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Abstract 

Network Intrusion Detection Systems (NIDS) and firewalls are the de facto solutions in the modern cloud to detect 
cyberattacks and minimize potential hazards for tenant networks. Most of the existing firewalls, perimeter security, 
and middlebox solutions are built on static rules/signatures or simple rule matching, making them inflexible, suscep-
tible to bugs, and difficult to introduce new services. This paper aims to improve network management in OpenStack 
Clouds by taking advantage of the combination of software-defined networking (SDN), Network Function Virtualiza-
tion (NFV), and machine learning/artificial intelligence (ML/AI) and for making networks more predictable, reliable, 
and secure. Artificial intelligence is being used to monitor the behavior of the virtual machines and applications 
running in the OpenStack SDN cloud so that when any issues or degradations are noticed, the decision can be quickly 
made on how to handle that issue, being able to analyze data in motion, starting at the edge. The OpenStackDP 
framework comprises lightweight monitoring, anomaly-detecting intelligent sensors embedded in the data plane, 
a threat analytics engine based on ML/AI algorithms running inside switch hardware/network co-processor, and 
defensive actions deployed as virtual network functions (VNFs). This network data plane-based architecture makes 
high-speed threat detection and rapid response possible and enables a much higher degree of security. We have built 
the framework with advanced streaming analytics technologies, algorithms, and machine learning to draw knowl-
edge from this data that is in motion before the malicious traffic goes to the tenant compute nodes or long-term 
data store. Cloud providers and users will benefit from improved Quality-of-Services (QoS) and faster recovery from 
cyber-attacks and compromised switches. The multi-phase collaborative anomaly detection scheme demonstrates 
an accuracy of 99.81%, average latencies of 0.27 ms, and response speed within 9 s. The simulations and analysis show 
that the OpenStackDP network analytics framework substantially secures and outperforms prior SDN-based Open-
Stack solutions for Cloud architectures.
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Introduction
The rapid and broad adoption of Cloud computing ser-
vices [1] makes this technology infrastructure a target 
for attacks. Also, in the last few years, dynamic and com-
plex traffic has become a problem for enterprise net-
works because of the growing number of cloud-based 
and app-based services traversing zero-trust public net-
works. The community-driven cloud computing eco-sys-
tems such as OpenStack, Eucalyptus, and Open Nebula 
offer various services, frameworks, and comprehensive 
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interfaces. However, most of these solutions lack secu-
rity and privacy guarantee for the tenants and the hosted 
applications and users. The recent research report [2] 
from Verizon concluded that 34% of attacks involved 
insider attacks that exploit cloud networking vulner-
abilities. Cloud infrastructure service providers employ 
security mechanisms such as Intrusion Prevention and 
Detection Systems (IPS/IDS), perimeter security, threat 
monitoring systems, and firewall gateways and run 
anti-malware software/agents on end-point machines 
or devices or tenant VMs. In the context of Cloud net-
working, the recent SDN/NFV [3] paradigms are emerg-
ing to redefine network architectures and provide new 
opportunities to defend against cyberattacks. Security 
and Privacy are essential when dealing with cloud ser-
vice providers and cyber security. Figure  1 shows how 
traditional cloud models have evolved into SDN models. 
SDN separates network intelligence from packet for-
warding/routing and offers high-performance program-
mable networking. The interactions between the control 
and data planes happen via OpenFlow [4] protocol. Tra-
ditional network traffic management focuses on device 
status and tracking the statistic counter values. It can 
only measure network throughput and capacity, not the 
full-service carrying scenario. Through end-to-end traffic 
behavioral modeling and AI functionality, network traf-
fic analysis may construct a tightly coupled association 
between network operational performance and security, 
providing comprehensive technical support for optimiz-
ing network capacity and early warning of any security 
threats. The network, user, and application proportions 
give a risk score that appropriately reflects the current 
network, user, and application operating conditions. The 
intrinsic relationship between the data is then merged 
to produce multi-dimensional correlations that help 
detect network problems and malfunctions. To deliver 

stream matching rules in the forwarding path of pack-
ets, this paper uses software-based network traffic ana-
lytics, monitoring, and security mechanisms, integration 
of Open Virtual Network (OVN) SDN technologies [5], 
and an in-line streaming AI Analyzer pipeline to con-
duct an in-depth analysis of the packets. By performing 
Intrusion Detection and Prevention (IDS/IPS) system 
functions as embedded logic (in-line) in the critical path 
of OpenStack networking - OvS switch/bridge (as com-
pared to VM server/out-of-path model), we shorten the 
time for dynamically deploying IDS in the network path-
ways. Using advanced SDN data plane switching (custom 
OvS bridge) the complete traffic monitoring and analysis 
are accomplished without any redundant traffic detours 
across the tenant network.

Modern virtualized data centers have recently started 
adopting SDN [6] and other virtualized network plat-
forms for complete network orchestration and pro-
tection services. The legacy approaches utilized the 
routers’ features and switches to mirror the traffic from 
one/more ports to a designed port on the same fabric, 
a technique [7] called Switched Port Analyzer (SPAN) 
filter. Rules and policies can be configured to copy all/
specific packets matching the criteria. The system con-
nected to the SPAN port on that switch will receive the 
packets, scan for any malware or attacks, and enable the 
response/mitigation action in that network. In a virtual-
ized cloud network, the SPAN function is implemented 
in the software switch Open vSwitch [8] that mirrors the 
selected packets. There are several variations between 
standard computer networks and SDN. The open-source 
community developed the OpenStack [9] cloud plat-
form, which is also deployed in production data cent-
ers. OpenStack consists of dozens of independent parts 
called the OpenStack services. Internally, each Open-
Stack service comprises several processes. All services 

Fig. 1 Traditional vs. SDN View
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have at least one API process listening, preprocessing, 
and passing API requests on to other parts of the service. 
The main process of the OpenStack Networking service 
is called neutron-server [10], a Python daemon exposing 
Neutron API and passing tenant requests to a suite of 
plug-ins for additional processing. Neutron allows ten-
ants to create advanced virtual network topologies that 
include services like firewalls, load balancers, virtual pri-
vate networks, etc. It is one of the most complex compo-
nents among OpenStack projects since it is built around 
the core networking concepts. Cinder is the OpenStack 
Block Storage service [11]. Cinder allows users to create 
and delete block devices and manage the attachment of 
block devices to VMs.

The major threats identified in the Open Stack envi-
ronment include the protection of the data during the 
transmission of the data through the network API in 
the Neutron networking and virtualization security dur-
ing the data replication in the Cinder Block Store. The 
leading cause for these security risks is the open-source 
nature and OpenStack widely adopting some security 
algorithms that include their limitations. Though many 
issues are being reported across the OpenStack plat-
form comprising some specified components such as 
Nova, Neutron, Cinder Block store, and Horizon, the 
security issues mainly tend to occur in the functioning 
of the Neutron networking component. The OpenStack 
plugin Tap-as-a-Service (TaaS) [12] supports mirroring 

for the multi-hypervisor cloud environment. The future 
cloud computing environment will be SDNFV-enabled 
[5], as indicated in Fig.  2. Cloud infrastructure vendors 
usually provide reactive solutions to customers’ unpre-
dictable traffic by launching pre-made VNF images. 
While reactive systems can help in some cases, they are 
not an optimal strategy. So, our research presents a pro-
active scalable programmable approach for elastically 
scaling the service chain, monitoring threats, and dynam-
ically deploying defense mechanisms in SDNFV-enabled 
OpenStack clouds. By separating access restrictions from 
cloud capabilities at the network protocol level, cloud 
service providers and tenant managers gain a global 
view of their security perimeters: the entire data center 
domain or individual tenants. The unified API and REST 
interface can also modify security settings, especially pol-
icy setups. We advanced from our prior CloudSDN [13] 
proposal and utilized the latest OpenStack Liberty [14] 
framework for benchmarking.

The main contributions of this paper are:

• A comprehensive vulnerability analysis of the Open-
Stack networking environment.

• Software-based network traffic analytics, monitoring, 
and security mechanisms in the switching/data plane 
layer. Native integration of Open Virtual Network 
(OVN) SDN technologies [5] in the OpenStack Cloud 
platform [15] which consists of monitoring, analytics, 

Fig. 2 The emerging SDNFV-enabled cloud
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and anomaly detection functions embedded in the 
switches.

• Threat Score: Applications, the system plane, the data 
plane, and the control plane all play a role in the com-
prehensive monitoring and scanning of networking 
devices.

• Multi-dimensional correlation analysis: A wide range 
of information, including network device statistic 
counters, operational data, transmission data, users, 
tenants, UDP, TCP/IP connections/sessions informa-
tion, application flows, and metadata of services and 
policy configuration.

• OpenStack Networking Architecture with rede-
signed Neutron system consisting of modules: virtu-
alized/software vMon (Monitor), vTAP (Test Access 
Port)/SPAN (Switched Port Analyzer) for monitoring 
endpoint hosts or VMs in the tenant networks and 
authentication functions in the management net-
work.

• A minimally invasive lightweight IDS and security 
orchestration framework OpenStackDP for Open-
Stack enables the implementation of various security 
and access control functions as loadable modules in 
the data plane.

Through experiments, this paper demonstrates the effi-
cacy of OpenStackDP by putting it through its phases for 
distinct types of attacks (covering about 90% of all known 
network attacks). In addition to these situations, Open-
StackDP protection capabilities extend far beyond what 
is covered here. These examples are provided to illustrate 
how the system performs under a variety of traffic sce-
narios. We compared the related works and provided a 
security perspective for SDN concepts for attack detec-
tion in the context of the OpenStack cloud ecosystem 
and well-tested mitigation techniques to tackle them. 
A comprehensive Security Analysis and Threat Model 
Mitigation and Validity of our solution are done with the 
STRIDE method [16]. The results and security analysis 
based on the popular threat model from the evaluation 
show that the SDN-based OpenStack system can improve 
the performance of Cloud infrastructures in terms of 
threat detection and mitigation compared to traditional 
Linux networking mechanisms. Our studies were con-
ducted in an actual cloud computing infrastructure uti-
lizing the OpenStack platform and an SDN environment 
using the OpenDayLight Controller. Still, they could eas-
ily be adapted to other controllers. We compared it with 
DragonFlow [17], a distributed SDN controller for Open-
Stack Neutron supporting distributed Switching, Rout-
ing, DHCP, and more.

The rest of this paper is organized as follows. Back-
ground section presents the background discussion of 

relevant technologies. Related work section gives an 
overview of the related work. Proposed SDN-enabled 
architecture and Design and implementation sections 
describe the proposed solution. Performance evaluation 
section provides the results of the experiments, result 
discussion and limitations of the solution, with a sketch 
of future work. Conclusions section concludes the paper.

Background
With the rapid adoption of SDN architectures, modern 
data centers have embraced softwarized networking for 
creating Software Defined Clouds (SD-Cloud). Open-
Stack is an open-source platform and an eco-system for 
cloud services and provides an efficient and rich set of 
APIs to build and manage cloud platforms [15]. Open-
Stack embraces a modular stateless architecture of 
services.

OpenStack architecture and SDN integration
Recently the Cloud service providers and enterprise data 
centers have migrated the services from hardware appli-
ances to softwarized NFV platforms with Virtualized 
Network Functions (VNFs). The SDN communities have 
been actively developing open-source controller soft-
ware platforms such as Open Network Operating System 
(ONOS) and OpenDayLight (ODL) that offer promising 
solutions to virtual resource management and network 
orchestration problems. A Central DB stores all the con-
figurations and key settings (such as users, credentials, 
and instances) and is accessible to authorized compo-
nent services. An OpenStack deployment environment is 
structured into network domains (ND), as seen in Fig. 3. 
The public ND includes the external, public, and API 
networks. The guest ND only has one network. NDs are 
utilized for servicing activities and internal management 
communication.

OpenStack requires SDN controllers to connect 
with Neutron using REST API (Representational State 
Transfer Interface). Current solutions are Floodlight, 
OpenDayLight, and Ryu. Each solution supports differ-
ent OpenFlow requirements and TLS implementations 
(Transport Layer Security). The OpenDayLight (ODL) 
platform [18] is the widespread implementation of SDN 
Controllers compliant with OpenFlow standards, devel-
oped and maintained by the community. The neutron is 
one of the core technologies of the OpenStack architec-
ture, which enables the interconnection of all the nodes 
on the internal network and routes through the gateway 
to an external internet connection. Networking-ODL [19] 
is an ODL plugin for OpenStack. The ODL controller 
uses Netvirt, configuring the Open vSwitch (OVS) net-
working settings. The IP/MAC routing, security classes, 
and other network abstractions are all elements of this 
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networking model. The ODL can be deployed in differ-
ent modes, customizing the components to enable SDN 
to interoperate with OpenStack architecture. Some spe-
cific use-cases are i) Intent-driven data model; ii) OVSDB 
model that leverages NFV, OvS and includes southbound 
OpenFlow interface; iii) Virtual Tenant Network: ODL 
VTN is developed for multi-domain tenant virtualized 
networks and installed as a plugin to controller applica-
tion. ODL supports RESTful API functions for Layer2 
networking. The main package (driver module) network-
ing-odl acts as a redirector/proxying/routing component 
interfacing between the SDN abstractions and Open-
Stack security/policy configurations. The networking-odl 
module includes functions to create new networks and 
establish security groups for tenants. DragonFlow [17] 
for the OpenStack platform doesn’t aim to become a 
full-featured SDN controller, as it just enables DVR and 
virtual networking connectivity simply and easily that 
integrate almost seamlessly on top of OpenStack Neu-
tron without any additional components or installations.

Security threats for an OpenStack cloud
OpenStack is, by nature, a large project with numer-
ous smaller projects. As OpenStack gains momentum, 
new features are integrated and delivered continuously, 

bringing new vulnerabilities. Recent Glibc, OpenSSL 
flaws, and log4j logging library vulnerabilities (most 
used Java apps) highlight how a single component can 
expose a whole system. The attack surface is exten-
sive with so many Open-Source new functionalities in 
OpenStack. Open-source components were found in 
99% of codebases in the 2020 Open-Source Security and 
Risk Analysis Report [20] from Synopsys. Open-Source 
Software (OSS) benefits from the community approach 
but creates an attack surface. Malicious developers can 
introduce back doors into an OSS system, which can be 
exploited in various ways, including reusing previously 
used vulnerabilities and simply making mistakes. Attacks 
against software that relies on a vulnerable piece of OSS 
are possible because developers reuse open-source soft-
ware (OSS). Patching open-source bugs become increas-
ingly challenging as the flaws might spread throughout 
an organization’s network. As OpenStack private clouds 
become increasingly popular in the development and 
operation (DevOps) among enterprises, so do the risk 
of incurring attacks. The most common vulnerabilities 
between 2011 and 2019 reported [21] were Distributed 
Denial of Service (DDoS) attacks and information-gath-
ering and injection flaws (SQL) vulnerabilities. These 
flaws affect cloud users and may lead to further harmful 

Fig. 3 OpenStack’s Network Infrastructure
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attacks. We must first identify potential security con-
cerns and attack routes to offer mitigation methods. 
With a particular emphasis on software-based network-
ing architecture, it is typical to classify security threats 
into the following categories by using the standard 
STRIDE threat model [16]:

▪ Spoofing – Pretending to be other than one’s real 
identity.
▪ Tampering – Modifying data without authoriza-
tion.
▪ Repudiation – misrepresenting responsibility.
▪ Information disclosure – Providing information to 
someone not authorized to see it. “
▪ Denial of service – Absorbing the service 
resources.
▪ Escalation of privileges – Allowing to do critical 
operations above the allowed level without authori-
zation.
▪ Cloud threats – Outsider attacks affecting service 
providers or tenants.
▪ Unauthorized VMs – Malicious VMs on end-
points, un-attested/not-licensed software run by 
rogue tenants.

OpenStack networking security
Physical switches interconnect virtualized servers in a 
cloud network, whereas an overlay (virtual) network con-
nects the VMs. OpenStack Networking allows users to 
manage their networks. Users can be authorized to uti-
lize specific project networking methods and objects by 
using a policy and configuration manager. This flexible 
management approach may impact network availability, 
security, and OpenStack infrastructure posture.

Neutron security
Utilizing cloud infrastructure services, neutron provides 
networking services and addresses for VMs (tenants). 
Neutron architecture is based on plugins, so it is essen-
tial to understand the required plugins and their usage 
for third-party solutions and disable any unnecessary 
plugins. Some potential solutions that can be used to 
resolve the risks:

• Isolated management network for OpenStack ser-
vices.

• L2 isolation with VLAN segmentation: VLAN seg-
mentation reduces packet-sniffing capabilities and 
decreases insider threats. Protocol-level segmenta-
tion separates protocols into specific LAN domains/
segments. VLAN-enabled L2 bridge learns the asso-
ciation between MAC and vNIC (in compute nodes) 

and implements a virtual switching interface for the 
tenant network.

• L2 protection with Generic Routing Encapsulation 
(GRE): GRE tunnel connects two endpoints (a fire-
wall and another appliance) in a point-to-point, logi-
cal link. The packets travel through the GRE tunnel 
(over a transit network such as the internet) through 
the cloud service which can enforce policies on the 
packets. However, GRE tunneling does not support 
NAT and has no QoS functionalities.

• Using the Security group in Neutron and disabling 
security groups in Nova (all calls are forwarded to 
Neutron).

• Securing at the Neutron API endpoints with SSL/
TLS.

• Bridging an L2 firewall with iptables and ebtables: 
iptables (manipulate the Netfilter Linux modules at 
IP level) along with ebtables (Filter at Ethernet Frame 
level) rules to prevent MAC spoofing and ARP spoof-
ing attacks.

• Using rate-limiting network quotas to mitigate DoS 
attacks.

Security group
The security group capability is very versatile, and it for-
wards security group calls to the OpenStack Network-
ing API (If not, both services apply competing security 
policies). A security group’s regulations are included 
within the group definition. Administrators and projects 
can specify the type of traffic (in/out) that can travel via 
a virtual interface port using security groups and rules. 
OpenStack Networking assigns a virtual interface port to 
a security group. Refer to the Networking Security Group 
Behavior documentation [22] for further information 
on port security groups. Security groups encapsulate all 
components that govern the inbound and outbound traf-
fic to tenants. Using the OpenStack group, the compute 
instance’s firewall rules are enhanced. A single security 
group is needed to control traffic to multiple compute 
instances. Various methods can be used to create net-
work security rules and access control policies.

Virtual switch security
Virtual switches enable flexible and “software-defined” 
interconnection of virtual machines in SDN-based cloud 
systems. Virtual switches (on servers) provide communi-
cation and isolation between virtual machines. A virtual 
switch is not only more vulnerable to attacks than a tra-
ditional switch, but it also has a more significant impact. 
For OpenStack, Xen, Pica8, and other software systems, 
Open vSwitch is the default virtual switch. The OVSDB 
protocol allows the switch controller to handle the OVS 
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database. Figure  4 depicts the security implications of 
current virtual switch designs. We did a qualitative study 
of attacker models for virtual switches. We posit that cur-
rent implementations of virtual switches in Cloud infra-
structures are vulnerable. Virtual switches are widely 
used in data centers and receive unfiltered network pack-
ets from virtual machines.

• Virtual switches run software processes such as 
“controller” on virtualized servers with higher (root) 
access. These features make data plane attacks risky. 
In addition to existing security assumptions (OvS 
runs as root), virtualization (co-location with other 
critical cloud services), logically centralized control 
plane (bi-directional channel to the controller), and 
non-standard routing protocols (e.g., MPLS), the 
attack can be destructive.

• A software flaw in a virtual switch’s packet process-
ing logic can jeopardize both the virtual switch and 
the operating systems. In the virtualization layer, an 
attacker can use co-location, centralized control, and 
complex data processing to launch an assault, scan 
the network and exfiltrate sensitive data (e.g., crypto-
graphic key, password credentials).

• Attackers can exploit the controller’s global rout-
ing/flow tables to modify the flow rules, potentially 
breaking network policies, divert traffic, pivot, or 
gain lateral entry to other internal systems in the 
management network, such as the identity service 
(Keystone) or the VM image files (to install back-
door/hooks).

New opportunities in SDN‑managed clouds
Research on virtual switches and their software imple-
mentations is carried out extensively, and the popular 
technologies that came out are Open vSwitch, IP for-
warding, iptables, Linux Bridge and OVS-DPDK. The 

Cloud-based architectures pose some limitations to the 
network performance due to the suboptimal design of 
the OpenStack infrastructure. In enterprise cloud infra-
structures, the software-agent-based neutron compo-
nent will become the choking point and not scale to 
ever-increasing isolation requirements between the ten-
ants of the clouds. The OpenStack Neutron system faces 
severe limitations in networking and routing functions. 
The Linux bridge is outdated and is one of the critical 
architectural flaws in the OpenStack-based Cloud plat-
form. This is where the SDN model can bring in the 
necessarily centralized orchestration and routing policy 
decisions. The corresponding routing functions (L2/3) 
can be distributed across the data plane switches. The 
southbound OpenFlow protocol can manage the tenant 
network’s routing policies, flow tables, and policies con-
figured through the OpenStack RESTful API. We stud-
ied the interplay and integration of the SDN-based Open 
vSwitch bridge in the place of a Linux bridge. We man-
aged the enforcement of security group and access-con-
trol policies through OpenFlow flow rules. This practice 
improves the efficiency of the interconnect/commu-
nication due to programmability and scales well as the 
switching control configured into the OvS switches of 
compute nodes [8]. The stateful firewalling function can 
be accomplished by leveraging the OvS OpenFlow pipe-
line with group tables on the br-int bridge. Integrating 
diverse components in OpenStack with virtual switches 
could lead to bottlenecks and reduce scalability and over-
all performance [23]. The research article [24] defined an 
improved and scalable software firewall design for Open-
Stack using the SDN/NFV. Most of the studies that sug-
gested providing end-to-end security and limiting threats 
used a controller-based approach; consequently, any 
threats that arise in the network can only be predicted 
with the controller’s participation. This leads to overhead 
due to additional complexity in flow processing, control 
plane saturation, and flow table vulnerabilities. Although 

Fig. 4 Overview of Security Implications
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using SDN is a feasible way to incorporate a switch-cen-
tric structure, it is a great challenge to adapt SDN com-
ponents to data center networks (DCNs). Securing cloud 
infrastructures comprises five key aspects- Security 
Standards, Network, Access Control, Cloud infrastruc-
ture, and Data. Moving from a legacy network to an SDN 
paradigm for Cloud infrastructures has unintended con-
sequences, such as sub-optimal flow-rule management 
and multi-tenant provisioning in clouds. To this end, we 
propose natively integrating the SDN and OpenStack 
platform with a scalable data plane and centralized secu-
rity orchestration on the controller.

Related work
This section reviews critical studies in the relevant 
research proposals of software-defined OpenStack archi-
tecture for cloud infrastructure. The goal is to draw 
inspiration from these efforts and identify those gaps 
that motivated this research work. OpenStack security 
research [25] states that the bridges between the domains 
and tenant networks are vulnerable. They identify vul-
nerabilities in cloud providers’ web-based interfaces and 
conclude in their research that the OpenStack manage-
ment platform in default configuration is more vulner-
able to internal attacks than external threats. Software 
countermeasures and SDN-based network security [26] 
may be used to prevent specific attacks against virtual 
switches in the OpenStack infrastructure. The hypervisor 
can be detached from VMs and establish a direct link to 
the I/O pipeline (e.g., network interface hardware adapt-
ers). One existing approach is remote attestation for OvS 
flow tables, as prototyped by Jacquin et  al. [27]. With 
their prototype, the authors perform remote attestation 
of an OvS flow table in 953 ms. While we did not imple-
ment remote attestation, we argue that their work, in 
principle, demonstrates the feasibility of this technique, 
also beyond the remote attestation of flow tables. How-
ever, we need a way to reduce the overhead, e.g., by using 
a redundant set of OVS switches, since a one-second net-
work outage is not practically feasible. Isolation of VMs 
can be done by leveraging an Open-Flow centric IDS 
architecture for isolating misbehaving nodes (VMs) in 
the cloud. Hence in the context of SDN, we can leverage a 
presumed security weakness (centralized operation) into 
an opportunity to defend infrastructure from misbehav-
ing nodes. Depending on the threat model, multiple IDS/
firewalls may be chained together, or virtual appliances 
may be used for such firewalling.

For network monitoring, most studies proposed using 
hardware TAP/SPAN port mirroring in switches. But 
this method requires a set of flow rules to switch Open-
Flow tables to sample/capture the flows matching the 
criteria, thus increasing the usage of critical resources 

in commodity switches. NetAlytics [28] minimized 
the burden of real-time surveillance in data centers by 
positioning the software instantiations of controller 
and aggregator in the end-point services, which deliver 
optimal performance due to load-balancing and band-
width management. The Packet-I/O transfer across the 
networking stack from physical NIC is accelerated by 
exploiting DPDK technology. The authors of vTAP [29] 
used the DPDK for implementing the high-speed Data-
path in the Open vSwitch (OvS bridge) in OpenStack. 
The policies are installed in the virtual switches as flow 
rules through a controller application. They demon-
strated monitoring applications and use cases for SDN-
managed OpenStack infrastructure. The authors of [30] 
implemented an NFV platform to solve service chaining 
(SFC) by integrating an SDN controller with OpenStack 
cloud infrastructure. Since this is not a native solution, it 
required custom modules to be installed (intrusive and 
not generic) across many components in the environ-
ment. The ONOS team developed SONA [31], which 
implements Neutron to integrate/bridge between Open-
Stack infrastructure with OpenDayLight natively. The 
project includes (i) “Networking-ONOS,” a modular sys-
tem with Neutron APIs, and the cluster itself transpar-
ently manages the networking. (ii) “Networking-ODL” is a 
package with a driver and plugin for OpenDayLight. They 
experimented with SDN in their paper [32] Cloud-based 
IDS solution and contributed new OpenFlow features 
such as flow-match/send-to-action and flow-match/send-
to-to-controller. OpenStack/SDN integration with Flood-
light and RYU controller was conducted by Forester et al. 
[33], and they utilized Control-plane software to protect 
the data. At the same time, the administration plane 
receives an API to enforce the threat detection policies 
on the firewall. They only present a conceptual design 
without data and analysis findings.

Extensive research and solution for DDoS attacks, 
Intrusion detection, and defense for securing Open-
Stack Clouds are presented in [34, 35]. The OpenStack-
Emu [36] created a platform combining OpenDayLight 
SDN Controller and a large-scale network emulator 
called Common Open Research Emulator (CORE). The 
OpenStack nodes are interconnected through a TAP 
interface and the programmable Open vSwitch (OvS) 
software data plane. This paper [37] presents a simu-
lation environment and tool called CloudSimSDN to 
experiment with SDN-based cloud use cases. In this 
research [38], OpenStack neutron components (OF-
Agent, ML2, and Ryu) in SDN OpenDayLight Con-
troller were tested for the ability to maintain network 
health and failure recovery features in the face of net-
work disruptions. Another research [39] proposed an 
SDN-based firewall solution for Cloud security. Most 
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research focused on public domain security, which 
shows potential customers the benefits of cloud com-
puting. By exploiting the vulnerabilities in the SDN 
layers (Thimmaraju [21]), the attackers can penetrate 
the networking components and compromise Open-
Stack’s cloud infrastructure. A Cloud Provider-side 
vulnerability may also compromise the entire infra-
structure, and this exposure prompted a deeper look 
into infrastructure security flaws, focusing on the pro-
vider’s procedures. Meridian [23] focuses on cloud data 
center services utilizing SDN technologies and provides 
inter-subnet tenant isolation. The OpenStack Security 
Modules (OSM) [40] project addressed the access-
control function and has built a new service called 
Patron and an attachment module called Access End-
point Middleware (AEM). This framework can replace 
existing OpenStack and other platform permission 
checks. Patron, like the previous efforts, tries to offer 
cloud access controls. Jin et  al. [41] proposed formal 
ABAC and RBAC standard mechanisms and defined 
core concepts such as domains, projects, and roles for 
cross-domain authentication as an Infrastructure-as-
a-Service (IaaSad) model for OpenStack. IaaSad pro-
vides fine-grained tenant access management. But this 
work only supports isolated tenants, not cross-tenant 
access control. Moreover, their model is coupled with 
ABAC, limiting cloud users’ ability to create policies 
based on unique models. The current complex Open-
Stack platform must modularize its code by delivering 
access control, authentication, and firewall as services 
[42], exactly like other core cloud functionalities. 
Table  1 lists the prior studies that attempted to solve 
network security in OpenStack architecture. Unlike 

the previous studies, our work focuses on the dynamic 
setting and programmability of tenants’ network poli-
cies, access control, and security management in cloud 
environments.

Our research attempted the native integration of 
SDN architecture within the OpenStack ecosystem. We 
focused on improving security while sustaining the per-
formance of cloud computation in the network. Open-
StackDP consolidated the network analytics, monitoring, 
and security functionalities to reduce invasiveness into 
one “huge hook” at the Networking gateway switch/data 
plane.

Proposed SDN‑enabled architecture
Based on our previous works VARMAN [47] and Open-
PATH [48], the data plane (OpenStackDP) is designed for 
the cloud. The overall architecture of the OpenStackDP 
framework (see Fig.  6) consists of the following major 
components: (i) Monitoring mechanism vMon operating 
close to the line rate; (ii) Light-weight Anomaly Detec-
tion mechanism vIDS; (iii) Heavy-weight attack classifi-
cation and Malware analysis system NIDS (Monitor); (iv) 
Applications for Incident response and policy control 
(DTARS App). (v) Traffic monitoring and route manipu-
lation modules (deployed as Virtual network functions 
VNF) within the data plane OvS switches [39].

Threat model
Threat modeling is a technique for optimizing security 
parameters by defining objectives, metrics, attacks, and 
countermeasures to prevent or reduce the consequences 
of system threats. Numerous approaches exist for ana-
lyzing the security of a system, including STRIDE [16] 

Table 1 Studies on OpenStack network security

Study Addressed Security Domain Focused upon

Public Guest Management Data Control Plane Data Plan Client Provider

Meridan et al. [23] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Jiang et al. [32] ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
Foresta et al. [33] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
Xu et al. [34] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓
Abdulqadder et al. [43] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Jin et al. [41] ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗
Luo et al. [40] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
Thimmaraju et al. [21] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Li et al. [39] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Benjamin et al. [44] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
Dinh et al. [45] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
X. Du et al. [46] ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗
OpenStackDP [This Work] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
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and PASTA [49]. Modeling techniques are used to gen-
erate an abstract representation of the system and, iden-
tify the goals and methods of the potential attackers, 
enumerate a list of possible dangers that could occur. 
There has been a slew of approaches to threat mod-
eling created. Combined, they provide a complete pic-
ture of prospective risks. Some strategies focus on risk 
or privacy concerns, while others are broad-based. The 
STRIDE approach categorizes possible risks posed to a 
system even in the absence of the actual plan for test-
ing. STRIDE is an acronym that represents six distinct 
threat categories: “Spoofing, Tampering, Repudiation, 
Information Disclosure, Denial of Service, and Privilege 
Elevation.” STRIDE is currently the most mature threat-
modeling method, and it applies a broad set of known 
threats based on its name, which is a mnemonic. The 
mapping of security properties to the STRIDE threat 
matrix [50] is illustrated in Table 2.

We assume that the cloud infrastructure manage-
ment system has implementation flaws and vulnerabili-
ties, which malicious entities can potentially exploit. We 
trust cloud providers and administrators but think some 
cloud users and operators may be malicious. We believe 
that not all tenants trust each other. Although our audit-
ing framework may catch violations of specified security 
properties due to either misconfiguration or exploits of 
vulnerabilities, our focus is on detecting specific intru-
sions attacks. SDN switches, as well as the trade-off 
between data and control planes, are questioned in this 
paper. Given the prevalence of virtual switches like OvS 
in cloud operating systems and that most cloud operating 
systems like OpenStack are used by IT, telecommunica-
tions, education and research, and financial institutions, 
our threat model is alarming. It is possible to exploit the 
vulnerabilities found in the OpenStack cloud operat-
ing system to harm critical services, such as Managed-
compute resources (Hypervisors and Guest VMs), image 
management, block storage, network management, and 
identity management (of Hypervisor and Guest VMs). 
These services are all part of OpenStack, a cloud oper-
ating system. Because of the significance and critical 
location of virtual switches in SDN-based clouds and in 

general, we present an accurate and appropriate threat 
model for virtual switches in this study.

Contrary to prior work, we identify the virtual switch as 
a critical core component that must be protected against 
direct attacks, e.g., malformed packets. The attacker is 
looking for a cloud architecture that leverages virtual 
switches for network virtualization. To restrict the scope 
of this model, we’re going to pretend our attacker has 
limited access to the public internet. The attacker can-
not gain physical access to any of the cloud machines. An 
attacker can get into a cloud environment in two ways: 
by renting a single virtual machine or exploiting an exist-
ing cloud-based vulnerability, such as a web application 
vulnerability. We take it for granted that the cloud service 
provider adheres to industry standards for data security 
[22]. As a result, at least three separate networks (physi-
cal and virtual) for the management, tenants/guests, and 
outside traffic are to consider. In addition, we take it for 
granted that all cloud servers are running the same set of 
applications. We already discussed Fig. 5 in Background 
section, which illustrates the security risks associated 
with state-of-the-art virtual switch designs. We did a 
qualitative study of studies related to attacker models for 
virtual cloud switches.

Monitoring and anomaly detection components
Using multi-dimensional correlations formed by inte-
grating the data’s inherent relationships, network prob-
lems and malfunctions can be detected and addressed 
quickly. With the switch’s active tap mechanism (In-Band 
telemetry), information is sent to the collector module in 
real-time and at high speed, making it possible to moni-
tor tenant network performance and cloud activities in 
real-time. Anomaly detection and dynamic prediction of 
network measurements can be supported by time-series 
data decomposition and machine learning [51–53]. Ana-
lyzing data for anomalies in the past is the primary goal 
of anomaly analysis, while dynamic forecasting is used to 
predict future data trends. The historical data gathered 
by devices is used to develop and train a dynamic predic-
tion AI model for anomaly detection in the traffic analysis 
using a dynamic baseline technique. Automatic learning 

Table 2 Security property mapped into STRIDE model

X denotes threat category for a particular component

Security property Threat category Interactors Processes Data store Data flows

Authentication Spoofing X X

Integrity Tampering X X X

Non-repudiation Repudiation X X

Confidentiality Information disclosure X X X

Availability Denial of Service X X X

Authorization Elevation of privilege X
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and recurrent self-correction based on past data over 
a given length of time might enhance the baseline. The 
dynamic baseline-based anomaly detection algorithm 
can better reflect the current state of the network’s oper-
ational conditions than other methods. Figure  5 shows 
the overall sequence of operations in the vMon applica-
tion. The central management policies can be interpreted 
at a higher level, while network packets are handled on 
a fine-grained level using the controller’s global view. 
These functionalities run as modules in the data plane 
and are used to track network behavior. Until we per-
form flow-based detection, the vMon module must col-
lect flow-related statistics from the OvS switches. This 
data collector collects flow data and exports it directly 
to the next level. Many data collection techniques can be 
employed.

Switch monitor
This module monitors the switch counters, manages the 
switch hardware ports and configurations, static thresh-
olds, alarms, and meters the traffic at the packet level.

Flow monitor
This module classifies short-lived/long-lived malign/
benign flows and automatically detects pre-cursors 
to impending attacks. The flow rules can dynamically 

update the sampling rate, packet headers, and action 
handler at the switch flow table.

Match‑action
This unit extracts network metadata from the transport 
layer and application headers of incoming packets and 
takes actions based on the extended Match field com-
posed of network events besides the original OpenFlow 
Match field.

We keep the anomaly detection and tracking processes 
decoupled. Therefore, any flow statistics collection sys-
tem can be employed if it can access the upstream unit. 
We used OpenFlow samples exported from the OvS 
switches coarse-grained tracking (first level of anomaly 
detection). It can identify abnormalities in the traffic data 
and act on them. It will trigger the fine-grained attack 
classification algorithm (second-level IDS) to identify the 
attack. The architecture is highly flexible and scalable, 
allowing administrators to pick algorithms depending on 
the network dynamics and complex needs.

Feature selection
A NIDS’s main objective is to choose/extract robust 
network statistics that can distinguish aberrant behav-
ior from typical network activities. Most existing intru-
sion detection systems use network flow data (e.g., 

Fig. 5 Flow Chart of the vMon Application
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“Netflow, sflow, ipfix”). These five basic metrics meas-
ure the network’s behavior:

▪ Flow Count: A flow/session consists of packets 
going from a specific source to a particular destina-
tion. (“source IP/port, destination IP/port, protocol”)
▪ Packet Count: The total packets in a flow.
▪ Byte Count: Bytes per second in a flow over a given 
amount of time.
▪ Packet Size: A packet’s average number of bytes is 
over a period.
▪ Flow Behavior: The “Flow Count/Packet Size” Ratio. 
Anomaly is quantified using this metric. Since most 
probing or surveillance attacks initiate multiple con-
nections with little packets, the higher the ratio value, 
the more anomalous the flows will be.

Based on the above five metrics, we define a set of fea-
tures to describe network traffic behavior. Let F denote 
the feature space of network flows; a 15- dimensional 
feature vector f∈F can be represented as {f1, f2, …
f15}, where the meaning of each feature is explained in 
Table 3. A novel experimental hybrid intrusion detection 
system is presented that combines the highly accurate 
“signature-based” and “anomaly-based” IDS (that detects 
unknown attacks based on some specific criteria.

Access control and enforcement services
vACE (Access Control and Enforcement) is a request 
manager that sits between clients and cloud services in 

the SDN data plane. The framework provides access 
control services to enforce policies on other compo-
nents, such as compute, image, and network. vACE is an 
attachment module that filters and mediates requests on 
the target service’s behalf. Based on the policy, the SDN 
controller chooses whether to authorize this access. SDN 
Controller’s primary functions are access control, veri-
fication, policy storage, and update for the entire cloud. 
It manages the REST interfaces. It is divided into three 
sections:

• API: acts as the vACE service’s REST interface.
• Verify: reviews the policy’s access rules and returns 

an access ruling in response to the vACE inquiry.
• Update: maintains the storage of all access control 

policies, manages policy updates, and cache timings.

In response to a user request, vACE issues an 
authorization request to the SDN Controller. All the 
main OpenStack functions are defined as API calls 
that may be called via a web server gateway interface 
(WSGI). It is envisaged that vACE will be able to inter-
cept this interface and filter all incoming requests. All 
connections to the cloud are mediated and limited as 
a result. There are protected/privileged cloud func-
tions that are not accessible via REST calls but require 
access restriction.

DTARS applications
Policy management
The ODL-based application plays a central role in Open-
StackDP security. It functions as the Central Policy Man-
ager (CPM) and flow rule auto-configuration for OVS 
(data plane). A TAP policy management interface is 
supported (addition, removal, and modification) and is 
described in terms of OpenFlow rules and version 1.1, 
which extends it to 44 fields. This application translates 
the high-level policy into rules installed into OpenFlow 
switches. For example, TAP policy #1 in Table 4 enables 
its Monitor to only receive the duplication of the HTTP 
traffic from 10.1.1.5 to 10.1.1.6 by specifying the IPv4 
protocol value as 6 (TCP) and the (TCP) destination port 
number as 80. Because a TAP policy is applied to the data 
plane in the form of OpenFlow flow rules, we can dynam-
ically extend the Filtering fields depending on the target 
network used to offer more granularity on TAP policy 
specification. The network administrators use a global 
network view offered by the central SDN controller for 
creating a policy definition (text/JSON/XML/YANG) 
manifesto and run-time management. The DTARS appli-
cation converts these high-level policy definitions into 
specific OpenFlow flow rules to be installed into related 

Table 3 Feature set collected at DP switches

Features Description

f1 Number of TCP Flows per Minute

f2 Number of UDP Flows per Minute

f3 Number of ICMP Flows per Minute

f4 Average Number of TCP Packets per Flow over 1 Minute

f5 Average Number of UDP Packets per Flow over 1 Minute

f6 Average Number of ICMP Packets per Flow over 1 Minute

f7 Average Number of Bytes per TCP Flow over 1 Minute

f8 Average Number of Bytes per UDP Flow over 1 Minute

f9 Average Number of Bytes per ICMP Flow over 1 Minute

f10 Average Number of Bytes per TCP Packet over 1 Minute

f11 Average Number of Bytes per UDP Packet over 1 Minute

f12 Average Number of Bytes per ICMP Packet over 1 Minute

f13 Ratio of Number of flows to Bytes per Packet (TCP) over 
1 Minute

f14 Ratio of Number of flows to Bytes per Packet (UDP) over 
1 Minute

f15 Ratio of Number of flows to Bytes per Packet (ICMP) over 
1 Minute
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switches. We have two flow rules in the data plane: 
rewriting and recovery. The rewriting is built into the 
Sender VM’s OVS bridge (sender edge OVS). This kind 
of flow rule has one flow entry and two matching classes. 
If there is a match in the target-action edge of the sender 
with the corresponding OVSDN, access is delegated to 
that policy. The table method can alter the MAC and IP 
address (e.g., VLAN tagging). This single flow needs to 
only adhere to a TAP rule. When the MAC or IP address 
rewrite is complete, the last rule is applied to restore the 
contents. The recovery rule is related to the VM table in 
the OVS bridge.

Attack mitigation
Malicious flows can be identified by packet inspection. 
The second function calculates malicious flows based 
on the source IP address, while the third creates and 
returns legit packets. We group more malicious flows 
into more extensive flow entries to improve scalability. 
The level of the attack and OvS device restrictions (flow 
capability requirement) must be met by the opera-
tor (e.g., the attack may be of a low rate, or a flooding 
attack, or the operator might want to block all mali-
cious sources or might leave some unblocked).

Design and implementation
The OpenStackDP framework (Fig.  6) comprises the 
following essential layers.

• Infrastructure (OpenStack Nova): This layer consists 
of virtual/physical machines, switches, and devices.

• Switches: OpenFlow/hybrid switches on the Edge. 
Flows with suspicious packets are flagged for addi-
tional investigation.

• Control Plane: SDN Controller (“OpenDayLight”) 
program and user applications are customized with 
extension monitoring, flow classification, and attack 
detection logic. It invokes the defense action to send 
commands (encapsulating the -matching- action) to 
the switch(es) upstream path traveled by the mali-
cious traffic.

• Security Controller: This enforces security policies on 
the tenant network and external access through the 
OvS switch agents.

• Cloud Admin: Cloud computing platform and man-
agement applications (e.g., OpenStack) are extended 
with improved Neutron for collaborating with SDN.

• SDN Modules: This includes networking-sfc, network-
ing-odl, and NetVirt. The main functions are auto-

Fig. 6 SDN-enabled OpenStack Architecture (OpenStackDP)
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scaling and VNF placement. It manages traffic steer-
ing in the tenant network and north-south traffic to 
public internet access.

Once OpenStackDP starts running, attack sensors on 
the OvS switch monitor the packet stream/flows that 
pass through them. The coarse-grained anomaly detec-
tion detects malicious or abnormal flows (e.g., DoS 
attacks). As the data plane is where packets are for-
warded and spend most of the transit time, leveraging the 
resources on switches for packet inspection and making 
local routing decisions is the logical/optimal case. Ena-
bling dynamic defense mechanisms and programmable 
security perimeter in the data plane and tenant network 
is the critical strategy in our proposal.

Stateful SDN firewall
OpenStackDP framework utilizes the stateful SDN 
architecture implemented in [54]. We offer an 

intelligent SDN data plane-based firewall (see Fig.  7) 
that analyses the contents of a packet to identify mali-
cious traffic. Using OpenStackDP, harmful traffic 
may be quickly discarded to protect the perimeter of 
company networks with an intelligent SDN firewall. 
The payload of a packet can be extracted using Open 
vSwitch (OvS) before it is matched against flow tables. 
All payloads will be sent to the SDN controller to 
make future judgments. The SDN controller has access 
to a machine learning firewall service to help assess 
whether a payload is benign or malicious. DPMonitor, 
Firewall agent, and payload extraction are the three 
main components.

Payload extraction
The payload of the packets received by the SDN data-
path is extracted to perform a more thorough analy-
sis of the data. A datapath module in the OvS stack 
receives all packets from external networks before 

Fig. 7 Intelligent SDN-based Firewall in Network Node
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extracting key values (such as MAC-layer and net-
work-layer messages) and matching them with flow 
tables cached in the kernel.

DPMonitor (vMon)
The DPMonitor engine in the datapath monitors pay-
loads from the switch stack. It invokes other applica-
tion agents such as vMon and vIDS.

Firewall agent application (vIDS)
As described in the algorithm (Fig. 8), the stateful firewall 
filter application is integrated into the SDN OVS data 
plane for packet integrity analysis. The packet is dropped 
or forwarded after the inspection is complete. Next, the 

IP addresses/ports and session states are tracked and fil-
tered. The application has primarily been instantiated for 
TCP communications monitoring — states, changes, and 
behavior.

OpenStack neutron SDN layers
Figure  9 illustrates the connectivity between SDN and 
OpenStack networking components. SDN services are 
specified in Python classes and called by the Neutron 
layer. The main package (driver module) networking-odl 
acts as a redirector/proxying/routing component inter-
facing between the SDN abstractions and OpenStack 
security/policy configurations. This module includes 
functions to create new networks and establish security 
groups for tenants.

Fig. 8 Stateful Firewall in SDN-OpenStack Integration
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NetVirt
Module manages the switching/routing functions.

networking‑odl
Module handles IP subnetting across tenant networks, 
routing VLANs (Layer2) and VXLAN (Layer3 overlay) to 
interconnect multiple OpenStack domains.

Neutron plugin
This module handles the network functions. It establishes 
connections for processes in compute nodes through 
br-int (tenant network) and external internet through 
the br-ex. OpenFlow rules and the match-action set are 
stored in the ODL controller. The security, access control, 
and policies are translated into OpenFlow rules.

Neutron agent
This program runs on all the compute nodes and inter-
connects through the OVS bridge. It is a standalone pro-
cess with the “ML2 core backend” on OVS switches.

Neutron API
A simple “CRUD (create-read-update-delete) flow-rule” 
approach was changed to support ODL calls, and the 
REST interface was updated for policy administrators.

Anomaly and intrusion detection system
In general, signature-based and anomaly-based approaches 
are the most common methods for detecting intrusions in 
a network system. It’s possible to identify assaults based 
on the patterns or signatures that have already been 
stored for known incursions. Even though deviations 
from previously stored profiles of typical activity can 
detect intrusions, an anomaly-based method can also 
detect unknown intrusions (or suspicious patterns). To 
do this, the NIDS scans all incoming packets for unusual 
data patterns. One of the biggest challenges in statisti-
cal anomaly-based attack detection is determining if an 
outlier is a reality (in our case, an anomaly or malicious 
activity or attack) or something benign (temporary and 
natural activity or network spike or jitter). Network traf-
fic is gathered by the gateway firewall and preprocessed 
to form a dataset. A clustering algorithm is used to build 
service-based patterns across the dataset. We employ a 
multistage clustering-based outlier detection technique 
to distinguish between assaults and network anomalies 
(spikes/jitter). Static thresholds may not be able to tell the 
difference between malicious and regular traffic. Figure 10 
illustrates that the attack spikes (red) cannot be separated 
from the harmless ones (blue) using simple thresholds. 
So, to distinguish between malicious and benign traffic, 
we use a dynamic model to develop profiles for various 
traffic circumstances. An unsupervised learning strategy 

Fig. 9 Interconnection between SDN and OpenStack
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that divides a data set into multiple clusters is called 
clustering. In hierarchical clustering, each data point is 
assigned to a distinct set of groups based on Euclidean 
distances. There are two options for plotting dendro-
grams when the iterative merging procedure is complete: 
either the z-axis (which we use) or one of the characteris-
tics (which we use), namely x1, x2, x3, x4. Figure 10b illus-
trates the hierarchical link between the clusters using a 
tree structure (no. of clusters on the x-axis, distances on 
the y-axis). An ideal horizontal axis is determined after 
the hierarchical clustering has been completed.

We offer a hybrid system to combine signature-based 
IDS with the anomaly detection mechanism and the 
EM-based clustering scheme [55]. As shown in Fig.  11, 
the architecture of the system has these major func-
tional blocks: Lightweight IDS (based on packet stats), 
Heavy-weight IDS (Feature analysis), and Anomaly IDS 

(Clustering analysis). The first learning phase consists 
of building a feature set of false positives, which gets 
updated after a specific time frame, and the threshold 
of the actual alert is calculated. When categorical attrib-
utes are involved, pre-processing the data set is critical 
to identifying their relevant features. In the next stage 
of online filtering, the outlier score of each new alert 
is compared with the threshold value to find when it is 
a false positive. There must be a proper threshold value 
to distinguish between various data points in continu-
ous attributes. The closeness, data type, dimensional-
ity, and threshold measure are critical in distance-based 
outlier techniques. It should be highlighted that model 
reconstruction is unnecessary when using distance-based 
techniques when modifying the threshold (i.e., changing 
the outlier factor criterion). A combination of distance, 
density, and soft computing can provide resilience and 

Fig. 10 a Traffic Profile b Dendrogram Plot

Fig. 11 General Architecture of Anomaly IDS
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scalability for outlier detection according to numerous 
circumstances.

To identify outliers, a user-defined cutoff value is pro-
duced and compared to each data point. Outliers Oij 
(including minor outliers) are recognized in terms of the 
threshold τ and the average of the (95th, 96th, and 99th) 
percentiles, which are ordered by their scores. As a result, 
the adaptive or conditional threshold value can improve 
performance in outlier detection approaches based on 
distance. Only the data/packets associated with the sus-
picious flows are sent to the control plane ML applica-
tion for further study. We can detect abnormal flows. We 
believe that a more significant number of features will 
yield a more accurate description of the network’s traffic 
patterns during feature analysis, in which we design and 
generate 15 different characteristics. Using a set of scor-
ing coefficients, the IDS and EM clustering-based detec-
tors combine these new features. The inference model’s 
fuzzy attacking probability provides the ultimate intru-
sion decision. We have compared our proposed method 
with other clustering algorithms like X-Means, Farthest 
First, filtered clusters, DBSCAN, K-Means, and EM 
(Expectation-Maximization) clustering to find the suit-
ability of our proposed algorithm. We are using EM to fit 
the data better so that clusters are compact and far from 
other clusters since we initially estimate the parameters 
and iterate to find the ML (Maximum Likelihood) for 
those parameters. The Gaussian Mixture Model’s param-
eters are frequently assessed using the EM technique 
(GMM). Data points may have an approximately Gauss-
ian distribution, described by the conditional probability 
in EM. In most circumstances, the conditional probabil-
ity of being a GMM component for some data points is 
closer to 0. These data points are referred to as “noisy 
data” due to their tendency to stand out. During anomaly 

detection, the outliers are discarded or labeled as anoma-
lies, and the corresponding attack probabilities are set to 
one. The EM model is shown in Fig. 12, where the clus-
tering results are referred to as Cm.

Two key assumptions must be made to use the 
EM-based clustering technique to discover network 
anomalies: There are two clusters in the input data: 
the anomalous cluster, which is smaller than the regu-
lar cluster, and the standard cluster. As a result, we 
can label each abnormal cluster based on its size. We 
designed a modular anomaly detection scheme and the 
workflow, as shown in Fig.  13. The OvS core switches 
in the tenant network collect packet-level and counter 
statistics and feed them to multi-stage anomaly detec-
tion and identification system (shown in orange). The 
computations are short-lived and linked to events that 
could be launched within the OvS switches without any 
middleboxes. OpenStackDP data plane uses an out-
lier detection technique to detect anomalies without 
supervision. Our proposed framework aims to detect 
anomalous patterns using the outlier approach. It works 
first by identifying reference points and by ranking out-
liers’ scores. We identify outliers in the packets col-
lected from the network at the OvS vMon component. 
An anomaly can occur when observed data deviates 
from commonly occurring ones. So, on that basis, it is 
notified that an anomaly has been found beyond these 
boundary conditions. We flag the flow as suspicious and 
investigate further by the ML-based Classifier system in 
the Controller. If the flow falls within these boundaries, 
it is passed to the final phase. The clusters are developed 
by running a clustering algorithm, as shown in Fig. 14. 
We collect data from flow counters regularly and use 
a sliding window of 1 to 4 minutes to calculate statis-
tical features, resulting in about 15 features per flow 

Fig. 12 EM Based Clustering Algorithm
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(See Table 4), including bidirectional data. First, we do 
flow-level analytics to save time on deep packet analy-
sis. Packet-level attributes (“Destination IP addresses, 
ports or inter-arrival durations”) and flow-rule history 
are only considered if suspicious flows from Stage-1 
have been detected. An organization’s behavioral profile 
can be developed by analyzing its operations and per-
formance. As fingerprints, its communication patterns 
have been consolidated. Packet sequences can be used 
as valid semantic data for the sessions by generating a 
single feature vector from the metadata of consecutive 
packets pi → pi + 1 → pi + 2...→ pn. The system’s observed 
behavior profile is matched by this set of characteristic 
vectors, which can be used in ML-based classifiers. We 
may notice trends in the data and outlier events. When 
outliers are observed using the algorithm in Fig. 15, the 
system raises warnings after the outliers are detected 
and validated (eliminating the noise and false alarms), 
an anomaly detection algorithm (as shown in Fig.  16) 
based on thresholds, and the mitigation system is 
alerted about the attack.

Dynamic service function chaining system
OpenStack-Neutron does not natively support the 
Service Function Chaining (SFC) functionality. The 
Virtual Network Functions (VNFs) deployed on the 
compute nodes must be linked to the network gate-
way node to enable the chaining/pipeline of network 
functions/services. The packets/flows must be steered 
between the link points, which involves complex logic/
routing/splitting/merging operations. The networking-
sfc module developed by the OpenStack community 
has tackled this problem and uses various drivers for 
this purpose. Now, drivers are available for the OVS, 
ONOS, and ODL infrastructures. In OpenStackDP, 
OVN is being enhanced with service chaining and a 
driver to communicate between networking-sfc and 
the OVN architecture. The Open vSwitch module is 
augmented to enable network function chaining. The 
module interacts with the agent/plug-ins running on 
the compute nodes. The traffic sequence to enter/
exit the chain is determined by using Flow classifiers. 
A common module is the flow classifier, which can be 

Fig. 13 High-level workflow of network anomaly detection
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used for other applications such as Firewalls, Quality-
of-Service, Load-balancing, etc. Monitor/DoS Scrubber 
VMs are deployed on the OpenStack compute nodes. 
With minimal impact on throughput for big flows, the 
flow analyzer engine classifies and tags the flows for 
priority queuing. Embedded NF performs classifica-
tion and dynamic path adjustment via ChangePath 
messages in switches based on flow characteristics 
such as phase change, burst interval, and packet size. 
Network-function/service sequence/chain service graph is 
generated by the OpenStack networking-sfc module [56].  
Based on the content inspection, the vertex nodes 
and edges depict the packets’ multi-path trajectories. 
The vertex node’s edges determine the next hop for 
a packet. As a result of the NF Dependency Analysis 
and the operator’s policy template, the ODL controller 

creates the final service graph (Fig.  17). Service 
graphs and (potential subgraphs) are translated into 
flow-table rule definitions by the SDN controller so 
that the data plane switches can install and manage 
NFV processing. The NF handler invokes a flow rule 
<Match: the result of the VNF, Action: Discard/Send 
to/Default> when the VNF has finished processing a 
packet. For each node, an ODL controller specifies 
a Default path (shown in bold) and a Default action 
(shown in bold).

A custom action or logic can be executed based on 
the result of the current VNF in other dynamic SFC 
situations, as demonstrated in Fig. 18, where the ODL 
Controller can install match-actions rules. Next, the 
decision is made per packet for the following path or 
edge to cross. There may be a succession of NFs for 

Fig. 14 Hierarchical Clustering Method
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packets to pass through in Enterprise Edge gateway use 
cases, such as an IDS/Firewall/Sandbox or DoS scrub-
ber/honeypot. When the IDS discovers anomalies or 
malicious traffic, the packets are diverted to the Sand-
box for further analysis (with a match: action config-
ured to call a Sandbox VNF). A Sandbox VNF on the 
IDS directs suspicious packets to the scrubber/hon-
eypot VNF, while the default path is used for all other 
traffic. That flow of packets would be re-routed or 
dropped at the Firewall, which is considerably earlier in 
its chain, using feedback messages.

Performance evaluation
We implemented the testbed (shown in Fig.  19) using 
OpenStack Pike Devstack [15]. For networking, we 
deployed our custom OVS-DPDK on the compute 
nodes (“br-int bridge “) under Mininet [50]. Some 
experiments utilize Mininet [50] to simulate large-scale 
virtual switches and hosts in a cloud computing envi-
ronment. Multi-tenant is a major feature of the cloud 
data center environment, and the tenants hope their 
virtual subnets cloud will be effectively isolated from 
other virtual subnets.

Fig. 15 Outlier detection and validation Method
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Experimental setup

• To integrate SDN into OpenStack, we deploy Open-
StackDP to manage the networking resources with 
Neutron. In the setup, software (i.e., Open vSwitch-
OVS) and hardware switches are controlled by a sin-
gle SDN controller.

• OpenStack comprises “compute, storage, and net-
working” nodes. It keeps evolving to enable more 
features and higher stability. The operator can choose 
from abundant components to create the deployment 
that best suits its requirements. The components run 
in heterogeneous infrastructure, and new hardware 
can be easily included.

• We deploy two homogeneous server class machines: 
the controller and compute node (which in turn 
houses multiple compute node instances in Mininet 
Simulator running hosts. We enable the following 
components: Nova for compute service, Neutron for 

Fig. 17 Default Service Graph Example

Fig. 18 Dynamically Changing Service graph

Fig. 16 Anomaly Detection Method in IDS
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networking, Keystone for identity service, Glance for 
image service, Cinder for block storage, and Horizon 
for the dashboard.

• Each compute node is connected to three networks. 
The data network which carries the traffic between 
the VMs is enabled via OVS. The management of 
software switches, the control of OpenFlow, and the 
internal communication between OpenStack com-
ponents are realized by the management network via 
eth0. We use a custom L3/L3 switch/router running 
OpenStackDP dataplane software to forward the 
management traffic and run DTAR, firewall, security, 
and access control applications.

Basic micro‑benchmarks
The main benefit is that with SDN flow rules is that 
the rules are deployed at various points in constant 
time. When DDoS-attacked by the attacking hosts, we 
test the network throughput and latency between two 
regular hosts with the iPerf application. Our SDN fire-
wall maintained normal host performance, even under 
high attack conditions. We can obtain up to 20% or 
50% more improvement in throughput for homoge-
nous synthetic workloads when the packet size and the 
number of flows vary. We save about 50% of the cycles 
for the mixed workload and get around 10-fold better 
efficiency.

Fig. 19 OpenStackDP Testbed Environment

Fig. 20 Performance of Intrusion. a Prevention and b Detection
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Attack simulation and DDoS attack emulation
Experimenting with various attacks, we simulated the 
data plane’s ability to detect them. Packet sizes, protocols, 
inter-packet gaps, intensity, and so on were all varied by 
the traffic generators from the attacker machines, which 
swamped the network with a variety of traffic. The appli-
cation traffic emulated client-server protocol behavior 
(request/response). Experiments are broken down into 
categories based on the sort of attack and the amount of 
time spent in the pipeline. Flooding and slow-rate attacks 
are used in a variety of ways. At predetermined intervals, 
the number of threads/application processes per com-
puter every five apps steadily increased.

IPS/IDS efficiency
Figure  20a shows the “total-packets processed/sec” 
variation with attack intensities. OpenStackDP default 
match-action is configured as “(drop),” as “Snort/Ipta-
bles” support only drop filter. The result shows that tradi-
tional IPS starts dropping packets from 13 K packets/sec 
to zero at 36 K packets/sec. For the same attack intensi-
ties, OpenStackDP sustained the throughput. Figure 20b 
When the intensity of attacks increases, the legacy-IDS 
efficiency gets affected due to the DoS attack packets 
filling up the “Iptables Queue.” OpenStackDP is resist-
ant to heavy-hitting attacks. We conducted efficiency 
assessment metrics at different demand conditions and 
network throughput levels. We set up five VMs and 
have services as plenty as possible. We performed the 

30 rounds of evaluation of netperf. When the number of 
tenants per host varies during the attack, the OvS-based 
firewall achieves higher sustained TCP throughput than 
the Linux Bridge, proving that OvS is the optimal switch-
ing system. As the number of nodes increases, memory 
use in all three situations is normalized to be equivalent 
to or less than that of legacy LB.

As illustrated in Fig. 21a, all three techniques (Legacy 
LB, Native OvS, and OpenStackDP) utilize around the 
same amount of CPU/Memory. In Fig. 21b, 4 clients send 
traffic to a single server, resulting in a combined TCP 
throughput of over 8.6 Gbps.

As shown in Table 5, the amount of PACKET_IN pack-
ets on the control channel ranges from 500 and 5000 
during the attacks. With NO-IDS, the average round-
trip-time (RTT) during a DDoS attack is more significant 
than 100 seconds; packet drop is 100%. ii) With IDS: a) For 
attacks of brief duration, the RTT is impacted. b) attacks 
with a longer duration—the RTT is typical, and there is no 
packet loss. Table 6 shows that SDN mechanisms require 
more memory than Legacy LB techniques, owing to the 
overhead of the SDN/OVS OpenFlow pipeline.

Dynamic threshold vs. detection rate
For IDS, the success of the clustering technique in terms 
of precision and accuracy largely depends on threshold 
τ, as shown in Fig.  22a. A synthetic dataset and a few 

Fig. 21 a CPU Usage b Network Performance in node

Table 5 Latencies and packet loss

Metric Flow Table Persistence

60 s 120 s 600 s 1500 s

Round Trip 108.67 ms 54.34 ms 5.27 ms 3.90 ms

Packets Lost 4% 2% 0 0

Table 6 Memory utilization

Nodes Linux Bridge Open vSwitch OpenStackDP

2 9 .3% 22% 23.2%

4 15.8% 26.8% 30.2%

6 27.2% 35% 36.3%

8 42% 49.4% 59.8%
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real-world datasets were used to study the influence of 
thresholds (e.g., NSL-KDD [57], CICIDS2017 [58], Hog-
zilla [59], CICIDS2018 [60], CICIDS2019 [61]). A com-
prehensive dataset and traffic emulation were conducted 
to recreate the representative traffic of a real-world net-
work [62] and to be in parity with the latest trends. The 
threshold τ is dependent on the traffic patterns and the 
dataset generated. We measure the variations in detec-
tion rate and precision for different attack classes (Scan, 
DoS, DDoS, Probe, R2L, Slow-rate, U2R). Using verti-
cal dashed lines, Fig.  22 depicts the range of possible 
threshold values for each attack type and for normal 
data items to achieve good outcomes (b). Threshold val-
ues of (0.90 to 2.7) for normal records and (0.39 to 1.08) 
for attack records were effective in our testing. This esti-
mation helps choose the threshold τ for experiments.

Stateful dataplane performance
We developed and tested a state-based fine-grained 
firewall. To establish a connection, the switch uses the 
data packets’ state information and the state table’s 

data to make decisions (conformance to firewall poli-
cies and updating the state table records). The rule is 
updated if an internal host begins or ends a connection. 
This influences TCP connection times. We contrast our 
strategy with stateless and stateful firewalls regarding 
the SDN controller. Stateless firewalls allow communi-
cation between specific internal and external network 
addresses. The experiment is set up with a switch and 
an external Web server. The number of concurrent 
connections is varied from 50 to 200 per second. We 
evaluate data for two reasons. The first is the firewall’s 
performance vs. a controller with and without a fire-
wall. In this scenario, we examine the firewall’s scal-
ability by tracking the progression of packet processing 
time zones with concurrent connections. In the second 
scenario, we want to see how long the Firewall takes to 
process the packets and connections.

Figure  23a displays the total connection time vs. inter-
nal host count. The findings reveal that our method’s 
connection time is slightly longer than stateless firewalls 
but much less than a stateful firewall on the controller. 

Fig. 22 For different threshold values, a Detection rate b Precision

Fig. 23 Dataplane Scalability. a Processing time b Packet-In delay
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To accept/reject packets from foreign hosts, the SDN 
must update its flow table rules and connection tables. 
As the number of internal hosts increases, so does the 
average Packet-In time. Studies in Fig.  23b show a very 
steady Packet-In time for data plane firewalls, in the 
range of 3.7 to 4.5 ms, and for the control-plane firewall, 
it takes about 6 ms. Due to the optimal stateful connection 
table maintained in the data plane switches, our state-
ful firewall scheme has negligible overhead for Packet-In 
communication.

Four different threshold values and domains are used to 
accept traffic to hit 80% of the 100 firewall rules. The first 
and second domains hit their respective rules occasionally, 
while domains three and four deliver consistent packets 
to maintain a distinct rule weight at different times. The 
Average Detection/Matching Time AMT =

n

i=1
Widi  

is calculated by varying the thresholds. Wi denotes to 
Rulei weight and di the Flow rule order. We can determine 
the effectiveness of the number of invocations for each 
threshold. As seen in Fig. 24a, the criterion of 0.3 has the 
best AMT and requires the least time in a firewall.

Flow table scalability
When a DDoS attack occurs, switches send “Packet-
In” messages to the controller through OpenFlow, and 
the controller sends “Flow Modification” messages to 
switches. To process these “new flows,” the control-
ler must use its computing and networking resource, 
hence a critical SDN metric. The results are shown 
in Fig.  24b OpenStackDP sustains the “flow installa-
tion speed” even while the network is under attack. 
The classical SDN stack crashed, whereas the Open-
StackDP data plane handled up to half-million flow 
entries simultaneously, and the controller could never 
be saturated.

Cloud network configuration and neutron node
The main package (driver module) networking-odl acts 
as a redirector/proxying/routing component interfacing 
between the SDN abstractions and OpenStack security/
policy configurations. This module includes functions to 
create new networks and establish security group for ten-
ants. This experiment measures network configuration, 

Fig. 24 a Firewall Filter Matching Speed b Dataplane Scaling

Fig. 25 OpenStackDP API. a Latency, b Load Increment
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policies processing time, and load increment due to the 
framework overhead. Calling local APIs to create and 
configure a virtual subnet takes time as the application 
run in the SDN control plane. In our framework, it is time 
for OpenStackDP to process policy requests from cloud 
tenants and OpenStack API. The processing overhead 
for REST API calls refers to the SDN controller incurred 
with handling the tenants’ service requests. When con-
figuring virtual subnets, the cloud data center platform 
has three variables. The three variables are total tenants, 
hosts, and virtual machines per subnet. In an experi-
ment, three variables can change simultaneously. We fix 
two variables for qualitative research and adjust another 
for testing. We compare OpenStackDP API with local 
API and REST API. The number of tenants consider-
ably impacts the total system processing time. As shown 
in Fig.  25a, the latency of OpenStackDP almost follows 
the local API but is lesser than REST API. Figure  25b 
demonstrates that calling the REST APIs increases the 
demand on the OpenStackDP system by around 40% to 
60%. Using OpenStackDP increases system load about 
the same as contacting local APIs. The findings show that 

OpenStackDP has greater processing performance than 
REST APIs. The processing latencies and load increments 
of OpenStackDP are shorter than the processing time of 
calling REST API when the number of tenants or virtual 
subnets for each tenant is increasing. Figure  26a shows 
that OpenStackDP scales well compared to other API 
modes.

We compared OpenStackDP with the conventional 
NFV hosting in compute node VMs. We generate a burst 
of 64–1514 Bytes TCP packets through one ingress port 
and egress through the second port on the gateway. For 
realistic comparison, we tested with different NFs, from 
simple forwarding and monitoring to heavy NFs such as 
Deep-Packet Inspection (DPI).

Throughput
OpenStackDP reached 96% available bandwidth for all 
packet cases except for composite SFCs (heavy NF being 
the bottleneck). The graph in Fig. 26b shows a peak rate 
of 7.6 Gbps for NFV in the OVS-DPDK/Kernel. The clas-
sic OVS involved detours and asynchronous process cost, 
and hence it achieved a lower bandwidth rate.

Fig. 26 a OpenStackDP API Scaling b NFV Throughput

Fig. 27 a Latency Curves b IDS Launching Speed
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Latency
CDF (Cumulative Distribution Function) graph in Fig.  27a 
shows that more than 98% of packets incur less than 1.30 
msecs and average 0.9 msecs delay through the Open-
StackDP modules (vMon, vIDS, vACE). The OVS-Kernel 
switch incurs 2.16 msecs due to detouring and I/O overhead.

Firewall IDS service launch time
This measures the time it takes to start up the IDS appli-
cation, Container, and VM and then run it. In Open-
StackDP, this is the time it takes from sending a user 
request to starting the IDS service. The averages of each 
test are displayed in Fig.  27b. The basic scenario has a 
0.24 s average launch time due to no virtualization or con-
nectivity costs. The container scenario’s average launch 
time is 1.3 s, 11 times the baseline. Because the N-IDS 
method requires numerous steps to create an IDS, the 
launching time is longer, 3.4 s on average. OpenStackDP 
requires only 1.7 s (approximately 15%) to launch, making 
it more “elastic.” With OpenStackDP, processing and net-
work communication are faster than opening a container.

Security incident response performance
In this experiment, we assess OpenStackDP security 
monitoring/detection speed and resource utilization per-
formance in an OpenStack cloud with a specific network 
traffic load. OpenStackDP can easily create, launch, change, 
and destroy IDS services. We use the “Mid-Atlantic Col-
legiate Cyber Defense Competition (MACCDC)” network 
trace to mimic the actual security incident and test Open-
StackDP applications (“flow-analyzer and dynamic NF 
handler”) in terms of response and speed. Each test starts 
with a traffic sender and recipient VM. tcpreplay sends net-
work traffic from the source VM to the receiving VM.

We compare the following scenarios:

▪ Baseline-IDS: Sniffer service running on a comput-
ing node.
▪ Container-IDS: Sniffer service running inside a 
Docker container on a computing node.
▪ Virtual Machine: Sniffer service running as a VM 
in the tenant network by installing a tap/mirroring 
on the switch.
▪ N-IDS Service: IDS Sniffer service runs on the net-
work node, mirroring configured to a particular Neu-
tron port.

Dynamic DDoS detection and mitigation
We created a VNF chain for the dynamic firewall 
pipeline with a rate-limiting filter (threshold) to/from 
the same domain (potentially a DDoS campaign).  
Figure  28a shows the traffic network throughput. 
The attack starts around 10 seconds into the test, and 
the application detects and responds in 32 seconds, 
restoring regular service. While the recovery time  
varies slightly amongst attacks (e.g., TCP, UDP, ICMP), 
the total recovery time is still reasonable. Figure  28b 
shows the testbed traffic trace. We started the attack at 
@1 Gbps and gradually built up to affect the network 
substantially. The DDoS Detector NF records anoma-
lous flows in packets traveling across the chain. When 
the traffic hits (4.5 Gbps), the alarm is raised to label 
it suspicious and redirect it for further scrubbing. An 
SFC Sandbox VNF to handle suspicious packets is 
bootstrapped in under 3 seconds. The outbound traffic 
rate returns at time#29 s (Sandbox deleted the attack), 
even as inbound traffic grows.

Fig. 28 a Dynamic DDoS detection b Dynamic NF insertion in SFC
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Access control performance
According to the research [40], not all OpenStack func-
tions are now under policy enforcement. One hundred 
five out of 371 operations are uncontrolled. Among the 64 
open interface functions, 41 are vital and unprotected by 
policy, such as modifying arbitrary system or network ses-
sion metadata. Without authorization, 19 out of 89 func-
tions can be invoked. This puts the system at risk because 
any cloud user/ adversary can identify unprotected calls 
and gain entry through those functions without authori-
zation. It allows cloud providers to assess overall security 
by reviewing management communication calls. Unreg-
istered operations are denied by default. As a result, all 
accesses are regulated inside the networking node/seg-
ment or dataplane of the OpenStack SDN platform.

We benchmarked with the OpenStack Tempest [63] 
and contrasted it with the OpenStack “Liberty” [14] 
platform. Table  7 shows that our security framework 
overhead time is reasonable, given the average cost of 
9.7%—the vACE-DTARS app communication delays 
cause this overhead. At the Glance, the worst case was 
8%. This outcome is predicted given the relative speed of 
each glance call compared to permission verification. The 
vACE module does not influence the ceilometer because 
it requires less access control. Compared to the latency 
through a major public network, the overhead per func-
tion call is about 127 ms. We tested the OpenStackDP 

capacity to filter packets at each protocol layer with 
the Tempest benchmark, and the results are shown in 
Table  8. The OpenStackDP service examines the packet 
transfer using a set of lightweight filters. In this test, we 
observe the advanced filtering capabilities (L2-L7 rules). 
The service will measure the packet transmission speed 
between the two networks with the OpenStackDP NIDS 
Gateway. The filtering criteria will be random without 
disrupting the TCP connections between the endpoints. 
The test launched 1000 × 1024 Mbyte packets and trans-
ferred them over TCP using the Linux programs dd and 
netcat. The throughput and the end-to-end time is taken 
to enforce the rules in the firewall embedded in the data 
plane are sustained close to the wire-rate 9.8 Gbps.

Comparison with related security solutions
In this experiment, we compare OpenStackDP with five 
related solutions for OpenStack Cloud and analyze the 
ability to defend against attacks. All the key metrics, such 
as network bandwidth, connectivity loss, flow table per-
sistence, packet losses, and latencies, are examined and 
discussed. We have selected some research works focus-
ing on using SDN technology in the cloud data center 
with an OpenStack environment [34, 39, 43, 45, 46]. Most 
of the prior works were based on SDN Controller-based 
solutions. Our solution is one of the few research pro-
jects that exploited the high-speed dataplane and rede-
signed the network node of the OpenStack architecture. 
We implemented these solutions (as application modules 
in the OpenDayLight SDN Controller), from the com-
pared works, in our testbed with the same environmental 
set-up according to the above observations to retain their 
original novelties and functionalities. We have imple-
mented the solutions optimally closest to the description 
in the original paper and with appropriate assumptions 
and normalizing for the common testbed (hardware/sim-
ulator platform).

The strategy of our comparison experiments is:- a) 
Each experiment evaluates certain performance criteria 
or metrics. b) Not all these related works can be tested 
as the scope of their solution is limited, not applicable, 
or doesn’t qualify. So, all these 5 works or only a sub-
set of works are selected to run those tests. The data is 
normalized and plotted for comparison. e.g., in Threat 
model validation section, to test the Threat model with 
the STRIDE approach, only two works, SecSDN-Cloud 
[43] and FWaaS [39], are compared with the Open-
StackDP. These works were chosen because of the 
completeness of their solution under all major aspects. 
We have organized and presented the performance in 
Comparison with related security solutions, Security 
analysis, and Threat model validation sections with the 
above assumptions.

Table 7 Unprotected Ops map

Service Processing Time (Seconds) Overhead (%)

Liberty OpenStackDP

Nova 652 680 4.2

Glance 229 249 8

Neutron 230 278 20.8

Cinder 136 140 2.9

Heat 292 300 2.7

Ceilometer 618 628 1.6

Table 8 Tempest benchmark

Number of Filter Rules Result

L2 L3 L4 L7 Time (sec) Bandwidth 
(Gb/s)

0 0 0 0 18.09 9.8

100 0 0 0 20.08 9.7

0 100 0 0 21.7 9.6

0 0 100 0 22.2 9.6

0 0 0 100 80.9 9.1

100 100 100 100 110.4 8.8



Page 31 of 42Krishnan et al. Journal of Cloud Computing           (2023) 12:26  

• PDSDN [46]: Policy-Driven-SDN-controller employs 
a batch processing network scheme. A control plane 
application is implemented to process the policies 
according to the user’s permissions and operations 
priority. We implemented a policy assigning module 
in the SDN Open Daylight Controller, a policy pars-
ing/conflict resolution method, and a policy execu-
tion module. The authors of PDSDN mainly tested 
the performance by creating some virtual subnets. 
We also compared our scheme with PDSDN regard-
ing system processing time and load increment.

• SecSDN‑Cloud [43]: Secure-SDN-Cloud solves flow 
table reliability problems, controller saturation, and 
side-channel attacks. The security mechanisms are 
implemented in the SDN Controller. The authors 
of [43] implemented the SecSDN-cloud in the 
OMNeT++ simulator and evaluated its performance 
in terms of packet loss, end-to-end delay, throughput, 
latency, and bandwidth. We adapted their SecSDN 
cuckoo search algorithm that involves multiple con-
trollers. To guard against this attack type, SecSDN- 
cloud employs a third-party cloud-monitoring server 
to execute the EGA-CS algorithm that assigns con-
trollers to switches. We implemented the scheme in 
the Mininet simulator and compared it with Open-
StackDP in the simulation environment. We mainly 
tested the ability to resist three attack types: flow 
table overloading, control plane saturation, and Byz-
antine attacks.

• ECSD [45]: Enhanced-Compromised Switch Detec-
tion is an SDN scheme that applies a multivariate 
time-series technique for detecting anomalies in 
traffic passing through switches. This framework 
aims to detect a compromised switch in SDN 
architecture synchronized with an OpenStack con-
troller, and it is implemented as an extension in the 
Control Plane. We adapted their Defense Scheme 
(ECSD), coded an application module in our SDN 

environment, and integrated it into the OpenStack 
network environment to detect compromised 
switch attacks. To simulate the compromised 
switch attacks, we manipulated the Open Daylight 
SDN controller to perform the attacks mentioned 
in that paper.

• FWaaS [39]: Firewall-as-a-Service is a Stateful Fire-
wall design. The matching table of the data plane is 
modified to add state detection logic and a provi-
sioning application in the control plane manages the 
deployed firewall services. As the authors implement 
a prototype using P4, we adapted the algorithm of 
stateful firewall filtering to our environment, imple-
mented in Python. In the experiment, we utilized the 
Mininet to deploy the virtual network on the Open-
StackDP platform. In this case study, we compared 
the stateful firewall implementations to control the 
internal network to access the external network.

• NIDSaaS [34]: “Network-Intrusion-Detection-System-
as-a-Service” is designed to run on the designated 
host(s) directly. The system may generate and remove 
IDS services dynamically and update rule sets on 
demand in an OpenStack cloud. The NIDSaaS proto-
type consists of a user client, a service plugin, a ser-
vice plugin agent, and a Snort-driven NIDS provider. 
We implemented their NIDS service in our testbed on 
the OpenStack network node and sniff on a designated 
Neutron port to which the target network traffic is 
mirrored.

Holding time on flow table (Fig. 29a)
We believe holding time to be a crucial statistic for eval-
uating the resistance of the OpenStackDP to “flow table 
overloading attacks.” The switching design that displays 
long durations of entries in flow tables even when attack 
rates are increased suggests a more secure SDN. Con-
sumption of southbound channel bandwidth relates to 

Fig. 29 a Holding Time in Flow tables, b Detection Speed
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the attack, and the SDN controller should spend as few 
resources on network ports as possible.

Detection speed (Fig. 29b)
We ran a series of compromised switch assaults to test 
the detection speed of a new attack. The ECSD and Sec-
SDN-Cloud systems trigger an alarm approximately 
0.15 seconds slower than OpenStackDP. The reason is 
that OpenStackDP uses data plane modules to acceler-
ate its performance. As a result of their intricate design 
and numerous policy decision-making steps, FWaaS 
and NIDSaaS systems raise detection alarms slowly. In 
summary, the detection time is highly dependent on a 
scheme’s lightweight or heavyweight nature, and Open-
StackDP outperforms the other alternatives.

Effectiveness of the QoS
We examine how Security affects QoS. The effective-
ness of QoS is described in terms of essential characteris-
tics: Fig. 30a workload management, Fig. 30b throughput, 
Fig.  31a end-to-end delay, and Fig.  31b packet loss. The 
response time represents the time required to finish the 

workload and produce the required result. We tested three 
scenarios to assess the response time. (1) No Attack: The 
system completes the workloads in the required time with 
normal traffic. (2) Attacks without IDS occur, compromis-
ing workload response time and QoS. (3) Attack With IDS: 
Attacks affect workload response time, but IDS enhances 
QoS by recognizing and neutralizing them. We counted the 
packets dropped by the switches, which gave the ratio of 
benign/malign packet loss due to the attack. OpenStackDP 
detects the attack pattern and enforces mitigation policies 
quickly, and other solutions discard fewer malicious pack-
ets because they are less efficient at detecting anomalies.

Intrusion detection
To illustrate our outlier detection model, we picked the 
packet/byte attribute of the flows and replayed the trace 
files with attacks (mixed rate). The points observed outside 
the boundary conditions are marked as anomalies, and 
further classification will determine–spikes of benign traf-
fic or attack packets. The comparison of key performance 
metrics across the solutions is presented in Fig.  32. We 

Fig. 30 a QoS with workloads b Throughput

Fig. 31 a End-to-end delay b Packet loss
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consistently surpass the competition in terms of detection 
rate and accuracy, with 99.81% and 99.40%, respectively, 
being the highest. The F1-score is helpful for thoroughly 
evaluating OpenStackDP performance because it consid-
ers both False Positives and False Negatives. Table 9 illus-
trates the OpenStackDP’s detection accuracy.

Security analysis
The OpenStackDP system’s monitoring mechanisms 
detect malware, network-centric attacks, and malicious 
traffic. As a result of the cross-plane design, response 
times vary depending on the type of assault being 

intercepted. Through experiments described in this 
section, this paper demonstrates the efficacy of Open-
StackDP by classifying it through phases in distinct types 
of attacks (covering about 90% of all known network 
attacks). In addition to these situations, OpenStackDP’s 
protection capabilities extend far beyond what is covered 
in Table  10. These examples show how the system per-
forms under various traffic scenarios.

List of attacks and countermeasures
Table  11 lists the most common attacks in the Cloud 
infrastructure and the corresponding mitigation solution 
implemented in the OpenStackDP solution.

We track the amount of time fraudulent flows spend 
in the OpenStackDP pipeline before being mitigated 
(“Scan, DoS, DDoS, Slow-rate, application-level”). The 
attacks are recognized and remediated at a certain 
point in the OpenStackDP detection pipeline (as illus-
trated in Fig. 33).

Figure  34 shows how the detection speed varies 
depending on the layer (switch/controller) and IDS 

Fig. 32 Comparison of IDS Metrics

Table 9 Classification accuracy

Traffic Type Dataset Count Correct Incorrect Accuracy (%)

Benign 16,72,234 16,24,074 48,160 97.12

HTTP Flood 18,28,545 17,77,894 50,651 97.23

Slow Read 4,56,567 4,46,933 9634 97.89

Port Scan 8,23,456 8,20,739 2717 99.67

DoS Flood 24,45,678 24,07,770 37,908 98.45

Table 10 Defense capabilities against the various classes of attacks

Attack Type Attack Identification Field of Interest Detection Method Mitigation Method

Scanning Increase in Attacker, Host A, ratio to target addresses IP Address Port Level 1 (data-plane)
Level 2 (NFV)

Block/Drop

DoS Volume of traffic flows from/to a single IP exceeds a threshold IP Address TTL Level 1 (data-plane)
Level 2 (NFV)

Block/Drop

DDoS volume of traffic from multiple IPs targeting exceeds a threshold IP Address TTL Level 1 (data-plane)
Level 2 (NFV)
Level3-(control-plane)

Block/Drop

Slow Rate opens a great number of half-open connections and initiates 
request with no replies

IP Address Port Level 1 (data-plane)
Level 2 (NFV)
Level3-(control-plane)

Block/Drop

App layer correlation/asymmetric volume between Request/Response Port Protocol Level3-(control-plane)
Level 4- (application)

Block/Drop/Remediate
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Table 11 List of attacks and countermeasures

Components Attacks Countermeasures

Tenants and User Applications Brute Force Intrusion Prevention System

Privilege escalation Virtualization of Services

Insider Attacks Authentication and Security Group

Policy Violation Global View and Access Control

Gateway and Internal Network Injection Attack Policy Validation and Enforcement

MITM Defense Mechanism

DNS Poisoning DNS Proxy in the Switch

Reply Attacks Flow analysis and Dynamic Rules

Wormhole Port Monitoring

Flooding Rate limiting and Proxy Firewall

Cloud Servers and Controller Devices SQL Injection Input Validation

Application Persistent Attacks Packet History Analysis and Stateful Firewall

Weak Authentication 2-level Authentication

DDoS SDN Global View, Flow Analysis & Dynamic 
Rule Updating

Backdoors and Exploits Anomaly Detection system

Malicious Application Anti-Virus software modules

Fig. 33 Depth traveled by attack traffic in the pipeline
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classifier overhead (Signature/Anomaly). To detect and 
mitigate or remediate an application attack, we needed to 
conduct protocol correlation/analytics, which adds over-
head at all levels of the OpenStackDP analytics pipeline.

Figure 35 plots the data points (Bandwidth/Through-
put parameter) measured over time, during normal 
traffic, and when an insider attack began from one ten-
ant (User-A Attacker) to other tenants (User B, User 
C) in the cloud network and ended. With the Open-
StackDP, the throughput for the legitimate users is 
restored after a brief drop for 8–12 secs.

Fig. 34 Detection Times for different classes of attacks

Fig. 35 Throughput Performance during Insider Attacks

Table 12 Components of DFD

Item Symbol

Process Circle

Data Flow Arrow

Data Sore Two Parallel 
Horizontal 
line

Interactors Rectangle

Trust boundary Dotted line
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Threat model validation
Each component should be assessed against a specific 
threat type to validate and analyze a DFD (“Data Flow 
Diagram”) to detect and mitigate threats. Table  12 lists 
the five different types of DFD components. Only a 
small percentage of STRIDE’s threat categories affect 
each DFD’s components [16]. For example, users are 
only susceptible to spoofing and repudiation risks when 
interacting with each other. The STRIDE approach has 
analyzed many SDN protocols, architectures, and appli-
cations [64, 65]. Two SDN cloud networking platforms, 
SecSDN-Cloud [43] and FWaaS [39] are compared with 
the OpenStackDP. These works were chosen because 
of the completeness of their solution under all major 
aspects, closest to our model, and are recent. Using the 
definitions of the data flows, processes, and DFDs, Sec-
SDN-Cloud and FWaaS, and OpenStackDP are ana-
lyzed using the STRIDE [50] framework. The DFD of the 
OpenStackDP is shown in Fig. 36. In this case, the Open-
StackDP SDN apps and OpenDayLight controller are 
considered one process. Both the network devices trans-
mitting and receiving data and the administrator using 
SDN applications are participants in the DFD. The secu-
rity analysis should consider the communication flow 
between the administrator, Helion, the SDN controller, 
and the network device. Hardware and SDN controllers 

Fig. 36 DFD for OpenStackDP Framework

Table 13 Security analysis for the components of OpenStackDP

*Denotes threat can be mitigated by suggested methods, ✓ denotes threat can be mitigated as architecture provides countermeasures to mitigate

Table 14 Security analysis of SecSDN-Cloud [43]

*Denotes threat can be mitigated by suggested methods, ✓ denotes threat can be mitigated as architecture provides countermeasures to mitigate, - denotes out of 
scope
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are separated by a trust boundary, while a trust bound-
ary separates OpenStackDP and the administrator. The 
STRIDE model considers the OpenStack components, 
SDN Controller and Dataplane Switches, OpenStackDP 
applications, and corresponding threats and mitigation 
methods.

The following tables show the summary of the security 
evaluation of the OpenStackDP (Table  13), SecSDN-
Cloud (Table 14), and FWaaS (Table 15).

SecSDN-Cloud and FWaaS both allow middlebox 
interposition in cloud networks (DPI) and vulnerable 
to security risks. SecSDN-Cloud employs the Libvert 
API for managing the network components and control. 
OpenStackDP supports numerous security capabilities 
that can be utilized with current applications and those 
built into the protocol. It is up to the customer to con-
figure the network devices that will allow OpenStack’s 
Helion services to be integrated into an existing data 
center infrastructure. It also defines firewall rules at the 
deployment’s perimeter (to guard against external mis-
use) and router rules within the OpenStackDP deploy-
ment to defend against insider threats or administration 
errors and misconfigurations.

Result discussion
OpenStack Data plane research has been limited to the 
control plane [26, 37, 44] and forwarding problems of 
the data plane switches. Using these insights, we inves-
tigated the existing threat models for SDN-based Open-
Stack platforms and the data plane-to-control plane 
trade-off. Because virtual switches like OvS are widely 
used in cloud operating systems. In contrast to kernel-
based countermeasures (using group security), our 
measurements show that user-space countermeasures 
have no performance overheads. We summarize some 
key findings in Table  16, which proves the practical-
ity and effectiveness of applying SDN mechanisms in 
OpenStack networking architecture, especially Open-
StackDP, to detect access violations and network-centric 
attacks in our practical experimental setup. Simulations 

and analysis show that the OpenStackDP is superior to 
those of earlier SDN designs. Detection performance, 
CPU utilization, improved Quality of Service (QoS), 
and scalability are some of the key metrics of the evalu-
ation. OpenStackDP accurately detects compromised 
network components and attacks across most factors and 
will support future applications/use cases in the Cloud 
ecosystem.

Light‑weight flow‑based IDS
Compared to the packet-based method, the flow-based 
IDS [66, 67] deals with a fraction of the total amount of 
data that needs to be monitored and processed, optimal 
storage requirements. Also, the IDS is robust against 
encrypted payload attacks and with fewer privacy issues. 
Our approach in OpenStackDP is further optimized since 
we have extended the core switching layer in the data 
plane to execute first-stage attack detection and DDoS 
prediction functions, stateful firewall functions (cached 
flow rules/action set) instructed by the controller on the 
switches. This has enabled improvements in our system 
by reducing control channel traffic and CPU processing 
overhead at the controller. This scheme also contributes 
to the speed of detection in the data plane as it is criti-
cal not to create a larger bump in the wire speed. As dis-
cussed in Performance evaluation section and Table  10, 
the flow records are generated in the high-speed hard-
ware switch. Therefore, no performance overhead from 
computational resources occurs in IDS. To reduce the 
negative effect on the flow sampling over the entire 
packet stream, the sampling process on only a subset of 
the packets is considered for flow generating, thus reduc-
ing the load on the router resources. Pre-filtering and 
aggregating flows are offloaded to the TAP/probe device 
on the hardware switch.

Data sets and fine‑tuning the ML‑based IDS
Our study explored the behavior and application of multi-
ple DDoS datasets for machine learning in the context of 
intrusion detection. Selecting datasets for this study was 

Table 15 Summary of the security analysis for the FWaaS [39]

*Denotes threat can be mitigated by suggested methods, ✓ denotes threat can be mitigated as architecture provides countermeasures to mitigate, - denotes out of 
scope
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Table 16 Key findings from this research
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challenging due to the shortage of DDoS-specific datasets, 
despite being one of the most devastating security attacks. 
Moreover, all datasets chosen are recently dated to ensure 
that all instances and features are relevant and up to date. 
The classifier was trained to detect a certain attack cat-
egory using selected features in comparable ML-based 
NIDS prior works. Only a small portion of the CICIDS 
2017 dataset instances was used to evaluate their system. 
Conversely, in our research, we use all the instances of the 
CICIDS2017-2018-2019 datasets. A comprehensive data-
set and traffic emulation were conducted to recreate the 
representative traffic of a real-world network [62] and to 
be in parity with the latest trends.

Feature analysis when compared to other IDS 
schemes, which selected about 4 to 6 features for classi-
fication; we have utilized about 10 to 16 features and cre-
ated multi-variate classification, and performed anomaly 
detection based on traffic flow, SDN protocol behaviors, 
and so on. Although this increased the complexity, our 
experiments proved that the features monitored to deter-
mine anomalies and detect attacks are the right ones and 
effective in terms of accuracy and predicting the attacks 
at the dataplane based on coarse-grained security mecha-
nisms. On the contrary, other proposals classified with 
a limited feature set slipped certain attacks through the 
IDS and made the downstream services unresponsive to 
normal users.

Exploit experiment
In our OpenStack stock version, about 9 information 
flow vulnerabilities were reported after our installation. 
Six are present in our deployment, and 3 are not. To con-
duct the comparison, we did not patch the cloud services 
in our testbed and tried to exploit them in vanilla Open-
Stack and OpenStackDP, respectively.

Qualitative analysis
To see how our solution can improve OpenStack security, 
we performed a qualitative analysis of all 78 vulnerabili-
ties identified in OpenStack networking (software ver-
sions from 2016 to 2019). We found that almost 30% of 
OpenStack vulnerabilities are related to information flow 
problems already studied in this research, and Open-
StackDP systematically mitigates those vulnerabilities.

Limitations and future work
Although this study has successfully demonstrated the 
significance of the feature dimensionality reduction tech-
niques, which led to better results in terms of several per-
formance metrics and classification speeds for an IDS, it has 
certain limitations and challenges, summarized as follows.

Data sets
The general inadequacy of static attack datasets also 
introduces severe impediments to machine learning-
based IDS deployment. Models trained with labeled data 
from a specific domain don’t usually transfer or general-
ize to other domains. For example, data streams obtained 
from cloud-based Linux services cannot be used to pre-
dict cyber-attacks against enterprise Windows endpoints 
due to the intrinsic differences between the operating 
environments. This limitation impairs IDS model evo-
lution and the adaptation of machine learning defenses 
against new and emergent attack techniques. None-
theless, a well-recognized challenge in custom dataset 
generation is capturing the multitude of variations and 
features manifested in real-world scenarios.

Fault tolerance
The key aspect of fault tolerance in our system is the 
ability of the multi-level and cross-plane scheme to 
detect a large set of well-known attacks. Our models 
have been trained to detect the 14 up-to-date and well-
known attacks. Moreover, deploying distributed intru-
sion detection systems in the network can enable fault 
tolerance.

Model resilience
We achieved an FP rate of 0.001, which may reflect a 
built-in attack resiliency. Moreover, our models were 
trained in an offline manner. This ensures that an 
adversary cannot inject misclassified instances dur-
ing the training phase. On the contrary, such a case 
could occur with online-trained models. Therefore, it is 
essential for the machine learning system employed in 
intrusion detection to be resilient to adversarial attacks.

Hardening the ML‑based solution
It is a common trend that cybersecurity and malware 
analytics systems employ ML/DL-based AI algorithms 
to analyze correlations and patterns in the traffic data 
and detect/classify the attacks. As these methods are 
widely exploited, sophisticated cyber-criminals devise 
adversarial ML attacks to breach these NIDS. Our study 
showed that it is possible to derive an unsupervised 
anomaly detection method built on boosting meta-
learning, which has much better detection performance 
than regular unsupervised algorithms and is robust to 
zero-day attacks. This opens an interesting scenario 
and future works on whether and under which cir-
cumstances unsupervised meta-learning may achieve 
detection performance that can compete with super-
vised solutions. To such extent, we fore- see a valida-
tion process which involves more public datasets in the 
domain of security, as well as widely used supervised 
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algorithms [68] and deep neural network that suit the 
analysis of tabular data.

Zero‑day attacks
Many IDSs show deficiencies in identifying novel, zero-
day attacks. These attacks exploit either new vulner-
abilities or known vulnerabilities in novel and different 
ways and cannot be matched against known signatures. 
Unsupervised anomaly detection algorithms infer pat-
terns from a training set and discover the underly-
ing structure of the data without reference to known 
outcomes (i.e., labels are unknown at training time). 
Instead, they assume that ongoing attacks temporarily 
alter the values of system indicators concerning their 
expected values. This way, they learn a model decou-
pled from labels assigned to data points in the training 
set and therefore fit the detection of zero-day attacks. 
It is possible to mimic zero-day occurrence by remov-
ing specific attacks from the training set and provid-
ing them only during evaluation in the test set. Proper 
tuning and selection have to be derived according to a 
precise strategy and its application through appropriate 
tooling and experimental campaigns. In the future, we 
would like to improve the robustness of our approach 
by detecting those types of Zero-Day Attacks whose 
behaviors are independent of existing attacks. We will 
perform tests to improve accuracy in the case of multi-
class classification. The limitation of the proposed work 
is that the exact category of high/low volume attack 
variants is not detected due to its implementation 
approach, which will be explored in the future.

Detection of attacks exploiting the unpatched known 
vulnerabilities
In the security domain, supervised ML algorithms are 
commonly adopted to defend against known threats, and 
they are embedded into IDSs, which aim to detect attack-
ers that exploit known security breaches or vulnerabilities. 
We demonstrated in our research the security improve-
ment made by OpenStackDP over the off-the-shelf 
OpenStack through a system exploit experiment and a 
qualitative analysis. Our ML-Pipeline aims to mine attack 
patterns from entire data streams rather than merely to 
classify individual packets as attacks; mixing benign with 
malicious activities in the environment does not impair 
our IDS ability to learn attacker patterns, even in the pres-
ence of evasive behaviors. This is practical and reveals 
that OpenStackDP captures the entirety of the attacker’s 
activity, feeding it back to the classifier. We measured our 
approach’s ability to detect previously unseen, unpatched 
exploits [69]. In this experiment, CVE-2017-5941 is used 
as an 𝑛-day vulnerability for which no patch has been 
applied. The resulting detection accuracy and precision 

show that the OpenStackDP pipeline helps the classifier 
learn attack patterns unavailable at initial deployment to 
learn exploits for which the classifier was not pre-trained. 
Therefore, we note that by design, OpenStackDP can miti-
gate unseen/unpatched vulnerabilities to some extent bet-
ter than the other comparable IDS.

Attacks through cloud service vulnerabilities
One significant problem with this distributed computing 
environment is that cloud services are complex software 
components prone to vulnerabilities. Current cloud plat-
forms assume a flawed design where distributed cloud 
services fully trust each other. Consequently, a security 
breach in a single cloud service (due to an unpatched 
component version or misconfiguration) may allow 
adversaries to propagate attacks to other cloud services, 
producing security risks for any user’s cloud resources. 
Our solution OpenStackDP provides defenses to pro-
tect communications among services, hosts, nodes, and 
mechanisms but neither defense prevents a compro-
mised cloud service from misbehaving or propagating 
attacks. Current defenses against such cloud service vul-
nerabilities are often limited and we intend to study these 
internal-attacks systematically and more qualitatively.

Conclusions
Automatic network strategy optimization based on 
artificial intelligence enables engineers to perceive net-
work traffic conditions comprehensively, data response 
time, service transmission status, and other informa-
tion through automated learning and data analysis and 
automatically tune the network based on network traffic 
and health status changes. In addition, consistency and 
integrity checks of the tuning strategy are automatically 
performed to reduce the chance of errors and the risk of 
network operation.

We proposed an OpenStackDP security framework 
applicable to SDN-managed OpenStack Cloud infra-
structures. Softwarization and virtualization of network-
ing functions and services have changed the status quo 
of enterprise networks. The NIDS service architecture 
provides cloud tenants with efficient intrusion detection 
services. OpenStackDP makes it simple to create, man-
age, and terminate NIDS services.

Experiments conducted under OpenStack demonstrate 
that OpenStackDP achieved a detection rate of 97% even 
while maintaining low latency. The results show the poten-
tial of software-defined systems to become more wide-
spread and integrated with OpenStack, advancing this 
Open-Source platform to move fluidly into a complete 
integrated stack for virtualized data centers. This research 
combined SDN, NFV paradigms, and ML/AI tech-
niques to provide an intelligent and efficient data plane 
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and networking fabric for securing the OpenStack archi-
tecture. As stated previously, our contributions should 
directly impact how we secure virtual switches, network 
components, and SDN systems. Our proposed technique 
OpenStackDP surpassed the previous schemes in terms 
of detection performance, accuracy, and CPU use. Open-
StackDP consumes more resources, but overall, the trade-
off is acceptable. However, we evaluate only payloads that 
have not been encrypted using the Open SSL/TLS traffic 
in SDN. We plan to apply this high-performance data-
plane-based OpenStackDP scheme to 5G Clouds, which 
demands ultra-low latency, high bandwidth, better authen-
tication, and granular access control. We have advanced 
the state-of-the-art in cloud security research, designing 
software-defined OpenStack architectures and improving 
the agility and security posture of the Cloud Infrastructure.
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