount of memory used by the VM and available network bandwidth. This
is justified as to enable live migration, the images and data of VMs must be stored on a Network
Attached Storage (NAS); and therefore, copying the VM’s storage is not required. Thus, for our
experiments we define the migration time and performance degradation experienced by a VM j as
shown in (20).

Tmj
=
Mj

Bj
, Udj

= 0.1 ·
∫ t0+Tmj

t0

uj(t) dt, (20)

where Udj is the total performance degradation by VM j, t0 is the time when the migration starts,
Tmj is the time taken to complete the migration, uj(t) is the CPU utilization by VM j, Mj is the
amount of memory used by VM j, and Bj is the available network bandwidth.

†The SPECpower benchmark. http://www.spec.org/power_ssj2008/

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

http://www.spec.org/power_ssj2008/

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 13

5.4. SLA Violation Metrics

Meeting QoS requirements is extremely important for Cloud computing environments. QoS
requirements are commonly formalized in the form of SLAs, which can be determined in terms of
such characteristics as minimum throughput or maximum response time delivered by the deployed
system. As these characteristics can vary for different applications, it is necessary to define a
workload independent metric that can be used to evaluate the SLA delivered to any VM deployed in
an IaaS. For our experiments, we define that the SLAs are delivered when 100% of the performance
requested by applications inside a VM is provided at any time bounded only by the parameters of the
VM. We propose two metrics for measuring the level of SLA violations in an IaaS environment: (1)
the percentage of time, during which active hosts have experienced the CPU utilization of 100%,
SLA violation Time per Active Host (SLATAH); and (2) the overall performance degradation by
VMs due to migrations, Performance Degradation due to Migrations (PDM) (21). The reasoning
behind the SLATAH is the observation that if a host serving applications is experiencing 100%
utilization, the performance of the applications is bounded by the host capacity, therefore, VMs are
not being provided with the required performance level.

SLATAH =
1

N

N∑
i=1

Tsi
Tai

, PDM =
1

M

M∑
j=1

Cdj

Crj

, (21)

where N is the number of hosts; Tsi is the total time during which the host i has experienced the
utilization of 100% leading to an SLA violation; Tai

is the total of the host i being in the active
state (serving VMs); M is the number of VMs; Cdj

is the estimate of the performance degradation
of the VM j caused by migrations; Crj is the total CPU capacity requested by the VM j during
its lifetime. In our experiments, we estimate Cdj as 10% of the CPU utilization in MIPS during
all migrations of the VM j. Both the SLATAH and PDM metrics independently and with equal
importance characterize the level of SLA violations by the infrastructure, therefore, we propose a
combined metric that encompasses both performance degradation due to host overloading and due
to VM migrations. We denote the combined metric SLA Violation (SLAV), which is calculated as
shown in (22).

SLAV = SLATAH · PDM. (22)

6. ADAPTIVE HEURISTICS FOR DYNAMIC VM CONSOLIDATION

According to the analysis presented in Sections 3 and 4, in this section we propose several heuristics
for dynamic consolidation of VMs based on an analysis of historical data of the resource usage by
VMs. We split the problem of dynamic VM consolidation into four parts: (1) determining when
a host is considered as being overloaded requiring migration of one or more VMs from this host;
(2) determining when a host is considered as being underloaded leading to a decision to migrate
all VMs from this host and switch the host to the sleep mode; (3) selection of VMs that should
be migrated from an overloaded host; and (4) finding a new placement of the VMs selected for
migration from the overloaded and underloaded hosts. We discuss the defined subproblems in the
following sections.

The general algorithm of VM placement optimization is shown in Algorithm 1. First, the
algorithm looks through the list of hosts and by applying the overloading detection algorithm checks
whether a host is overloaded. If the host is overloaded, the algorithm applies the VM selection
policy to select VMs that need to be migrated from the host. Once the list of VMs to be migrated
from the overloaded hosts is built, the VM placement algorithm is invoked to find a new placement
for the VMs to be migrated. The second phase of the algorithm is finding underloaded hosts and
a placement of the VMs from these hosts. The algorithm returns the combined migration map that
contains the information on the new VM placement of the VM selected to be migrated from both
overloaded and underloaded hosts. The complexity of the algorithm is 2N , where N is the number
of hosts.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

14 A. BELOGLAZOV AND R. BUYYA

Algorithm 1: VM placement Optimization
1 Input: hostList Output: migrationMap
2 foreach host in hostList do
3 if isHostOverloaded (host) then
4 vmsToMigrate.add(getVmsToMigrateFromOverloadedHost(host)
5 migrationMap.add(getNewVmPlacement(vmsToMigrate))
6 vmsToMigrate.clear()
7 foreach host in hostList do
8 if isHostUnderloaded (host) then
9 vmsToMigrate.add(host.getVmList()

10 migrationMap.add(getNewVmPlacement(vmsToMigrate))
11 return migrationMap

6.1. Host Overloading Detection

6.1.1. An Adaptive Utilization Threshold: Median Absolute Deviation. In our previous work we
have proposed a heuristic for deciding the time to migrate VMs from a host based on utilization
thresholds [22]. It is based on the idea of setting upper and lower utilization thresholds for hosts
and keeping the total utilization of the CPU by all the VMs between these thresholds. If the CPU
utilization of a host falls below the lower threshold, all VMs have to be migrated from this host and
the host has to be switched to the sleep mode in order to eliminate the idle power consumption. If
the utilization exceeds the upper threshold, some VMs have to be migrated from the host to reduce
the utilization in order to prevent a potential SLA violation.

However, fixed values of utilization thresholds are unsuitable for an environment with dynamic
and unpredictable workloads, in which different types of applications can share a physical resource.
The system should be able to automatically adjust its behavior depending on the workload patterns
exhibited by the applications. Therefore, we propose novel techniques for the auto-adjustment of
the utilization thresholds based on a statistical analysis of historical data collected during the lifetime
of VMs. We apply robust methods that are more effective than classical methods for data containing
outliers or coming from non-normal distributions. The main idea of the proposed adaptive-threshold
algorithms is to adjust the value of the upper utilization threshold depending on the strength of the
deviation of the CPU utilization. The higher the deviation, the lower the value of the upper utilization
threshold, as the higher the deviation, the more likely that the CPU utilization will reach 100% and
cause an SLA violation.

Robust statistics provides an alternative approach to classical statistical methods [33]. The
motivation is to produce estimators that are not unduly affected by small departures from model
assumptions. The Median Absolute Deviation (MAD) is a measure of statistical dispersion. It is a
more robust estimator of scale than the sample variance or standard deviation, as it behaves better
with distributions without a mean or variance, such as the Cauchy distribution. The MAD is a robust
statistic, being more resilient to outliers in a data set than the standard deviation. In the standard
deviation, the distances from the mean are squared, so on average, large deviations are weighted
more heavily, and thus outliers can heavily influence it. In the MAD, the magnitude of the distances
of a small number of outliers is irrelevant.

For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of the absolute
deviations from the data’s median:

MAD = mediani(|Xi −medianj(Xj)|), (23)

that is, starting with the residuals (deviations) from the data’s median, the MAD is the median of
their absolute values. We define the upper utilization threshold (Tu) as shown in (24).

Tu = 1− s ·MAD, (24)

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 15

where s ∈ R+ is a parameter of the method that defines how aggressively the system consolidates
VMs. In other words, the parameter s allows the adjustment of the safety of the method, the
lower s, the less the energy consumption, but the higher the level of SLA violations caused by
the consolidation.

6.1.2. An Adaptive Utilization Threshold: Interquartile Range. In this section, we propose the
second method for setting an adaptive upper utilization threshold based on another robust statistic.
In descriptive statistics, the interquartile range (IQR), also called the midspread or middle fifty, is a
measure of statistical dispersion, being equal to the difference between the third and first quartiles:
IQR = Q3 −Q1. Unlike the (total) range, the interquartile range is a robust statistic, having a
breakdown point of 25%, and is thus often preferred to the total range. For a symmetric distribution
(so the median equals the midhinge, the average of the first and third quartiles), half the IQR equals
the MAD. Using IQR, similarly to (24) we define the upper utilization threshold as shown in (25).

Tu = 1− s · IQR, (25)

where s ∈ R+ is a parameter of the method defining the safety of the method similarly to the
parameter s of the method proposed in Section 6.1.1.

6.1.3. Local Regression. We base our next algorithm on the Loess method (from the German löss
– short for local regression) proposed by Cleveland [34]. The main idea of the method of local
regression is fitting simple models to localized subsets of data to build up a curve that approximates
the original data. The observations (xi, yi) are assigned neighborhood weights using the tricube
weight function shown in (26).

T (u) =

{
(1− |u|3)3 if |u| < 1,

0 otherwise,
(26)

Let ∆i(x) = |xi − x| be the distance from x to xi, and let ∆(i)(x) be these distances ordered
from smallest to largest. Then the neighborhood weight for the observation (xi, yi) is defined by the
function wi(x) (27).

wi(x) = T

(
∆i(x)

∆(q)(x)

)
, (27)

for xi such that ∆i(x) < ∆(q)(x), where q is the number of observations in the subset of data
localized around x. The size of the subset is defined by a parameter of the method called the
bandwidth. For example, if the degree of the polynomial fitted by the method is 1, then the
parametric family of functions is y = a+ bx. The line is fitted to the data using the weighted least-
squares method with weight wi(x) at (xi, yi). The values of a and b are found by minimizing the
function shown in (28).

n∑
i=1

wi(x)(yi − a− bxi)2. (28)

We utilize this approach to fit a trend polynomial to the last k observations of the CPU utilization,
where k = dq/2e. We fit a polynomial for a single point, the last observation of the CPU utilization,
the right boundary xk of the data set. The problem of the boundary region is well known as leading
to a high bias [35]. According to Cleveland [36], fitted polynomials of degree 1 typically distort
peaks in the interior of the configuration of observations, whereas polynomials of degree 2 remove
the distortion but result in higher biases at boundaries. Therefore, for our problem we have chosen
polynomials of degree 1 to reduce the bias at the boundary.

Let xk be the last observation, and x1 be the kth observation from the right boundary. For our case,
we let xi satisfy x1 ≤ xi ≤ xk, then ∆i(xk) = xk − xi, and 0 ≤ ∆i(xk)

∆1(xk) ≤ 1. Therefore, the tricube
weight function can be simplified as T ∗(u) = (1− u3)3 for 0 ≤ u ≤ 1, and the weight function is
the following:

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

16 A. BELOGLAZOV AND R. BUYYA

wi(x) = T ∗
(

∆i(xk)

∆1(xk)

)
=

(
1−

(
xk − xi
xk − x1

)3
)3

. (29)

In our algorithm (LR), using the described method derived from Loess, for each new observation
we find a new trend line ĝ(x) = â+ b̂x. This trend line is used to estimate the next observation
ĝ(xk+1). The algorithm decides that the host is considered overloaded and some VMs should be
migrated from it if the inequalities (30) are satisfied.

s · ĝ(xk+1) ≥ 1, xk+1 − xk ≤ tm, (30)

where s ∈ R+ is the safety parameter; and tm is the maximum time required for a migration of any
of the VMs allocated to the host. We denote this algorithm Local Regression (LR).

6.1.4. Robust Local Regression. The version of Loess described in Section 6.1.3 is vulnerable
to outliers that can be caused by leptokurtic or heavy-tailed distributions. To make Loess robust,
Cleveland has proposed the addition of the robust estimation method bisquare to the least-squares
method for fitting a parametric family [37]. This modification transforms Loess into an iterative
method. The initial fit is carried out with weights defined using the tricube weight function. The
fit is evaluated at the xi to get the fitted values ŷi, and the residuals ε̂i = yi − ŷi. At the next step,
each observation (xi, yi) is assigned an additional robustness weight ri, whose value depends on the
magnitude of ε̂i. Each observation is assigned the weight riwi(x), where ri is defined as in (31).

ri = B

(
ε̂i
6s

)
, (31)

where B(u) is the bisquare weight function (32), and s is the MAD for the least-squares fit or any
subsequent weighted fit (33).

B(u) =

{
(1− u2)2 if |u| < 1,

0 otherwise,
(32)

s = median|ε̂i|. (33)

Using the estimated trend line, we apply the same method described in Section 6.1.3 to estimate
the next observation and decide that the host is overloaded if the inequalities (30) are satisfied. We
denote this overloading detection algorithm Local Regression Robust (LRR).

6.2. VM Selection

Once it has been decided that a host is overloaded, the next step is to select particular VMs to
migrate from this host. In this section we propose three policies for VM selection. The described
policies are applied iteratively. After a selection of a VM to migrate, the host is checked again for
being overloaded. If it is still considered as being overloaded, the VM selection policy is applied
again to select another VM to migrate from the host. This is repeated until the host is considered as
being not overloaded.

6.2.1. The Minimum Migration Time Policy. The Minimum Migration Time (MMT) policy
migrates a VM v that requires the minimum time to complete a migration relatively to the other
VMs allocated to the host. The migration time is estimated as the amount of RAM utilized by
the VM divided by the spare network bandwidth available for the host j. Let Vj be a set of VMs
currently allocated to the host j. The MMT policy finds a VM v that satisfies conditions formalized
in (34).

v ∈ Vj |∀a ∈ Vj ,
RAMu(v)

NETj
≤ RAMu(a)

NETj
, (34)

where RAMu(a) is the amount of RAM currently utilized by the VM a; and NETj is the spare
network bandwidth available for the host j.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 17

6.2.2. The Random Choice Policy. The Random Choice (RC) policy selects a VM to be migrated
according to a uniformly distributed discrete random variable X d

=U(0, |Vj |), whose values index a
set of VMs Vj allocated to a host j.

6.2.3. The Maximum Correlation Policy The Maximum Correlation (MC) policy is based on
the idea proposed by Verma et al. [17]. The idea is that the higher the correlation between the
resource usage by applications running on an oversubscribed server, the higher the probability of
the server overloading. According to this idea, we select those VMs to be migrated that have the
highest correlation of the CPU utilization with other VMs. To estimate the correlation between
CPU utilizations by VMs, we apply the multiple correlation coefficient [38]. It is used in multiple
regression analysis to assess the quality of the prediction of the dependent variable. The multiple
correlation coefficient corresponds to the squared correlation between the predicted and the actual
values of the dependent variable. It can also be interpreted as the proportion of the variance of the
dependent variable explained by the independent variables.

Let X1, X2, ..., Xn be n random variables representing the CPU utilizations of n VMs allocated
to a host. Let Y represent one of the VMs that is currently considered for being migrated. Then
n− 1 random variables are independent, and 1 variable Y is dependent. The objective is to evaluate
the strength of the correlation between Y and n− 1 remaining random variables. We denote by X
the (n− 1)× n augmented matrix containing the observed values of the n− 1 independent random
variables, and by y the (n− 1)× 1 vector of observations for the dependent variable Y (35). The
matrix X is called augmented because the first column is composed only of 1.

X =

 1 x1,1 . . . x1,n−1

...
...

. . .
...

1 xn−1,1 . . . xn−1,n−1

 y =

 y1

...
yn

 (35)

A vector of predicted values of the dependent random variable Ŷ is denoted by ŷ and is obtained
as shown in (36).

ŷ = Xb b =
(
XTX

)−1
XTy. (36)

Having found a vector of predicted values, we now can compute the multiple correlation
coefficientR2

Y,1,...,n−1, which is equal to the squared coefficient of correlation between the observed
values y of the dependent variable Y and the predicted values ŷ (37).

R2
Y,X1,...,Xn−1

=

∑n
i=1 (yi −mY)2(ŷi −mŶ)2∑n

i=1 (yi −mY)2
∑n

i=1 (ŷi −mŶ)2
, (37)

where mY and mŶ are the sample means of Y and Ŷ respectively. We find the multiple correlation
coefficient for each Xi, which is denoted as R2

Xi,X1,...,Xi−1,Xi+1,...,Xn
. The MC policy finds a VM

v that satisfies the conditions defined in (38).

v ∈ Vj |∀a ∈ Vj , R2
Xv,X1,...,Xv−1,Xv+1,...,Xn

≥ R2
Xv,X1,...,Xa−1,Xa+1,...,Xn

. (38)

6.3. VM Placement

The VM placement can be seen as a bin packing problem with variable bin sizes and prices, where
bins represent the physical nodes; items are the VMs that have to be allocated; bin sizes are the
available CPU capacities of the nodes; and prices correspond to the power consumption by the
nodes. As the bin packing problem is NP-hard, to solve it we apply a modification of the Best Fit
Decreasing (BFD) algorithm that is shown to use no more than 11/9 ·OPT + 1 bins (whereOPT is
the number of bins provided by the optimal solution) [39]. In the modification of the BFD algorithm
denoted Power Aware Best Fit Decreasing (PABFD) proposed in our previous work [22] we sort all
the VMs in the decreasing order of their current CPU utilizations and allocate each VM to a host
that provides the least increase of the power consumption caused by the allocation. This allows the

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

18 A. BELOGLAZOV AND R. BUYYA

leveraging the nodes’ heterogeneity by choosing the most power-efficient ones first. The pseudo-
code for the algorithm is presented in Algorithm 2. The complexity of the algorithm is nm, where
n is the number of nodes and m is the number of VMs that have to be allocated.

Algorithm 2: Power Aware Best Fit Decreasing (PABFD)
1 Input: hostList, vmList Output: allocation of VMs
2 vmList.sortDecreasingUtilization()
3 foreach vm in vmList do
4 minPower←MAX
5 allocatedHost← NULL
6 foreach host in hostList do
7 if host has enough resources for vm then
8 power← estimatePower(host, vm)
9 if power < minPower then

10 allocatedHost← host
11 minPower← power
12 if allocatedHost 6= NULL then
13 allocation.add(vm, allocatedHost)
14 return allocation

6.4. Host Underloading Detection

For determining underloaded hosts we propose a simple approach. First, all the overloaded hosts
are found using the selected overloading detection algorithm, and the VMs selected for migration
are allocated to the destination hosts. Then, the system finds the host with the minimum utilization
compared to the other hosts, and tries to place the VMs from this host on other hosts keeping them
not overloaded. If this can be accomplished, the VMs are set for migration to the determined target
hosts, and the source host is switched to the sleep mode once all the migrations have been completed.
If all the VMs from the source host cannot be placed on other hosts, the host is kept active. This
process is iteratively repeated for all hosts that have not been considered as being overloaded.

7. PERFORMANCE EVALUATION

7.1. Experiment Setup

As the targeted system is an IaaS, a Cloud computing environment that is supposed to create a view
of infinite computing resources to users, it is essential to evaluate the proposed resource allocation
algorithms on a large-scale virtualized data center infrastructure. However, it is extremely difficult to
conduct repeatable large-scale experiments on a real infrastructure, which is required to evaluate and
compare the proposed algorithms. Therefore, to ensure the repeatability of experiments, simulations
have been chosen as a way to evaluate the performance of the proposed heuristics.

The CloudSim toolkit [40] has been chosen as a simulation platform, as it is a modern simulation
framework aimed at Cloud computing environments. In contrast to alternative simulation toolkits
(e.g. SimGrid, GangSim), it allows the modeling of virtualized environments, supporting on-
demand resource provisioning, and their management. It has been extended to enable energy-
aware simulations, as the core framework does not provide this capability. Apart from the energy
consumption modeling and accounting, the ability to simulate service applications with dynamic
workloads has been incorporated. The implemented extensions have been included in the 2.0 version
of the CloudSim toolkit.

We have simulated a data center that comprises 800 heterogeneous physical nodes, half of which
are HP ProLiant ML110 G4 servers, and the other half consists of HP ProLiant ML110 G5 servers.
The characteristics of the servers and data on their power consumption are given in Section 5.2.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 19

Table II. Workload data characteristics (CPU utilization)

Date Number of VMs Mean St. dev. Quartile 1 Median Quartile 3

03/03/2011 1052 12.31% 17.09% 2% 6% 15%
06/03/2011 898 11.44% 16.83% 2% 5% 13%
09/03/2011 1061 10.70% 15.57% 2% 4% 13%
22/03/2011 1516 9.26% 12.78% 2% 5% 12%
25/03/2011 1078 10.56% 14.14% 2% 6% 14%
03/04/2011 1463 12.39% 16.55% 2% 6% 17%
09/04/2011 1358 11.12% 15.09% 2% 6% 15%
11/04/2011 1233 11.56% 15.07% 2% 6% 16%
12/04/2011 1054 11.54% 15.15% 2% 6% 16%
20/04/2011 1033 10.43% 15.21% 2% 4% 12%

The frequency of the servers’ CPUs are mapped onto MIPS ratings: 1860 MIPS each core of the
HP ProLiant ML110 G5 server, and 2660 MIPS each core of the HP ProLiant ML110 G5 server.
Each server is modeled to have 1 GB/s network bandwidth. The characteristics of the VM types
correspond to Amazon EC2 instance types‡ with the only exception that all the VMs are single-core,
which is explained by the fact that the workload data used for the simulations come from single-core
VMs (Section 7.3). For the same reason the amount of RAM is divided by the number of cores for
each VM type: High-CPU Medium Instance (2500 MIPS, 0.85 GB); Extra Large Instance (2000
MIPS, 3.75 GB); Small Instance (1000 MIPS, 1.7 GB); and Micro Instance (500 MIPS, 613 MB).
Initially the VMs are allocated according to the resource requirements defined by the VM types.
However, during the lifetime, VMs utilize less resources according to the workload data, creating
opportunities for dynamic consolidation.

7.2. Performance Metrics

In order to compare the efficiency of the algorithms we use several metrics to evaluate their
performance. One of the metrics is the total energy consumption by the physical servers of a data
center caused by the application workloads. Energy consumption is calculated according to the
model defined in Section 5.2. Metrics used to evaluate the level of SLA violations caused by the
system are SLAV, SLATAH and PDM defined in Section 5.4. Another metric is the number of VM
migrations initiated by the VM manager during the adaptation of the VM placement. The main
metrics are energy consumption by physical nodes and SLAV, however, these metrics are typically
negatively correlated as energy can usually be decreased by the cost of the increased level of SLA
violations. The objective of the resource management system is to minimize both energy and SLA
violations. Therefore, we propose a combined metric that captures both energy consumption and the
level of SLA violations, which we denote Energy and SLA Violations (ESV) (39).

ESV = E · SLAV. (39)

7.3. Workload Data

To make a simulation-based evaluation applicable, it is important to conduct experiments using
workload traces from a real system. For our experiments we have used data provided as a part of
the CoMon project, a monitoring infrastructure for PlanetLab [41]. We have used the data on the
CPU utilization by more than a thousand VMs from servers located at more than 500 places around
the world. The interval of utilization measurements is 5 minutes. We have randomly chosen 10
days from the workload traces collected during March and April 2011. The characteristics of the
data for each day are shown in Table II. The data confirm the statement made in the beginning: the
average CPU utilization is far below 50%. During the simulations, each VM is randomly assigned a
workload trace from one of the VMs from the corresponding day. In the simulations we do not limit

‡Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

http://aws.amazon.com/ec2/instance-types/

20 A. BELOGLAZOV AND R. BUYYA

Table III. Comparison of VM selection policies using paired T-tests

Policy 1 (ESV ×10−3) Policy 2 (ESV ×10−3) Difference (×10−3) P-value

RS (4.03) MC (3.83) 0.196 (0.134, 0.258) P-value < 0.001
RS (4.03) MMT (3.23) 0.799 (0.733, 0.865) P-value < 0.001
MC (3.83) MMT (3.23) 0.603 (0.533, 0.673) P-value < 0.001

Table IV. Tukey’s pairwise comparisons using the transformed ESV. Values that do not share a letter are
significantly different.

Policy SQRT(ESV) (×10−2) 95% CI Grouping

THR-MMT-0.8 6.34 (5.70, 6.98) A
IQR-MMT-1.5 6.16 (5.44, 6.87) A
MAD-MMT-2.5 6.13 (5.49, 6.77) A
LRR-MMT-1.2 4.82 (4.22, 5.41) B
LR-MMT-1.2 4.37 (3.83, 4.91) B

the VM consolidation by the memory bounds, as this would constrain the consolidation, whereas
the objective of the experiments is to stress the consolidation algorithms.

7.4. Simulation Results and Analysis

Using the workload data described in Section 7.3, we have simulated all combinations of the five
proposed host overloading detection algorithms (THR, IQR, MAD, LR, and LRR) and three VM
selection algorithms (MMT, RS, and MC). Moreover, for each overloading detection algorithm we
have varied the parameters as follows: for THR from 0.6 to 1.0 increasing by 0.1; for IQR and
MAD from 0.5 to 3.0 increasing by 0.5; for LR and LRR from 1.0 to 1.4 increasing by 0.1. These
variations have resulted in 81 combinations of the algorithms and parameters. According to Ryan-
Joiner’s normality test, the values of the ESV metric produced by the algorithm combinations do not
follow a normal distribution with the P-value < 0.01. Therefore, we have used the median values
of the ESV metric to compare algorithm combinations and select the parameter of each algorithm
combination that minimizes the median ESV metric calculated over 10 days of the workload traces.
The results produced by the selected algorithms are shown in Figure 3.

According to Ryan-Joiner’s normality test, the values of the ESV metric produced by the selected
algorithm combinations follow a normal distribution with the P-value > 0.1. We have conducted
three paired T-tests to determine the VM selection policy that minimizes the ESV metric across all
algorithm combinations (Table III). The T-tests have shown that the usage of the MMT policy leads
to a statistically significantly lower value of the ESV metric with the P-value < 0.001. Further, we
analyze the combinations of the overloading detection algorithms with the MMT policy.

To meet the assumptions of the ANOVA model, we have transformed the values of the ESV
metric for the algorithm combinations with the MMT policy using the square root function.
The standardized residuals from the transformed data pass Ryan-Joiner’s test with the P-value >
0.1, justifying the assumption that the sample comes from a normal distribution. A plot of the
standardized residuals against the fitted values has shown that the assumption of equal variances
is met. Having the assumptions of the model met, we have applied the F-test to check whether
there is a statistically significant difference between the results produced by the combinations of the
overloading detection algorithms with the MMT policy with the selected parameters. The test has
shown that there is a statistically significant difference between the results with the P-value< 0.001.
Tukey’s pairwise comparisons are summarized in Table IV.

According to results of Tukey’s pairwise comparisons, we conclude that there is no statistically
significant difference between the THR-MMT-0.8, IQR-MMT-1.5 and MAD-MMT-2.5 algorithms
(group A), and between the LRR-MMT-1.2 and LR-MMT-1.2 algorithms (group B). However, there
is a statistically significant difference between the local regression based algorithms and the other
algorithms. Nevertheless, a paired T-test for a comparison of the means of the ESV metric produced

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 21

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

7

6

5

4

3

2

1

0

E
S

V
,

x
0

.0
0

1

(a) The ESV metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

130

120

110

100

90

80

70

60

E
n

e
r
g

y
,

k
W

h

(b) Energy consumption

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

9

8

7

6

5

4

3

2

1

0

S
L

A
V

,
x

0
.0

0
0

0
1

(c) The SLAV metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

S
L

A
T

A
H

,
%

(d) The SLATAH metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

0.18%

0.15%

0.13%

0.10%

0.07%

0.05%

P
D

M
,

%

(e) The PDM metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

V
M

 M
ig

ra
ti

o
n

s,
 x

1
0

0
0

(f) VM migrations

Figure 3. Algorithm combinations with best parameters by the ESV metric

by LRR-MMT-1.2 and LR-MMT-1.2 shows that there is a statistically significant difference with the
P-value < 0.001. The mean difference is 4.21× 10−4 with a 95% CI: (3.23× 10−4, 5.19× 10−4).
As a paired T-test provides more precise results than Tukey’s pairwise comparisons, we can
conclude that LR-MMT-1.2 provides the best results compared to all the other combinations of
algorithms in regard to the ESV metric. Moreover, the trade-off between energy consumption and
SLA violations can be adjusted by varying the safety parameter of the LR algorithm. The results of
the combinations of each overloading detection algorithm with the best parameters and the MMT
policy, along with the benchmark algorithms are shown in Table V. The benchmark policies include
Non Power Aware (NPA), DVFS and the optimal online deterministic algorithm combined with
the MMT policy. The NPA policy makes all the hosts consume the maximum power all the time.
The optimal online deterministic algorithm corresponds to the fixed threshold algorithm with the
threshold set to 100%, therefore, it is named THR-1.0.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

22 A. BELOGLAZOV AND R. BUYYA

Table V. Simulation results of the best algorithm combinations and benchmark algorithms (median values)

Policy ESV
(×10−3)

Energy
(kWh)

SLAV
(×10−5) SLATAH PDM VM migr.

(×103)

NPA 0 2419.2 0 0% 0% 0
DVFS 0 613.6 0 0% 0% 0
THR-MMT-1.0 20.12 75.36 25.78 24.97% 0.10% 13.64
THR-MMT-0.8 4.19 89.92 4.57 4.61% 0.10% 17.18
IQR-MMT-1.5 4.00 90.13 4.51 4.64% 0.10% 16.93
MAD-MMT-2.5 3.94 87.67 4.48 4.65% 0.10% 16.72
LRR-MMT-1.2 2.43 87.93 2.77 3.98% 0.07% 12.82
LR-MMT-1.2 1.98 88.17 2.33 3.63% 0.06% 11.85

From the observed simulation results, we can make several conclusions: (1) dynamic VM
consolidation algorithms significantly outperforms static allocation policies, such as NPA and
DVFS; (2) heuristic-based dynamic VM consolidation algorithms substantially outperform the
optimal online deterministic algorithm (THR-1.0) due to a vastly reduced level of SLA violations;
(3) the MMT policy produces better results compared to the MC and RS policies, meaning that the
minimization of the VM migration time is more important than the minimization of the correlation
between VMs allocated to a host; (4) dynamic VM consolidation algorithms based on local
regression outperform the threshold-based and adaptive-threshold based algorithms due to better
predictions of host overloading, and therefore decreased SLA violations due to host overloading
(SLATAH) and the number of VM migrations; and (5) the algorithm based on local regression
produces better results than its robust modification, which can be explained by the fact that for
the simulated workload it is more important to react to load spikes instead of smoothing out such
outlying observations.

The mean value of the sample means of the time before a host is switched to the sleep mode for the
LR-MMT-1.2 algorithm combination is 1933 seconds with the 95% CI: (1740, 2127). This means
that on average a host is switched to the sleep mode after approximately 32 minutes of activity.
This value is effective for real-world systems, as modern servers allow low-latency transitions to
the sleep mode consuming low power. Meisner et al. [42] have shown that a typical blade server
consuming 450 W in the fully utilized state consumes approximately 10.4 W in the sleep mode,
while the transition delay is 300 ms. The mean number of host transitions to the sleep mode for
our experiment setup (the total number of hosts is 800) per day is 1272 with 95% CI: (1211, 1333).
The mean value of the sample means of the time before a VM is migrated from a host for the same
algorithm combination is 15.3 seconds with the 95% CI: (15.2, 15.4). The mean value of the sample
means of the execution time of the LR-MMT-1.2 algorithm on a server with an Intel Xeon 3060
(2.40 GHz) processor and 2 GB of RAM is 0.20 ms with the 95% CI: (0.15, 0.25).

8. CONCLUDING REMARKS AND FUTURE DIRECTIONS

To maximize their ROI Cloud providers have to apply energy-efficient resource management
strategies, such as dynamic consolidation of VMs and switching idle servers to power-saving modes.
However, such consolidation is not trivial, as it can result in violations of the SLA negotiated
with customers. In this paper we have conducted competitive analysis of the single VM migration
and dynamic VM consolidation problems. We have found and proved competitive ratios for the
optimal online deterministic algorithms for these problems. We have concluded that it is necessary
to develop randomized or adaptive algorithms to improve upon the performance of the optimal
deterministic algorithms. According to the results of the analysis, we have proposed novel adaptive
heuristics that are based on an analysis of historical data on the resource usage for energy and
performance efficient dynamic consolidation of VMs.

We have evaluated the proposed algorithms through extensive simulations on a large-scale
experiment setup using workload traces from more than a thousand PlanetLab VMs. The results of

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

ENERGY AND PERFORMANCE EFFICIENT DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES 23

the experiments have shown that the proposed local regression based algorithm combined with the
MMT VM selection policy significantly outperforms other dynamic VM consolidation algorithms
in regard to the ESV metric due to a substantially reduced level of SLA violations and the number
of VM migrations. In order to evaluate the proposed system in a real Cloud infrastructure, we plan
to implement it by extending a real-world Cloud platform, such as OpenStack§. Another direction
for future research is the investigation of more complex workload models, e.g. models based on
Markov chains, and development of algorithms that will leverage these workload models. Besides
the reduction in infrastructure and on-going operating costs, this work also has social significance
as it decreases carbon dioxide footprints and energy consumption by modern IT infrastructures.

ACKNOWLEDGEMENTS

This paper is a substantially extended version of the paper published in MGC 2010 [43]. We thank
Yoganathan Sivaram (Melbourne University) for his constructive suggestions on enhancing the quality of
the paper.

REFERENCES

1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future Generation Computer Systems 2009; 25(6):599–616.

2. ASHRAE Technical Committee 99. Datacom equipment power trends and cooling applications 2005.
3. Belady C. In the data center, power and cooling costs more than the it equipment it supports 2007. URL

http://www.electronics-cooling.com/articles/2007/feb/a3/.
4. Barroso LA, Holzle U. The case for energy-proportional computing. Computer 2007; 40(12):33–37.
5. Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. Proceedings of the 34th

Annual International Symposium on Computer Architecture (ISCA 2007), ACM New York, NY, USA, 2007; 13–
23.

6. de Assunao MD, Gelas JP, Lefevre L, Orgerie AC. The Green Grid’5000: Instrumenting and using a Grid
with energy sensors. Proceedings of the 5th International Workshop on Distributed Cooperative Laboratories:
Instrumenting the Grid (INGRID 2010), Poznan, Poland, 2010.

7. Ranganathan P, Leech P, Irwin D, Chase J. Ensemble-level power management for dense blade servers. Proceedings
of the 33rd International Symposium on Computer Architecture (ISCA 2006), Boston, MA, USA, 2006; 66–77.

8. The green grid consortium 2011. URL http://www.thegreengrid.org.
9. Xen and the art of virtualization. Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP

2003), Bolton Landing, NY, USA.
10. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A. Live migration of virtual machines.

Proceedings of the 2nd Symposium on Networked Systems Design and Implementation (NSDI 2005), USENIX,
Boston, MA, USA, 2005.

11. Ben-David S, Borodin A, Karp R, Tardos G, Wigderson A. On the power of randomization in on-line algorithms.
Algorithmica 1994; 11(1):214.

12. Nathuji R, Schwan K. Virtualpower: Coordinated power management in virtualized enterprise systems. ACM
SIGOPS Operating Systems Review 2007; 41(6):265–278.

13. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G. Power and performance management of virtualized
computing environments via lookahead control. Cluster Computing 2009; 12(1):1–15.

14. Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation for cloud computing. Cluster Computing 2009; 12:1–
15.

15. Cardosa M, Korupolu M, Singh A. Shares and utilities based power consolidation in virtualized server
environments. Proceedings of the 11th IFIP/IEEE Integrated Network Management (IM 2009), Long Island, NY,
USA, 2009.

16. Verma A, Ahuja P, Neogi A. pMapper: Power and migration cost aware application placement in virtualized
systems. Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware (Middleware 2008),
Springer, Leuven, Belgium, 2008; 243–264.

17. Verma A, Dasgupta G, Nayak TK, De P, Kothari R. Server workload analysis for power minimization using
consolidation. Proceedings of the 2009 USENIX Annual Technical Conference, San Diego, CA, USA, 2009; 28–28.

18. Gandhi A, Harchol-Balter M, Das R, Lefurgy C. Optimal power allocation in server farms. Proceedings of the 11th
International Joint Conference on Measurement and Modeling of Computer Systems, ACM New York, NY, USA,
2009; 157–168.

19. Jung G, Joshi KR, Hiltunen MA, Schlichting RD, Pu C. Generating adaptation policies for multi-tier applications in
consolidated server environments. Proceedings of the 5th IEEE International Conference on Autonomic Computing
(ICAC 2008), Chicago, IL, USA, 2008; 23–32.

§The OpenStack Cloud Computing Platform. http://www.openstack.org/

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

http://www.electronics-cooling.com/articles/2007/feb/a3/
http://www.thegreengrid.org
http://www.openstack.org/

24 A. BELOGLAZOV AND R. BUYYA

20. Jung G, Joshi KR, Hiltunen MA, Schlichting RD, Pu C. A cost-sensitive adaptation engine for server consolidation
of multitier applications. Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware
(Middleware 2009), Urbana Champaign, IL, USA, 2009; 1–20.

21. Zhu X, Young D, Watson BJ, Wang Z, Rolia J, Singhal S, McKee B, Hyser C, Gmach D, Gardner R, et al.. 1000
islands: Integrated capacity and workload management for the next generation data center. Proceedings of the 5th
International Conference on Autonomic Computing (ICAC 2008), Chicago, IL, USA, 2008; 172–181.

22. Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data
centers for cloud computing. Future Generation Computer Systems 2011; doi:10.1016/j.future.2011.04.017.

23. Kumar S, Talwar V, Kumar V, Ranganathan P, Schwan K. vManage: loosely coupled platform and virtualization
management in data centers. Proceedings of the 6th international conference on Autonomic computing (ICAC 2009),
Barcelona, Spain, 2009; 127–136.

24. Barford P, Crovella M. Generating representative web workloads for network and server performance evaluation.
ACM SIGMETRICS Performance Evaluation Review 1998; 26(1):151–160.

25. Feitelson DG. Workload modeling for performance evaluation. Lecture notes in computer science 2002; 2459:114–
141.

26. Li H. Workload dynamics on clusters and grids. The Journal of Supercomputing 2009; 47(1):1–20.
27. Berral JL, Goiri , Nou R, Juli F, Guitart J, Gavald R, Torres J. Towards energy-aware scheduling in data centers using

machine learning. Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking,
Passau, Germany, 2010; 215–224.

28. Borodin A, El-Yaniv R. Online computation and competitive analysis, vol. 53. Cambridge University Press, New
York, 1998.

29. David SB, Borodin A, Karp R, Tardos G, Widgerson A. On the power of randomization in online algorithms.
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 1990; 379–386.

30. Song B, Ernemann C, Yahyapour R. Parallel computer workload modeling with Markov chains. Proceedings of the
11th International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2005), Cambridge, MA,
USA, 2005; 47–62.

31. Minas L, Ellison B. Energy Efficiency for Information Technology: How to Reduce Power Consumption in Servers
and Data Centers. Intel Press, 2009.

32. Voorsluys W, Broberg J, Venugopal S, Buyya R. Cost of virtual machine live migration in clouds: A performance
evaluation. Proceedings of the 1st International Conference on Cloud Computing (CloudCom 2009), Springer,
Beijing, China, 2009.

33. Huber PJ, Ronchetti E, Corporation E. Robust statistics, vol. 1. Wiley Online Library, 1981.
34. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical

association 1979; 74(368):829–836.
35. Kendall MG, Ord JK. Time-series. Oxford University Press, Oxford, 1973.
36. Cleveland WS, Loader C. Smoothing by local regression: Principles and methods. Statistical theory and

computational aspects of smoothing 1996; 1049:10–49.
37. Cleveland WS. Visualizing data. Hobart Press, Summit, New Jersey, 1993.
38. Abdi H. Multiple correlation coefficient. Encyclopedia of Measurement and Statistics (edited by Neil J. Salkind),

Sage, Thousand Oaks, CA, USA, 2007; 648–651.
39. Yue M. A simple proof of the inequality FFD (L)< 11/9 OPT (L)+ 1,for all l for the FFD bin-packing algorithm.

Acta Mathematicae Applicatae Sinica (English Series) 1991; 7(4):321–331.
40. Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya R. CloudSim: a toolkit for modeling and simulation

of Cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and
Experience 2011; 41(1):23–50.

41. Park KS, Pai VS. CoMon: a mostly-scalable monitoring system for PlanetLab. ACM SIGOPS Operating Systems
Review 2006; 40(1):74.

42. Meisner D, Gold B, Wenisch T. PowerNap: eliminating server idle power. ACM SIGPLAN Notices 2009; 44(3):205–
216.

43. Beloglazov A, Buyya R. Adaptive threshold-based approach for energy-efficient consolidation of virtual machines
in cloud data centers. Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-
Science, Bangalore, India, 2010; 4.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe.1867

	1 Introduction
	2 Related Work
	3 The Single VM Migration Problem
	3.1 The Cost Function
	3.2 The Optimal Offline Algorithm
	3.3 The Optimal Online Deterministic Algorithm

	4 The Dynamic VM Consolidation Problem
	4.1 The Optimal Online Deterministic Algorithm
	4.2 Non-Deterministic Online Algorithms

	5 The System Model
	5.1 Multi-Core CPU Architectures
	5.2 Power Model
	5.3 Cost of VM Live Migration
	5.4 SLA Violation Metrics

	6 Adaptive Heuristics for Dynamic VM Consolidation
	6.1 Host Overloading Detection
	6.1.1 An Adaptive Utilization Threshold: Median Absolute Deviation.
	6.1.2 An Adaptive Utilization Threshold: Interquartile Range.
	6.1.3 Local Regression.
	6.1.4 Robust Local Regression.

	6.2 VM Selection
	6.2.1 The Minimum Migration Time Policy.
	6.2.2 The Random Choice Policy.
	6.2.3 The Maximum Correlation Policy

	6.3 VM Placement
	6.4 Host Underloading Detection

	7 Performance Evaluation
	7.1 Experiment Setup
	7.2 Performance Metrics
	7.3 Workload Data
	7.4 Simulation Results and Analysis

	8 Concluding Remarks and Future Directions

