
Krishnan et al. Journal of Cloud Computing (2023) 12:26
https://doi.org/10.1186/s13677-023-00406-w

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

OpenStackDP: a scalable network security
framework for SDN-based OpenStack cloud
infrastructure
Prabhakar Krishnan1*, Kurunandan Jain1, Amjad Aldweesh2, P. Prabu3 and Rajkumar Buyya4

Abstract

Network Intrusion Detection Systems (NIDS) and firewalls are the de facto solutions in the modern cloud to detect
cyberattacks and minimize potential hazards for tenant networks. Most of the existing firewalls, perimeter security,
and middlebox solutions are built on static rules/signatures or simple rule matching, making them inflexible, suscep-
tible to bugs, and difficult to introduce new services. This paper aims to improve network management in OpenStack
Clouds by taking advantage of the combination of software-defined networking (SDN), Network Function Virtualiza-
tion (NFV), and machine learning/artificial intelligence (ML/AI) and for making networks more predictable, reliable,
and secure. Artificial intelligence is being used to monitor the behavior of the virtual machines and applications
running in the OpenStack SDN cloud so that when any issues or degradations are noticed, the decision can be quickly
made on how to handle that issue, being able to analyze data in motion, starting at the edge. The OpenStackDP
framework comprises lightweight monitoring, anomaly-detecting intelligent sensors embedded in the data plane,
a threat analytics engine based on ML/AI algorithms running inside switch hardware/network co-processor, and
defensive actions deployed as virtual network functions (VNFs). This network data plane-based architecture makes
high-speed threat detection and rapid response possible and enables a much higher degree of security. We have built
the framework with advanced streaming analytics technologies, algorithms, and machine learning to draw knowl-
edge from this data that is in motion before the malicious traffic goes to the tenant compute nodes or long-term
data store. Cloud providers and users will benefit from improved Quality-of-Services (QoS) and faster recovery from
cyber-attacks and compromised switches. The multi-phase collaborative anomaly detection scheme demonstrates
an accuracy of 99.81%, average latencies of 0.27 ms, and response speed within 9 s. The simulations and analysis show
that the OpenStackDP network analytics framework substantially secures and outperforms prior SDN-based Open-
Stack solutions for Cloud architectures.

Keywords SDN, NFV, OpenStack networking, Cloud security, Intrusion detection, Machine learning, Analytics

Introduction
The rapid and broad adoption of Cloud computing ser-
vices [1] makes this technology infrastructure a target
for attacks. Also, in the last few years, dynamic and com-
plex traffic has become a problem for enterprise net-
works because of the growing number of cloud-based
and app-based services traversing zero-trust public net-
works. The community-driven cloud computing eco-sys-
tems such as OpenStack, Eucalyptus, and Open Nebula
offer various services, frameworks, and comprehensive

*Correspondence:
Prabhakar Krishnan
kprabhakar@am.amrita.edu
1 Center for Cybersecurity Systems and Networks, Amrita Vishwa
Vidyapeetham, Amritapuri-Campus, Kollam, Kerala, India
2 College of Computing and Information Technology, Shaqra University,
Riyadh 11911, Saudi Arabia
3 Department of Computer Science, Christ University, Bengaluru,
Karnataka, India
4 Cloud Computing and Distributed Systems (CLOUDS) Lab, School
of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00406-w&domain=pdf

Page 2 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

interfaces. However, most of these solutions lack secu-
rity and privacy guarantee for the tenants and the hosted
applications and users. The recent research report [2]
from Verizon concluded that 34% of attacks involved
insider attacks that exploit cloud networking vulner-
abilities. Cloud infrastructure service providers employ
security mechanisms such as Intrusion Prevention and
Detection Systems (IPS/IDS), perimeter security, threat
monitoring systems, and firewall gateways and run
anti-malware software/agents on end-point machines
or devices or tenant VMs. In the context of Cloud net-
working, the recent SDN/NFV [3] paradigms are emerg-
ing to redefine network architectures and provide new
opportunities to defend against cyberattacks. Security
and Privacy are essential when dealing with cloud ser-
vice providers and cyber security. Figure 1 shows how
traditional cloud models have evolved into SDN models.
SDN separates network intelligence from packet for-
warding/routing and offers high-performance program-
mable networking. The interactions between the control
and data planes happen via OpenFlow [4] protocol. Tra-
ditional network traffic management focuses on device
status and tracking the statistic counter values. It can
only measure network throughput and capacity, not the
full-service carrying scenario. Through end-to-end traffic
behavioral modeling and AI functionality, network traf-
fic analysis may construct a tightly coupled association
between network operational performance and security,
providing comprehensive technical support for optimiz-
ing network capacity and early warning of any security
threats. The network, user, and application proportions
give a risk score that appropriately reflects the current
network, user, and application operating conditions. The
intrinsic relationship between the data is then merged
to produce multi-dimensional correlations that help
detect network problems and malfunctions. To deliver

stream matching rules in the forwarding path of pack-
ets, this paper uses software-based network traffic ana-
lytics, monitoring, and security mechanisms, integration
of Open Virtual Network (OVN) SDN technologies [5],
and an in-line streaming AI Analyzer pipeline to con-
duct an in-depth analysis of the packets. By performing
Intrusion Detection and Prevention (IDS/IPS) system
functions as embedded logic (in-line) in the critical path
of OpenStack networking - OvS switch/bridge (as com-
pared to VM server/out-of-path model), we shorten the
time for dynamically deploying IDS in the network path-
ways. Using advanced SDN data plane switching (custom
OvS bridge) the complete traffic monitoring and analysis
are accomplished without any redundant traffic detours
across the tenant network.

Modern virtualized data centers have recently started
adopting SDN [6] and other virtualized network plat-
forms for complete network orchestration and pro-
tection services. The legacy approaches utilized the
routers’ features and switches to mirror the traffic from
one/more ports to a designed port on the same fabric,
a technique [7] called Switched Port Analyzer (SPAN)
filter. Rules and policies can be configured to copy all/
specific packets matching the criteria. The system con-
nected to the SPAN port on that switch will receive the
packets, scan for any malware or attacks, and enable the
response/mitigation action in that network. In a virtual-
ized cloud network, the SPAN function is implemented
in the software switch Open vSwitch [8] that mirrors the
selected packets. There are several variations between
standard computer networks and SDN. The open-source
community developed the OpenStack [9] cloud plat-
form, which is also deployed in production data cent-
ers. OpenStack consists of dozens of independent parts
called the OpenStack services. Internally, each Open-
Stack service comprises several processes. All services

Fig. 1 Traditional vs. SDN View

Page 3 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

have at least one API process listening, preprocessing,
and passing API requests on to other parts of the service.
The main process of the OpenStack Networking service
is called neutron-server [10], a Python daemon exposing
Neutron API and passing tenant requests to a suite of
plug-ins for additional processing. Neutron allows ten-
ants to create advanced virtual network topologies that
include services like firewalls, load balancers, virtual pri-
vate networks, etc. It is one of the most complex compo-
nents among OpenStack projects since it is built around
the core networking concepts. Cinder is the OpenStack
Block Storage service [11]. Cinder allows users to create
and delete block devices and manage the attachment of
block devices to VMs.

The major threats identified in the Open Stack envi-
ronment include the protection of the data during the
transmission of the data through the network API in
the Neutron networking and virtualization security dur-
ing the data replication in the Cinder Block Store. The
leading cause for these security risks is the open-source
nature and OpenStack widely adopting some security
algorithms that include their limitations. Though many
issues are being reported across the OpenStack plat-
form comprising some specified components such as
Nova, Neutron, Cinder Block store, and Horizon, the
security issues mainly tend to occur in the functioning
of the Neutron networking component. The OpenStack
plugin Tap-as-a-Service (TaaS) [12] supports mirroring

for the multi-hypervisor cloud environment. The future
cloud computing environment will be SDNFV-enabled
[5], as indicated in Fig. 2. Cloud infrastructure vendors
usually provide reactive solutions to customers’ unpre-
dictable traffic by launching pre-made VNF images.
While reactive systems can help in some cases, they are
not an optimal strategy. So, our research presents a pro-
active scalable programmable approach for elastically
scaling the service chain, monitoring threats, and dynam-
ically deploying defense mechanisms in SDNFV-enabled
OpenStack clouds. By separating access restrictions from
cloud capabilities at the network protocol level, cloud
service providers and tenant managers gain a global
view of their security perimeters: the entire data center
domain or individual tenants. The unified API and REST
interface can also modify security settings, especially pol-
icy setups. We advanced from our prior CloudSDN [13]
proposal and utilized the latest OpenStack Liberty [14]
framework for benchmarking.

The main contributions of this paper are:

• A comprehensive vulnerability analysis of the Open-
Stack networking environment.

• Software-based network traffic analytics, monitoring,
and security mechanisms in the switching/data plane
layer. Native integration of Open Virtual Network
(OVN) SDN technologies [5] in the OpenStack Cloud
platform [15] which consists of monitoring, analytics,

Fig. 2 The emerging SDNFV-enabled cloud

Page 4 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

and anomaly detection functions embedded in the
switches.

• Threat Score: Applications, the system plane, the data
plane, and the control plane all play a role in the com-
prehensive monitoring and scanning of networking
devices.

• Multi-dimensional correlation analysis: A wide range
of information, including network device statistic
counters, operational data, transmission data, users,
tenants, UDP, TCP/IP connections/sessions informa-
tion, application flows, and metadata of services and
policy configuration.

• OpenStack Networking Architecture with rede-
signed Neutron system consisting of modules: virtu-
alized/software vMon (Monitor), vTAP (Test Access
Port)/SPAN (Switched Port Analyzer) for monitoring
endpoint hosts or VMs in the tenant networks and
authentication functions in the management net-
work.

• A minimally invasive lightweight IDS and security
orchestration framework OpenStackDP for Open-
Stack enables the implementation of various security
and access control functions as loadable modules in
the data plane.

Through experiments, this paper demonstrates the effi-
cacy of OpenStackDP by putting it through its phases for
distinct types of attacks (covering about 90% of all known
network attacks). In addition to these situations, Open-
StackDP protection capabilities extend far beyond what
is covered here. These examples are provided to illustrate
how the system performs under a variety of traffic sce-
narios. We compared the related works and provided a
security perspective for SDN concepts for attack detec-
tion in the context of the OpenStack cloud ecosystem
and well-tested mitigation techniques to tackle them.
A comprehensive Security Analysis and Threat Model
Mitigation and Validity of our solution are done with the
STRIDE method [16]. The results and security analysis
based on the popular threat model from the evaluation
show that the SDN-based OpenStack system can improve
the performance of Cloud infrastructures in terms of
threat detection and mitigation compared to traditional
Linux networking mechanisms. Our studies were con-
ducted in an actual cloud computing infrastructure uti-
lizing the OpenStack platform and an SDN environment
using the OpenDayLight Controller. Still, they could eas-
ily be adapted to other controllers. We compared it with
DragonFlow [17], a distributed SDN controller for Open-
Stack Neutron supporting distributed Switching, Rout-
ing, DHCP, and more.

The rest of this paper is organized as follows. Back-
ground section presents the background discussion of

relevant technologies. Related work section gives an
overview of the related work. Proposed SDN-enabled
architecture and Design and implementation sections
describe the proposed solution. Performance evaluation
section provides the results of the experiments, result
discussion and limitations of the solution, with a sketch
of future work. Conclusions section concludes the paper.

Background
With the rapid adoption of SDN architectures, modern
data centers have embraced softwarized networking for
creating Software Defined Clouds (SD-Cloud). Open-
Stack is an open-source platform and an eco-system for
cloud services and provides an efficient and rich set of
APIs to build and manage cloud platforms [15]. Open-
Stack embraces a modular stateless architecture of
services.

OpenStack architecture and SDN integration
Recently the Cloud service providers and enterprise data
centers have migrated the services from hardware appli-
ances to softwarized NFV platforms with Virtualized
Network Functions (VNFs). The SDN communities have
been actively developing open-source controller soft-
ware platforms such as Open Network Operating System
(ONOS) and OpenDayLight (ODL) that offer promising
solutions to virtual resource management and network
orchestration problems. A Central DB stores all the con-
figurations and key settings (such as users, credentials,
and instances) and is accessible to authorized compo-
nent services. An OpenStack deployment environment is
structured into network domains (ND), as seen in Fig. 3.
The public ND includes the external, public, and API
networks. The guest ND only has one network. NDs are
utilized for servicing activities and internal management
communication.

OpenStack requires SDN controllers to connect
with Neutron using REST API (Representational State
Transfer Interface). Current solutions are Floodlight,
OpenDayLight, and Ryu. Each solution supports differ-
ent OpenFlow requirements and TLS implementations
(Transport Layer Security). The OpenDayLight (ODL)
platform [18] is the widespread implementation of SDN
Controllers compliant with OpenFlow standards, devel-
oped and maintained by the community. The neutron is
one of the core technologies of the OpenStack architec-
ture, which enables the interconnection of all the nodes
on the internal network and routes through the gateway
to an external internet connection. Networking-ODL [19]
is an ODL plugin for OpenStack. The ODL controller
uses Netvirt, configuring the Open vSwitch (OVS) net-
working settings. The IP/MAC routing, security classes,
and other network abstractions are all elements of this

Page 5 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

networking model. The ODL can be deployed in differ-
ent modes, customizing the components to enable SDN
to interoperate with OpenStack architecture. Some spe-
cific use-cases are i) Intent-driven data model; ii) OVSDB
model that leverages NFV, OvS and includes southbound
OpenFlow interface; iii) Virtual Tenant Network: ODL
VTN is developed for multi-domain tenant virtualized
networks and installed as a plugin to controller applica-
tion. ODL supports RESTful API functions for Layer2
networking. The main package (driver module) network-
ing-odl acts as a redirector/proxying/routing component
interfacing between the SDN abstractions and Open-
Stack security/policy configurations. The networking-odl
module includes functions to create new networks and
establish security groups for tenants. DragonFlow [17]
for the OpenStack platform doesn’t aim to become a
full-featured SDN controller, as it just enables DVR and
virtual networking connectivity simply and easily that
integrate almost seamlessly on top of OpenStack Neu-
tron without any additional components or installations.

Security threats for an OpenStack cloud
OpenStack is, by nature, a large project with numer-
ous smaller projects. As OpenStack gains momentum,
new features are integrated and delivered continuously,

bringing new vulnerabilities. Recent Glibc, OpenSSL
flaws, and log4j logging library vulnerabilities (most
used Java apps) highlight how a single component can
expose a whole system. The attack surface is exten-
sive with so many Open-Source new functionalities in
OpenStack. Open-source components were found in
99% of codebases in the 2020 Open-Source Security and
Risk Analysis Report [20] from Synopsys. Open-Source
Software (OSS) benefits from the community approach
but creates an attack surface. Malicious developers can
introduce back doors into an OSS system, which can be
exploited in various ways, including reusing previously
used vulnerabilities and simply making mistakes. Attacks
against software that relies on a vulnerable piece of OSS
are possible because developers reuse open-source soft-
ware (OSS). Patching open-source bugs become increas-
ingly challenging as the flaws might spread throughout
an organization’s network. As OpenStack private clouds
become increasingly popular in the development and
operation (DevOps) among enterprises, so do the risk
of incurring attacks. The most common vulnerabilities
between 2011 and 2019 reported [21] were Distributed
Denial of Service (DDoS) attacks and information-gath-
ering and injection flaws (SQL) vulnerabilities. These
flaws affect cloud users and may lead to further harmful

Fig. 3 OpenStack’s Network Infrastructure

Page 6 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

attacks. We must first identify potential security con-
cerns and attack routes to offer mitigation methods.
With a particular emphasis on software-based network-
ing architecture, it is typical to classify security threats
into the following categories by using the standard
STRIDE threat model [16]:

▪ Spoofing – Pretending to be other than one’s real
identity.
▪ Tampering – Modifying data without authoriza-
tion.
▪ Repudiation – misrepresenting responsibility.
▪ Information disclosure – Providing information to
someone not authorized to see it. “
▪ Denial of service – Absorbing the service
resources.
▪ Escalation of privileges – Allowing to do critical
operations above the allowed level without authori-
zation.
▪ Cloud threats – Outsider attacks affecting service
providers or tenants.
▪ Unauthorized VMs – Malicious VMs on end-
points, un-attested/not-licensed software run by
rogue tenants.

OpenStack networking security
Physical switches interconnect virtualized servers in a
cloud network, whereas an overlay (virtual) network con-
nects the VMs. OpenStack Networking allows users to
manage their networks. Users can be authorized to uti-
lize specific project networking methods and objects by
using a policy and configuration manager. This flexible
management approach may impact network availability,
security, and OpenStack infrastructure posture.

Neutron security
Utilizing cloud infrastructure services, neutron provides
networking services and addresses for VMs (tenants).
Neutron architecture is based on plugins, so it is essen-
tial to understand the required plugins and their usage
for third-party solutions and disable any unnecessary
plugins. Some potential solutions that can be used to
resolve the risks:

• Isolated management network for OpenStack ser-
vices.

• L2 isolation with VLAN segmentation: VLAN seg-
mentation reduces packet-sniffing capabilities and
decreases insider threats. Protocol-level segmenta-
tion separates protocols into specific LAN domains/
segments. VLAN-enabled L2 bridge learns the asso-
ciation between MAC and vNIC (in compute nodes)

and implements a virtual switching interface for the
tenant network.

• L2 protection with Generic Routing Encapsulation
(GRE): GRE tunnel connects two endpoints (a fire-
wall and another appliance) in a point-to-point, logi-
cal link. The packets travel through the GRE tunnel
(over a transit network such as the internet) through
the cloud service which can enforce policies on the
packets. However, GRE tunneling does not support
NAT and has no QoS functionalities.

• Using the Security group in Neutron and disabling
security groups in Nova (all calls are forwarded to
Neutron).

• Securing at the Neutron API endpoints with SSL/
TLS.

• Bridging an L2 firewall with iptables and ebtables:
iptables (manipulate the Netfilter Linux modules at
IP level) along with ebtables (Filter at Ethernet Frame
level) rules to prevent MAC spoofing and ARP spoof-
ing attacks.

• Using rate-limiting network quotas to mitigate DoS
attacks.

Security group
The security group capability is very versatile, and it for-
wards security group calls to the OpenStack Network-
ing API (If not, both services apply competing security
policies). A security group’s regulations are included
within the group definition. Administrators and projects
can specify the type of traffic (in/out) that can travel via
a virtual interface port using security groups and rules.
OpenStack Networking assigns a virtual interface port to
a security group. Refer to the Networking Security Group
Behavior documentation [22] for further information
on port security groups. Security groups encapsulate all
components that govern the inbound and outbound traf-
fic to tenants. Using the OpenStack group, the compute
instance’s firewall rules are enhanced. A single security
group is needed to control traffic to multiple compute
instances. Various methods can be used to create net-
work security rules and access control policies.

Virtual switch security
Virtual switches enable flexible and “software-defined”
interconnection of virtual machines in SDN-based cloud
systems. Virtual switches (on servers) provide communi-
cation and isolation between virtual machines. A virtual
switch is not only more vulnerable to attacks than a tra-
ditional switch, but it also has a more significant impact.
For OpenStack, Xen, Pica8, and other software systems,
Open vSwitch is the default virtual switch. The OVSDB
protocol allows the switch controller to handle the OVS

Page 7 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

database. Figure 4 depicts the security implications of
current virtual switch designs. We did a qualitative study
of attacker models for virtual switches. We posit that cur-
rent implementations of virtual switches in Cloud infra-
structures are vulnerable. Virtual switches are widely
used in data centers and receive unfiltered network pack-
ets from virtual machines.

• Virtual switches run software processes such as
“controller” on virtualized servers with higher (root)
access. These features make data plane attacks risky.
In addition to existing security assumptions (OvS
runs as root), virtualization (co-location with other
critical cloud services), logically centralized control
plane (bi-directional channel to the controller), and
non-standard routing protocols (e.g., MPLS), the
attack can be destructive.

• A software flaw in a virtual switch’s packet process-
ing logic can jeopardize both the virtual switch and
the operating systems. In the virtualization layer, an
attacker can use co-location, centralized control, and
complex data processing to launch an assault, scan
the network and exfiltrate sensitive data (e.g., crypto-
graphic key, password credentials).

• Attackers can exploit the controller’s global rout-
ing/flow tables to modify the flow rules, potentially
breaking network policies, divert traffic, pivot, or
gain lateral entry to other internal systems in the
management network, such as the identity service
(Keystone) or the VM image files (to install back-
door/hooks).

New opportunities in SDN‑managed clouds
Research on virtual switches and their software imple-
mentations is carried out extensively, and the popular
technologies that came out are Open vSwitch, IP for-
warding, iptables, Linux Bridge and OVS-DPDK. The

Cloud-based architectures pose some limitations to the
network performance due to the suboptimal design of
the OpenStack infrastructure. In enterprise cloud infra-
structures, the software-agent-based neutron compo-
nent will become the choking point and not scale to
ever-increasing isolation requirements between the ten-
ants of the clouds. The OpenStack Neutron system faces
severe limitations in networking and routing functions.
The Linux bridge is outdated and is one of the critical
architectural flaws in the OpenStack-based Cloud plat-
form. This is where the SDN model can bring in the
necessarily centralized orchestration and routing policy
decisions. The corresponding routing functions (L2/3)
can be distributed across the data plane switches. The
southbound OpenFlow protocol can manage the tenant
network’s routing policies, flow tables, and policies con-
figured through the OpenStack RESTful API. We stud-
ied the interplay and integration of the SDN-based Open
vSwitch bridge in the place of a Linux bridge. We man-
aged the enforcement of security group and access-con-
trol policies through OpenFlow flow rules. This practice
improves the efficiency of the interconnect/commu-
nication due to programmability and scales well as the
switching control configured into the OvS switches of
compute nodes [8]. The stateful firewalling function can
be accomplished by leveraging the OvS OpenFlow pipe-
line with group tables on the br-int bridge. Integrating
diverse components in OpenStack with virtual switches
could lead to bottlenecks and reduce scalability and over-
all performance [23]. The research article [24] defined an
improved and scalable software firewall design for Open-
Stack using the SDN/NFV. Most of the studies that sug-
gested providing end-to-end security and limiting threats
used a controller-based approach; consequently, any
threats that arise in the network can only be predicted
with the controller’s participation. This leads to overhead
due to additional complexity in flow processing, control
plane saturation, and flow table vulnerabilities. Although

Fig. 4 Overview of Security Implications

Page 8 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

using SDN is a feasible way to incorporate a switch-cen-
tric structure, it is a great challenge to adapt SDN com-
ponents to data center networks (DCNs). Securing cloud
infrastructures comprises five key aspects- Security
Standards, Network, Access Control, Cloud infrastruc-
ture, and Data. Moving from a legacy network to an SDN
paradigm for Cloud infrastructures has unintended con-
sequences, such as sub-optimal flow-rule management
and multi-tenant provisioning in clouds. To this end, we
propose natively integrating the SDN and OpenStack
platform with a scalable data plane and centralized secu-
rity orchestration on the controller.

Related work
This section reviews critical studies in the relevant
research proposals of software-defined OpenStack archi-
tecture for cloud infrastructure. The goal is to draw
inspiration from these efforts and identify those gaps
that motivated this research work. OpenStack security
research [25] states that the bridges between the domains
and tenant networks are vulnerable. They identify vul-
nerabilities in cloud providers’ web-based interfaces and
conclude in their research that the OpenStack manage-
ment platform in default configuration is more vulner-
able to internal attacks than external threats. Software
countermeasures and SDN-based network security [26]
may be used to prevent specific attacks against virtual
switches in the OpenStack infrastructure. The hypervisor
can be detached from VMs and establish a direct link to
the I/O pipeline (e.g., network interface hardware adapt-
ers). One existing approach is remote attestation for OvS
flow tables, as prototyped by Jacquin et al. [27]. With
their prototype, the authors perform remote attestation
of an OvS flow table in 953 ms. While we did not imple-
ment remote attestation, we argue that their work, in
principle, demonstrates the feasibility of this technique,
also beyond the remote attestation of flow tables. How-
ever, we need a way to reduce the overhead, e.g., by using
a redundant set of OVS switches, since a one-second net-
work outage is not practically feasible. Isolation of VMs
can be done by leveraging an Open-Flow centric IDS
architecture for isolating misbehaving nodes (VMs) in
the cloud. Hence in the context of SDN, we can leverage a
presumed security weakness (centralized operation) into
an opportunity to defend infrastructure from misbehav-
ing nodes. Depending on the threat model, multiple IDS/
firewalls may be chained together, or virtual appliances
may be used for such firewalling.

For network monitoring, most studies proposed using
hardware TAP/SPAN port mirroring in switches. But
this method requires a set of flow rules to switch Open-
Flow tables to sample/capture the flows matching the
criteria, thus increasing the usage of critical resources

in commodity switches. NetAlytics [28] minimized
the burden of real-time surveillance in data centers by
positioning the software instantiations of controller
and aggregator in the end-point services, which deliver
optimal performance due to load-balancing and band-
width management. The Packet-I/O transfer across the
networking stack from physical NIC is accelerated by
exploiting DPDK technology. The authors of vTAP [29]
used the DPDK for implementing the high-speed Data-
path in the Open vSwitch (OvS bridge) in OpenStack.
The policies are installed in the virtual switches as flow
rules through a controller application. They demon-
strated monitoring applications and use cases for SDN-
managed OpenStack infrastructure. The authors of [30]
implemented an NFV platform to solve service chaining
(SFC) by integrating an SDN controller with OpenStack
cloud infrastructure. Since this is not a native solution, it
required custom modules to be installed (intrusive and
not generic) across many components in the environ-
ment. The ONOS team developed SONA [31], which
implements Neutron to integrate/bridge between Open-
Stack infrastructure with OpenDayLight natively. The
project includes (i) “Networking-ONOS,” a modular sys-
tem with Neutron APIs, and the cluster itself transpar-
ently manages the networking. (ii) “Networking-ODL” is a
package with a driver and plugin for OpenDayLight. They
experimented with SDN in their paper [32] Cloud-based
IDS solution and contributed new OpenFlow features
such as flow-match/send-to-action and flow-match/send-
to-to-controller. OpenStack/SDN integration with Flood-
light and RYU controller was conducted by Forester et al.
[33], and they utilized Control-plane software to protect
the data. At the same time, the administration plane
receives an API to enforce the threat detection policies
on the firewall. They only present a conceptual design
without data and analysis findings.

Extensive research and solution for DDoS attacks,
Intrusion detection, and defense for securing Open-
Stack Clouds are presented in [34, 35]. The OpenStack-
Emu [36] created a platform combining OpenDayLight
SDN Controller and a large-scale network emulator
called Common Open Research Emulator (CORE). The
OpenStack nodes are interconnected through a TAP
interface and the programmable Open vSwitch (OvS)
software data plane. This paper [37] presents a simu-
lation environment and tool called CloudSimSDN to
experiment with SDN-based cloud use cases. In this
research [38], OpenStack neutron components (OF-
Agent, ML2, and Ryu) in SDN OpenDayLight Con-
troller were tested for the ability to maintain network
health and failure recovery features in the face of net-
work disruptions. Another research [39] proposed an
SDN-based firewall solution for Cloud security. Most

Page 9 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

research focused on public domain security, which
shows potential customers the benefits of cloud com-
puting. By exploiting the vulnerabilities in the SDN
layers (Thimmaraju [21]), the attackers can penetrate
the networking components and compromise Open-
Stack’s cloud infrastructure. A Cloud Provider-side
vulnerability may also compromise the entire infra-
structure, and this exposure prompted a deeper look
into infrastructure security flaws, focusing on the pro-
vider’s procedures. Meridian [23] focuses on cloud data
center services utilizing SDN technologies and provides
inter-subnet tenant isolation. The OpenStack Security
Modules (OSM) [40] project addressed the access-
control function and has built a new service called
Patron and an attachment module called Access End-
point Middleware (AEM). This framework can replace
existing OpenStack and other platform permission
checks. Patron, like the previous efforts, tries to offer
cloud access controls. Jin et al. [41] proposed formal
ABAC and RBAC standard mechanisms and defined
core concepts such as domains, projects, and roles for
cross-domain authentication as an Infrastructure-as-
a-Service (IaaSad) model for OpenStack. IaaSad pro-
vides fine-grained tenant access management. But this
work only supports isolated tenants, not cross-tenant
access control. Moreover, their model is coupled with
ABAC, limiting cloud users’ ability to create policies
based on unique models. The current complex Open-
Stack platform must modularize its code by delivering
access control, authentication, and firewall as services
[42], exactly like other core cloud functionalities.
Table 1 lists the prior studies that attempted to solve
network security in OpenStack architecture. Unlike

the previous studies, our work focuses on the dynamic
setting and programmability of tenants’ network poli-
cies, access control, and security management in cloud
environments.

Our research attempted the native integration of
SDN architecture within the OpenStack ecosystem. We
focused on improving security while sustaining the per-
formance of cloud computation in the network. Open-
StackDP consolidated the network analytics, monitoring,
and security functionalities to reduce invasiveness into
one “huge hook” at the Networking gateway switch/data
plane.

Proposed SDN‑enabled architecture
Based on our previous works VARMAN [47] and Open-
PATH [48], the data plane (OpenStackDP) is designed for
the cloud. The overall architecture of the OpenStackDP
framework (see Fig. 6) consists of the following major
components: (i) Monitoring mechanism vMon operating
close to the line rate; (ii) Light-weight Anomaly Detec-
tion mechanism vIDS; (iii) Heavy-weight attack classifi-
cation and Malware analysis system NIDS (Monitor); (iv)
Applications for Incident response and policy control
(DTARS App). (v) Traffic monitoring and route manipu-
lation modules (deployed as Virtual network functions
VNF) within the data plane OvS switches [39].

Threat model
Threat modeling is a technique for optimizing security
parameters by defining objectives, metrics, attacks, and
countermeasures to prevent or reduce the consequences
of system threats. Numerous approaches exist for ana-
lyzing the security of a system, including STRIDE [16]

Table 1 Studies on OpenStack network security

Study Addressed Security Domain Focused upon

Public Guest Management Data Control Plane Data Plan Client Provider

Meridan et al. [23] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Jiang et al. [32] ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
Foresta et al. [33] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
Xu et al. [34] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓
Abdulqadder et al. [43] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Jin et al. [41] ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗
Luo et al. [40] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
Thimmaraju et al. [21] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Li et al. [39] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Benjamin et al. [44] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
Dinh et al. [45] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
X. Du et al. [46] ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗
OpenStackDP [This Work] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Page 10 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

and PASTA [49]. Modeling techniques are used to gen-
erate an abstract representation of the system and, iden-
tify the goals and methods of the potential attackers,
enumerate a list of possible dangers that could occur.
There has been a slew of approaches to threat mod-
eling created. Combined, they provide a complete pic-
ture of prospective risks. Some strategies focus on risk
or privacy concerns, while others are broad-based. The
STRIDE approach categorizes possible risks posed to a
system even in the absence of the actual plan for test-
ing. STRIDE is an acronym that represents six distinct
threat categories: “Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Privilege
Elevation.” STRIDE is currently the most mature threat-
modeling method, and it applies a broad set of known
threats based on its name, which is a mnemonic. The
mapping of security properties to the STRIDE threat
matrix [50] is illustrated in Table 2.

We assume that the cloud infrastructure manage-
ment system has implementation flaws and vulnerabili-
ties, which malicious entities can potentially exploit. We
trust cloud providers and administrators but think some
cloud users and operators may be malicious. We believe
that not all tenants trust each other. Although our audit-
ing framework may catch violations of specified security
properties due to either misconfiguration or exploits of
vulnerabilities, our focus is on detecting specific intru-
sions attacks. SDN switches, as well as the trade-off
between data and control planes, are questioned in this
paper. Given the prevalence of virtual switches like OvS
in cloud operating systems and that most cloud operating
systems like OpenStack are used by IT, telecommunica-
tions, education and research, and financial institutions,
our threat model is alarming. It is possible to exploit the
vulnerabilities found in the OpenStack cloud operat-
ing system to harm critical services, such as Managed-
compute resources (Hypervisors and Guest VMs), image
management, block storage, network management, and
identity management (of Hypervisor and Guest VMs).
These services are all part of OpenStack, a cloud oper-
ating system. Because of the significance and critical
location of virtual switches in SDN-based clouds and in

general, we present an accurate and appropriate threat
model for virtual switches in this study.

Contrary to prior work, we identify the virtual switch as
a critical core component that must be protected against
direct attacks, e.g., malformed packets. The attacker is
looking for a cloud architecture that leverages virtual
switches for network virtualization. To restrict the scope
of this model, we’re going to pretend our attacker has
limited access to the public internet. The attacker can-
not gain physical access to any of the cloud machines. An
attacker can get into a cloud environment in two ways:
by renting a single virtual machine or exploiting an exist-
ing cloud-based vulnerability, such as a web application
vulnerability. We take it for granted that the cloud service
provider adheres to industry standards for data security
[22]. As a result, at least three separate networks (physi-
cal and virtual) for the management, tenants/guests, and
outside traffic are to consider. In addition, we take it for
granted that all cloud servers are running the same set of
applications. We already discussed Fig. 5 in Background
section, which illustrates the security risks associated
with state-of-the-art virtual switch designs. We did a
qualitative study of studies related to attacker models for
virtual cloud switches.

Monitoring and anomaly detection components
Using multi-dimensional correlations formed by inte-
grating the data’s inherent relationships, network prob-
lems and malfunctions can be detected and addressed
quickly. With the switch’s active tap mechanism (In-Band
telemetry), information is sent to the collector module in
real-time and at high speed, making it possible to moni-
tor tenant network performance and cloud activities in
real-time. Anomaly detection and dynamic prediction of
network measurements can be supported by time-series
data decomposition and machine learning [51–53]. Ana-
lyzing data for anomalies in the past is the primary goal
of anomaly analysis, while dynamic forecasting is used to
predict future data trends. The historical data gathered
by devices is used to develop and train a dynamic predic-
tion AI model for anomaly detection in the traffic analysis
using a dynamic baseline technique. Automatic learning

Table 2 Security property mapped into STRIDE model

X denotes threat category for a particular component

Security property Threat category Interactors Processes Data store Data flows

Authentication Spoofing X X

Integrity Tampering X X X

Non-repudiation Repudiation X X

Confidentiality Information disclosure X X X

Availability Denial of Service X X X

Authorization Elevation of privilege X

Page 11 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

and recurrent self-correction based on past data over
a given length of time might enhance the baseline. The
dynamic baseline-based anomaly detection algorithm
can better reflect the current state of the network’s oper-
ational conditions than other methods. Figure 5 shows
the overall sequence of operations in the vMon applica-
tion. The central management policies can be interpreted
at a higher level, while network packets are handled on
a fine-grained level using the controller’s global view.
These functionalities run as modules in the data plane
and are used to track network behavior. Until we per-
form flow-based detection, the vMon module must col-
lect flow-related statistics from the OvS switches. This
data collector collects flow data and exports it directly
to the next level. Many data collection techniques can be
employed.

Switch monitor
This module monitors the switch counters, manages the
switch hardware ports and configurations, static thresh-
olds, alarms, and meters the traffic at the packet level.

Flow monitor
This module classifies short-lived/long-lived malign/
benign flows and automatically detects pre-cursors
to impending attacks. The flow rules can dynamically

update the sampling rate, packet headers, and action
handler at the switch flow table.

Match‑action
This unit extracts network metadata from the transport
layer and application headers of incoming packets and
takes actions based on the extended Match field com-
posed of network events besides the original OpenFlow
Match field.

We keep the anomaly detection and tracking processes
decoupled. Therefore, any flow statistics collection sys-
tem can be employed if it can access the upstream unit.
We used OpenFlow samples exported from the OvS
switches coarse-grained tracking (first level of anomaly
detection). It can identify abnormalities in the traffic data
and act on them. It will trigger the fine-grained attack
classification algorithm (second-level IDS) to identify the
attack. The architecture is highly flexible and scalable,
allowing administrators to pick algorithms depending on
the network dynamics and complex needs.

Feature selection
A NIDS’s main objective is to choose/extract robust
network statistics that can distinguish aberrant behav-
ior from typical network activities. Most existing intru-
sion detection systems use network flow data (e.g.,

Fig. 5 Flow Chart of the vMon Application

Page 12 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

“Netflow, sflow, ipfix”). These five basic metrics meas-
ure the network’s behavior:

▪ Flow Count: A flow/session consists of packets
going from a specific source to a particular destina-
tion. (“source IP/port, destination IP/port, protocol”)
▪ Packet Count: The total packets in a flow.
▪ Byte Count: Bytes per second in a flow over a given
amount of time.
▪ Packet Size: A packet’s average number of bytes is
over a period.
▪ Flow Behavior: The “Flow Count/Packet Size” Ratio.
Anomaly is quantified using this metric. Since most
probing or surveillance attacks initiate multiple con-
nections with little packets, the higher the ratio value,
the more anomalous the flows will be.

Based on the above five metrics, we define a set of fea-
tures to describe network traffic behavior. Let F denote
the feature space of network flows; a 15- dimensional
feature vector f∈F can be represented as {f1, f2, …
f15}, where the meaning of each feature is explained in
Table 3. A novel experimental hybrid intrusion detection
system is presented that combines the highly accurate
“signature-based” and “anomaly-based” IDS (that detects
unknown attacks based on some specific criteria.

Access control and enforcement services
vACE (Access Control and Enforcement) is a request
manager that sits between clients and cloud services in

the SDN data plane. The framework provides access
control services to enforce policies on other compo-
nents, such as compute, image, and network. vACE is an
attachment module that filters and mediates requests on
the target service’s behalf. Based on the policy, the SDN
controller chooses whether to authorize this access. SDN
Controller’s primary functions are access control, veri-
fication, policy storage, and update for the entire cloud.
It manages the REST interfaces. It is divided into three
sections:

• API: acts as the vACE service’s REST interface.
• Verify: reviews the policy’s access rules and returns

an access ruling in response to the vACE inquiry.
• Update: maintains the storage of all access control

policies, manages policy updates, and cache timings.

In response to a user request, vACE issues an
authorization request to the SDN Controller. All the
main OpenStack functions are defined as API calls
that may be called via a web server gateway interface
(WSGI). It is envisaged that vACE will be able to inter-
cept this interface and filter all incoming requests. All
connections to the cloud are mediated and limited as
a result. There are protected/privileged cloud func-
tions that are not accessible via REST calls but require
access restriction.

DTARS applications
Policy management
The ODL-based application plays a central role in Open-
StackDP security. It functions as the Central Policy Man-
ager (CPM) and flow rule auto-configuration for OVS
(data plane). A TAP policy management interface is
supported (addition, removal, and modification) and is
described in terms of OpenFlow rules and version 1.1,
which extends it to 44 fields. This application translates
the high-level policy into rules installed into OpenFlow
switches. For example, TAP policy #1 in Table 4 enables
its Monitor to only receive the duplication of the HTTP
traffic from 10.1.1.5 to 10.1.1.6 by specifying the IPv4
protocol value as 6 (TCP) and the (TCP) destination port
number as 80. Because a TAP policy is applied to the data
plane in the form of OpenFlow flow rules, we can dynam-
ically extend the Filtering fields depending on the target
network used to offer more granularity on TAP policy
specification. The network administrators use a global
network view offered by the central SDN controller for
creating a policy definition (text/JSON/XML/YANG)
manifesto and run-time management. The DTARS appli-
cation converts these high-level policy definitions into
specific OpenFlow flow rules to be installed into related

Table 3 Feature set collected at DP switches

Features Description

f1 Number of TCP Flows per Minute

f2 Number of UDP Flows per Minute

f3 Number of ICMP Flows per Minute

f4 Average Number of TCP Packets per Flow over 1 Minute

f5 Average Number of UDP Packets per Flow over 1 Minute

f6 Average Number of ICMP Packets per Flow over 1 Minute

f7 Average Number of Bytes per TCP Flow over 1 Minute

f8 Average Number of Bytes per UDP Flow over 1 Minute

f9 Average Number of Bytes per ICMP Flow over 1 Minute

f10 Average Number of Bytes per TCP Packet over 1 Minute

f11 Average Number of Bytes per UDP Packet over 1 Minute

f12 Average Number of Bytes per ICMP Packet over 1 Minute

f13 Ratio of Number of flows to Bytes per Packet (TCP) over
1 Minute

f14 Ratio of Number of flows to Bytes per Packet (UDP) over
1 Minute

f15 Ratio of Number of flows to Bytes per Packet (ICMP) over
1 Minute

Page 13 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Ta
bl

e
4

Ex
am

pl
e

of
 TA

P
hi

gh
-le

ve
l p

ol
ic

y
sp

ec
ifi

ca
tio

n
in

 D
TA

RS
 a

pp
lic

at
io

n

TA
P

Po
lic

y
Id

en
tifi

er
 fi

el
ds

 (m
an

da
to

ry
)

Fi
lte

ri
ng

 fi
el

ds
 (O

pt
io

na
l)

Se
nd

er
 M

A
C

Se
nd

er
 IP

Re
ce

iv
er

 M
A

C
Re

ce
iv

er
 IP

M
on

ito
r M

A
C

M
on

ito
r I

P
IP

v4
 P

ro
to

co
l

VL
A

N
 ID

SR
C

Po
rt

 n
o

D
ST

 P
or

t n
o

O
th

er
 O

F
Fi

el
ds

Po
lic

y#
1

74
:8

f:3
c:

 b
a:

91
:0

5
10

.1
.1

.5
74

:8
f:3

c:
 b

a:
91

:0
6

10
.1

.1
.6

74
:8

f:3
c:

 b
a:

91
:0

7
10

.1
.1

.7
6

(T
C

P)
*

*
80

–

Po
lic

y#
2

74
:8

f:3
c:

 b
a:

91
:0

5
10

.1
.1

.5
74

:8
f:3

c:
 b

a:
91

:0
6

10
.1

.1
.6

74
:8

f:3
c:

 b
a:

91
:0

8
10

.1
.1

.8
18

 (U
D

P)
10

8
*

*
M

PL
S_

LA
BE

L
=

 1
0

Po
lic

y#
3

74
:8

f:3
c:

 b
a:

91
:0

6
10

.1
.1

.6
74

:8
f:3

c:
 b

a:
91

:0
5

10
.1

.1
.5

74
:8

f:3
c:

 b
a:

91
:0

9
10

.1
.1

.9
6

(T
C

P)
20

0
*

80
IP

_E
C

N
 =

 9

Page 14 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

switches. We have two flow rules in the data plane:
rewriting and recovery. The rewriting is built into the
Sender VM’s OVS bridge (sender edge OVS). This kind
of flow rule has one flow entry and two matching classes.
If there is a match in the target-action edge of the sender
with the corresponding OVSDN, access is delegated to
that policy. The table method can alter the MAC and IP
address (e.g., VLAN tagging). This single flow needs to
only adhere to a TAP rule. When the MAC or IP address
rewrite is complete, the last rule is applied to restore the
contents. The recovery rule is related to the VM table in
the OVS bridge.

Attack mitigation
Malicious flows can be identified by packet inspection.
The second function calculates malicious flows based
on the source IP address, while the third creates and
returns legit packets. We group more malicious flows
into more extensive flow entries to improve scalability.
The level of the attack and OvS device restrictions (flow
capability requirement) must be met by the opera-
tor (e.g., the attack may be of a low rate, or a flooding
attack, or the operator might want to block all mali-
cious sources or might leave some unblocked).

Design and implementation
The OpenStackDP framework (Fig. 6) comprises the
following essential layers.

• Infrastructure (OpenStack Nova): This layer consists
of virtual/physical machines, switches, and devices.

• Switches: OpenFlow/hybrid switches on the Edge.
Flows with suspicious packets are flagged for addi-
tional investigation.

• Control Plane: SDN Controller (“OpenDayLight”)
program and user applications are customized with
extension monitoring, flow classification, and attack
detection logic. It invokes the defense action to send
commands (encapsulating the -matching- action) to
the switch(es) upstream path traveled by the mali-
cious traffic.

• Security Controller: This enforces security policies on
the tenant network and external access through the
OvS switch agents.

• Cloud Admin: Cloud computing platform and man-
agement applications (e.g., OpenStack) are extended
with improved Neutron for collaborating with SDN.

• SDN Modules: This includes networking-sfc, network-
ing-odl, and NetVirt. The main functions are auto-

Fig. 6 SDN-enabled OpenStack Architecture (OpenStackDP)

Page 15 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

scaling and VNF placement. It manages traffic steer-
ing in the tenant network and north-south traffic to
public internet access.

Once OpenStackDP starts running, attack sensors on
the OvS switch monitor the packet stream/flows that
pass through them. The coarse-grained anomaly detec-
tion detects malicious or abnormal flows (e.g., DoS
attacks). As the data plane is where packets are for-
warded and spend most of the transit time, leveraging the
resources on switches for packet inspection and making
local routing decisions is the logical/optimal case. Ena-
bling dynamic defense mechanisms and programmable
security perimeter in the data plane and tenant network
is the critical strategy in our proposal.

Stateful SDN firewall
OpenStackDP framework utilizes the stateful SDN
architecture implemented in [54]. We offer an

intelligent SDN data plane-based firewall (see Fig. 7)
that analyses the contents of a packet to identify mali-
cious traffic. Using OpenStackDP, harmful traffic
may be quickly discarded to protect the perimeter of
company networks with an intelligent SDN firewall.
The payload of a packet can be extracted using Open
vSwitch (OvS) before it is matched against flow tables.
All payloads will be sent to the SDN controller to
make future judgments. The SDN controller has access
to a machine learning firewall service to help assess
whether a payload is benign or malicious. DPMonitor,
Firewall agent, and payload extraction are the three
main components.

Payload extraction
The payload of the packets received by the SDN data-
path is extracted to perform a more thorough analy-
sis of the data. A datapath module in the OvS stack
receives all packets from external networks before

Fig. 7 Intelligent SDN-based Firewall in Network Node

Page 16 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

extracting key values (such as MAC-layer and net-
work-layer messages) and matching them with flow
tables cached in the kernel.

DPMonitor (vMon)
The DPMonitor engine in the datapath monitors pay-
loads from the switch stack. It invokes other applica-
tion agents such as vMon and vIDS.

Firewall agent application (vIDS)
As described in the algorithm (Fig. 8), the stateful firewall
filter application is integrated into the SDN OVS data
plane for packet integrity analysis. The packet is dropped
or forwarded after the inspection is complete. Next, the

IP addresses/ports and session states are tracked and fil-
tered. The application has primarily been instantiated for
TCP communications monitoring — states, changes, and
behavior.

OpenStack neutron SDN layers
Figure 9 illustrates the connectivity between SDN and
OpenStack networking components. SDN services are
specified in Python classes and called by the Neutron
layer. The main package (driver module) networking-odl
acts as a redirector/proxying/routing component inter-
facing between the SDN abstractions and OpenStack
security/policy configurations. This module includes
functions to create new networks and establish security
groups for tenants.

Fig. 8 Stateful Firewall in SDN-OpenStack Integration

Page 17 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

NetVirt
Module manages the switching/routing functions.

networking‑odl
Module handles IP subnetting across tenant networks,
routing VLANs (Layer2) and VXLAN (Layer3 overlay) to
interconnect multiple OpenStack domains.

Neutron plugin
This module handles the network functions. It establishes
connections for processes in compute nodes through
br-int (tenant network) and external internet through
the br-ex. OpenFlow rules and the match-action set are
stored in the ODL controller. The security, access control,
and policies are translated into OpenFlow rules.

Neutron agent
This program runs on all the compute nodes and inter-
connects through the OVS bridge. It is a standalone pro-
cess with the “ML2 core backend” on OVS switches.

Neutron API
A simple “CRUD (create-read-update-delete) flow-rule”
approach was changed to support ODL calls, and the
REST interface was updated for policy administrators.

Anomaly and intrusion detection system
In general, signature-based and anomaly-based approaches
are the most common methods for detecting intrusions in
a network system. It’s possible to identify assaults based
on the patterns or signatures that have already been
stored for known incursions. Even though deviations
from previously stored profiles of typical activity can
detect intrusions, an anomaly-based method can also
detect unknown intrusions (or suspicious patterns). To
do this, the NIDS scans all incoming packets for unusual
data patterns. One of the biggest challenges in statisti-
cal anomaly-based attack detection is determining if an
outlier is a reality (in our case, an anomaly or malicious
activity or attack) or something benign (temporary and
natural activity or network spike or jitter). Network traf-
fic is gathered by the gateway firewall and preprocessed
to form a dataset. A clustering algorithm is used to build
service-based patterns across the dataset. We employ a
multistage clustering-based outlier detection technique
to distinguish between assaults and network anomalies
(spikes/jitter). Static thresholds may not be able to tell the
difference between malicious and regular traffic. Figure 10
illustrates that the attack spikes (red) cannot be separated
from the harmless ones (blue) using simple thresholds.
So, to distinguish between malicious and benign traffic,
we use a dynamic model to develop profiles for various
traffic circumstances. An unsupervised learning strategy

Fig. 9 Interconnection between SDN and OpenStack

Page 18 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

that divides a data set into multiple clusters is called
clustering. In hierarchical clustering, each data point is
assigned to a distinct set of groups based on Euclidean
distances. There are two options for plotting dendro-
grams when the iterative merging procedure is complete:
either the z-axis (which we use) or one of the characteris-
tics (which we use), namely x1, x2, x3, x4. Figure 10b illus-
trates the hierarchical link between the clusters using a
tree structure (no. of clusters on the x-axis, distances on
the y-axis). An ideal horizontal axis is determined after
the hierarchical clustering has been completed.

We offer a hybrid system to combine signature-based
IDS with the anomaly detection mechanism and the
EM-based clustering scheme [55]. As shown in Fig. 11,
the architecture of the system has these major func-
tional blocks: Lightweight IDS (based on packet stats),
Heavy-weight IDS (Feature analysis), and Anomaly IDS

(Clustering analysis). The first learning phase consists
of building a feature set of false positives, which gets
updated after a specific time frame, and the threshold
of the actual alert is calculated. When categorical attrib-
utes are involved, pre-processing the data set is critical
to identifying their relevant features. In the next stage
of online filtering, the outlier score of each new alert
is compared with the threshold value to find when it is
a false positive. There must be a proper threshold value
to distinguish between various data points in continu-
ous attributes. The closeness, data type, dimensional-
ity, and threshold measure are critical in distance-based
outlier techniques. It should be highlighted that model
reconstruction is unnecessary when using distance-based
techniques when modifying the threshold (i.e., changing
the outlier factor criterion). A combination of distance,
density, and soft computing can provide resilience and

Fig. 10 a Traffic Profile b Dendrogram Plot

Fig. 11 General Architecture of Anomaly IDS

Page 19 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

scalability for outlier detection according to numerous
circumstances.

To identify outliers, a user-defined cutoff value is pro-
duced and compared to each data point. Outliers Oij
(including minor outliers) are recognized in terms of the
threshold τ and the average of the (95th, 96th, and 99th)
percentiles, which are ordered by their scores. As a result,
the adaptive or conditional threshold value can improve
performance in outlier detection approaches based on
distance. Only the data/packets associated with the sus-
picious flows are sent to the control plane ML applica-
tion for further study. We can detect abnormal flows. We
believe that a more significant number of features will
yield a more accurate description of the network’s traffic
patterns during feature analysis, in which we design and
generate 15 different characteristics. Using a set of scor-
ing coefficients, the IDS and EM clustering-based detec-
tors combine these new features. The inference model’s
fuzzy attacking probability provides the ultimate intru-
sion decision. We have compared our proposed method
with other clustering algorithms like X-Means, Farthest
First, filtered clusters, DBSCAN, K-Means, and EM
(Expectation-Maximization) clustering to find the suit-
ability of our proposed algorithm. We are using EM to fit
the data better so that clusters are compact and far from
other clusters since we initially estimate the parameters
and iterate to find the ML (Maximum Likelihood) for
those parameters. The Gaussian Mixture Model’s param-
eters are frequently assessed using the EM technique
(GMM). Data points may have an approximately Gauss-
ian distribution, described by the conditional probability
in EM. In most circumstances, the conditional probabil-
ity of being a GMM component for some data points is
closer to 0. These data points are referred to as “noisy
data” due to their tendency to stand out. During anomaly

detection, the outliers are discarded or labeled as anoma-
lies, and the corresponding attack probabilities are set to
one. The EM model is shown in Fig. 12, where the clus-
tering results are referred to as Cm.

Two key assumptions must be made to use the
EM-based clustering technique to discover network
anomalies: There are two clusters in the input data:
the anomalous cluster, which is smaller than the regu-
lar cluster, and the standard cluster. As a result, we
can label each abnormal cluster based on its size. We
designed a modular anomaly detection scheme and the
workflow, as shown in Fig. 13. The OvS core switches
in the tenant network collect packet-level and counter
statistics and feed them to multi-stage anomaly detec-
tion and identification system (shown in orange). The
computations are short-lived and linked to events that
could be launched within the OvS switches without any
middleboxes. OpenStackDP data plane uses an out-
lier detection technique to detect anomalies without
supervision. Our proposed framework aims to detect
anomalous patterns using the outlier approach. It works
first by identifying reference points and by ranking out-
liers’ scores. We identify outliers in the packets col-
lected from the network at the OvS vMon component.
An anomaly can occur when observed data deviates
from commonly occurring ones. So, on that basis, it is
notified that an anomaly has been found beyond these
boundary conditions. We flag the flow as suspicious and
investigate further by the ML-based Classifier system in
the Controller. If the flow falls within these boundaries,
it is passed to the final phase. The clusters are developed
by running a clustering algorithm, as shown in Fig. 14.
We collect data from flow counters regularly and use
a sliding window of 1 to 4 minutes to calculate statis-
tical features, resulting in about 15 features per flow

Fig. 12 EM Based Clustering Algorithm

Page 20 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

(See Table 4), including bidirectional data. First, we do
flow-level analytics to save time on deep packet analy-
sis. Packet-level attributes (“Destination IP addresses,
ports or inter-arrival durations”) and flow-rule history
are only considered if suspicious flows from Stage-1
have been detected. An organization’s behavioral profile
can be developed by analyzing its operations and per-
formance. As fingerprints, its communication patterns
have been consolidated. Packet sequences can be used
as valid semantic data for the sessions by generating a
single feature vector from the metadata of consecutive
packets pi → pi + 1 → pi + 2...→ pn. The system’s observed
behavior profile is matched by this set of characteristic
vectors, which can be used in ML-based classifiers. We
may notice trends in the data and outlier events. When
outliers are observed using the algorithm in Fig. 15, the
system raises warnings after the outliers are detected
and validated (eliminating the noise and false alarms),
an anomaly detection algorithm (as shown in Fig. 16)
based on thresholds, and the mitigation system is
alerted about the attack.

Dynamic service function chaining system
OpenStack-Neutron does not natively support the
Service Function Chaining (SFC) functionality. The
Virtual Network Functions (VNFs) deployed on the
compute nodes must be linked to the network gate-
way node to enable the chaining/pipeline of network
functions/services. The packets/flows must be steered
between the link points, which involves complex logic/
routing/splitting/merging operations. The networking-
sfc module developed by the OpenStack community
has tackled this problem and uses various drivers for
this purpose. Now, drivers are available for the OVS,
ONOS, and ODL infrastructures. In OpenStackDP,
OVN is being enhanced with service chaining and a
driver to communicate between networking-sfc and
the OVN architecture. The Open vSwitch module is
augmented to enable network function chaining. The
module interacts with the agent/plug-ins running on
the compute nodes. The traffic sequence to enter/
exit the chain is determined by using Flow classifiers.
A common module is the flow classifier, which can be

Fig. 13 High-level workflow of network anomaly detection

Page 21 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

used for other applications such as Firewalls, Quality-
of-Service, Load-balancing, etc. Monitor/DoS Scrubber
VMs are deployed on the OpenStack compute nodes.
With minimal impact on throughput for big flows, the
flow analyzer engine classifies and tags the flows for
priority queuing. Embedded NF performs classifica-
tion and dynamic path adjustment via ChangePath
messages in switches based on flow characteristics
such as phase change, burst interval, and packet size.
Network-function/service sequence/chain service graph is
generated by the OpenStack networking-sfc module [56].
Based on the content inspection, the vertex nodes
and edges depict the packets’ multi-path trajectories.
The vertex node’s edges determine the next hop for
a packet. As a result of the NF Dependency Analysis
and the operator’s policy template, the ODL controller

creates the final service graph (Fig. 17). Service
graphs and (potential subgraphs) are translated into
flow-table rule definitions by the SDN controller so
that the data plane switches can install and manage
NFV processing. The NF handler invokes a flow rule
<Match: the result of the VNF, Action: Discard/Send
to/Default> when the VNF has finished processing a
packet. For each node, an ODL controller specifies
a Default path (shown in bold) and a Default action
(shown in bold).

A custom action or logic can be executed based on
the result of the current VNF in other dynamic SFC
situations, as demonstrated in Fig. 18, where the ODL
Controller can install match-actions rules. Next, the
decision is made per packet for the following path or
edge to cross. There may be a succession of NFs for

Fig. 14 Hierarchical Clustering Method

Page 22 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

packets to pass through in Enterprise Edge gateway use
cases, such as an IDS/Firewall/Sandbox or DoS scrub-
ber/honeypot. When the IDS discovers anomalies or
malicious traffic, the packets are diverted to the Sand-
box for further analysis (with a match: action config-
ured to call a Sandbox VNF). A Sandbox VNF on the
IDS directs suspicious packets to the scrubber/hon-
eypot VNF, while the default path is used for all other
traffic. That flow of packets would be re-routed or
dropped at the Firewall, which is considerably earlier in
its chain, using feedback messages.

Performance evaluation
We implemented the testbed (shown in Fig. 19) using
OpenStack Pike Devstack [15]. For networking, we
deployed our custom OVS-DPDK on the compute
nodes (“br-int bridge “) under Mininet [50]. Some
experiments utilize Mininet [50] to simulate large-scale
virtual switches and hosts in a cloud computing envi-
ronment. Multi-tenant is a major feature of the cloud
data center environment, and the tenants hope their
virtual subnets cloud will be effectively isolated from
other virtual subnets.

Fig. 15 Outlier detection and validation Method

Page 23 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Experimental setup

• To integrate SDN into OpenStack, we deploy Open-
StackDP to manage the networking resources with
Neutron. In the setup, software (i.e., Open vSwitch-
OVS) and hardware switches are controlled by a sin-
gle SDN controller.

• OpenStack comprises “compute, storage, and net-
working” nodes. It keeps evolving to enable more
features and higher stability. The operator can choose
from abundant components to create the deployment
that best suits its requirements. The components run
in heterogeneous infrastructure, and new hardware
can be easily included.

• We deploy two homogeneous server class machines:
the controller and compute node (which in turn
houses multiple compute node instances in Mininet
Simulator running hosts. We enable the following
components: Nova for compute service, Neutron for

Fig. 17 Default Service Graph Example

Fig. 18 Dynamically Changing Service graph

Fig. 16 Anomaly Detection Method in IDS

Page 24 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

networking, Keystone for identity service, Glance for
image service, Cinder for block storage, and Horizon
for the dashboard.

• Each compute node is connected to three networks.
The data network which carries the traffic between
the VMs is enabled via OVS. The management of
software switches, the control of OpenFlow, and the
internal communication between OpenStack com-
ponents are realized by the management network via
eth0. We use a custom L3/L3 switch/router running
OpenStackDP dataplane software to forward the
management traffic and run DTAR, firewall, security,
and access control applications.

Basic micro‑benchmarks
The main benefit is that with SDN flow rules is that
the rules are deployed at various points in constant
time. When DDoS-attacked by the attacking hosts, we
test the network throughput and latency between two
regular hosts with the iPerf application. Our SDN fire-
wall maintained normal host performance, even under
high attack conditions. We can obtain up to 20% or
50% more improvement in throughput for homoge-
nous synthetic workloads when the packet size and the
number of flows vary. We save about 50% of the cycles
for the mixed workload and get around 10-fold better
efficiency.

Fig. 19 OpenStackDP Testbed Environment

Fig. 20 Performance of Intrusion. a Prevention and b Detection

Page 25 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Attack simulation and DDoS attack emulation
Experimenting with various attacks, we simulated the
data plane’s ability to detect them. Packet sizes, protocols,
inter-packet gaps, intensity, and so on were all varied by
the traffic generators from the attacker machines, which
swamped the network with a variety of traffic. The appli-
cation traffic emulated client-server protocol behavior
(request/response). Experiments are broken down into
categories based on the sort of attack and the amount of
time spent in the pipeline. Flooding and slow-rate attacks
are used in a variety of ways. At predetermined intervals,
the number of threads/application processes per com-
puter every five apps steadily increased.

IPS/IDS efficiency
Figure 20a shows the “total-packets processed/sec”
variation with attack intensities. OpenStackDP default
match-action is configured as “(drop),” as “Snort/Ipta-
bles” support only drop filter. The result shows that tradi-
tional IPS starts dropping packets from 13 K packets/sec
to zero at 36 K packets/sec. For the same attack intensi-
ties, OpenStackDP sustained the throughput. Figure 20b
When the intensity of attacks increases, the legacy-IDS
efficiency gets affected due to the DoS attack packets
filling up the “Iptables Queue.” OpenStackDP is resist-
ant to heavy-hitting attacks. We conducted efficiency
assessment metrics at different demand conditions and
network throughput levels. We set up five VMs and
have services as plenty as possible. We performed the

30 rounds of evaluation of netperf. When the number of
tenants per host varies during the attack, the OvS-based
firewall achieves higher sustained TCP throughput than
the Linux Bridge, proving that OvS is the optimal switch-
ing system. As the number of nodes increases, memory
use in all three situations is normalized to be equivalent
to or less than that of legacy LB.

As illustrated in Fig. 21a, all three techniques (Legacy
LB, Native OvS, and OpenStackDP) utilize around the
same amount of CPU/Memory. In Fig. 21b, 4 clients send
traffic to a single server, resulting in a combined TCP
throughput of over 8.6 Gbps.

As shown in Table 5, the amount of PACKET_IN pack-
ets on the control channel ranges from 500 and 5000
during the attacks. With NO-IDS, the average round-
trip-time (RTT) during a DDoS attack is more significant
than 100 seconds; packet drop is 100%. ii) With IDS: a) For
attacks of brief duration, the RTT is impacted. b) attacks
with a longer duration—the RTT is typical, and there is no
packet loss. Table 6 shows that SDN mechanisms require
more memory than Legacy LB techniques, owing to the
overhead of the SDN/OVS OpenFlow pipeline.

Dynamic threshold vs. detection rate
For IDS, the success of the clustering technique in terms
of precision and accuracy largely depends on threshold
τ, as shown in Fig. 22a. A synthetic dataset and a few

Fig. 21 a CPU Usage b Network Performance in node

Table 5 Latencies and packet loss

Metric Flow Table Persistence

60 s 120 s 600 s 1500 s

Round Trip 108.67 ms 54.34 ms 5.27 ms 3.90 ms

Packets Lost 4% 2% 0 0

Table 6 Memory utilization

Nodes Linux Bridge Open vSwitch OpenStackDP

2 9 .3% 22% 23.2%

4 15.8% 26.8% 30.2%

6 27.2% 35% 36.3%

8 42% 49.4% 59.8%

Page 26 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

real-world datasets were used to study the influence of
thresholds (e.g., NSL-KDD [57], CICIDS2017 [58], Hog-
zilla [59], CICIDS2018 [60], CICIDS2019 [61]). A com-
prehensive dataset and traffic emulation were conducted
to recreate the representative traffic of a real-world net-
work [62] and to be in parity with the latest trends. The
threshold τ is dependent on the traffic patterns and the
dataset generated. We measure the variations in detec-
tion rate and precision for different attack classes (Scan,
DoS, DDoS, Probe, R2L, Slow-rate, U2R). Using verti-
cal dashed lines, Fig. 22 depicts the range of possible
threshold values for each attack type and for normal
data items to achieve good outcomes (b). Threshold val-
ues of (0.90 to 2.7) for normal records and (0.39 to 1.08)
for attack records were effective in our testing. This esti-
mation helps choose the threshold τ for experiments.

Stateful dataplane performance
We developed and tested a state-based fine-grained
firewall. To establish a connection, the switch uses the
data packets’ state information and the state table’s

data to make decisions (conformance to firewall poli-
cies and updating the state table records). The rule is
updated if an internal host begins or ends a connection.
This influences TCP connection times. We contrast our
strategy with stateless and stateful firewalls regarding
the SDN controller. Stateless firewalls allow communi-
cation between specific internal and external network
addresses. The experiment is set up with a switch and
an external Web server. The number of concurrent
connections is varied from 50 to 200 per second. We
evaluate data for two reasons. The first is the firewall’s
performance vs. a controller with and without a fire-
wall. In this scenario, we examine the firewall’s scal-
ability by tracking the progression of packet processing
time zones with concurrent connections. In the second
scenario, we want to see how long the Firewall takes to
process the packets and connections.

Figure 23a displays the total connection time vs. inter-
nal host count. The findings reveal that our method’s
connection time is slightly longer than stateless firewalls
but much less than a stateful firewall on the controller.

Fig. 22 For different threshold values, a Detection rate b Precision

Fig. 23 Dataplane Scalability. a Processing time b Packet-In delay

Page 27 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

To accept/reject packets from foreign hosts, the SDN
must update its flow table rules and connection tables.
As the number of internal hosts increases, so does the
average Packet-In time. Studies in Fig. 23b show a very
steady Packet-In time for data plane firewalls, in the
range of 3.7 to 4.5 ms, and for the control-plane firewall,
it takes about 6 ms. Due to the optimal stateful connection
table maintained in the data plane switches, our state-
ful firewall scheme has negligible overhead for Packet-In
communication.

Four different threshold values and domains are used to
accept traffic to hit 80% of the 100 firewall rules. The first
and second domains hit their respective rules occasionally,
while domains three and four deliver consistent packets
to maintain a distinct rule weight at different times. The
Average Detection/Matching Time AMT =

n

i=1
Widi

is calculated by varying the thresholds. Wi denotes to
Rulei weight and di the Flow rule order. We can determine
the effectiveness of the number of invocations for each
threshold. As seen in Fig. 24a, the criterion of 0.3 has the
best AMT and requires the least time in a firewall.

Flow table scalability
When a DDoS attack occurs, switches send “Packet-
In” messages to the controller through OpenFlow, and
the controller sends “Flow Modification” messages to
switches. To process these “new flows,” the control-
ler must use its computing and networking resource,
hence a critical SDN metric. The results are shown
in Fig. 24b OpenStackDP sustains the “flow installa-
tion speed” even while the network is under attack.
The classical SDN stack crashed, whereas the Open-
StackDP data plane handled up to half-million flow
entries simultaneously, and the controller could never
be saturated.

Cloud network configuration and neutron node
The main package (driver module) networking-odl acts
as a redirector/proxying/routing component interfacing
between the SDN abstractions and OpenStack security/
policy configurations. This module includes functions to
create new networks and establish security group for ten-
ants. This experiment measures network configuration,

Fig. 24 a Firewall Filter Matching Speed b Dataplane Scaling

Fig. 25 OpenStackDP API. a Latency, b Load Increment

Page 28 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

policies processing time, and load increment due to the
framework overhead. Calling local APIs to create and
configure a virtual subnet takes time as the application
run in the SDN control plane. In our framework, it is time
for OpenStackDP to process policy requests from cloud
tenants and OpenStack API. The processing overhead
for REST API calls refers to the SDN controller incurred
with handling the tenants’ service requests. When con-
figuring virtual subnets, the cloud data center platform
has three variables. The three variables are total tenants,
hosts, and virtual machines per subnet. In an experi-
ment, three variables can change simultaneously. We fix
two variables for qualitative research and adjust another
for testing. We compare OpenStackDP API with local
API and REST API. The number of tenants consider-
ably impacts the total system processing time. As shown
in Fig. 25a, the latency of OpenStackDP almost follows
the local API but is lesser than REST API. Figure 25b
demonstrates that calling the REST APIs increases the
demand on the OpenStackDP system by around 40% to
60%. Using OpenStackDP increases system load about
the same as contacting local APIs. The findings show that

OpenStackDP has greater processing performance than
REST APIs. The processing latencies and load increments
of OpenStackDP are shorter than the processing time of
calling REST API when the number of tenants or virtual
subnets for each tenant is increasing. Figure 26a shows
that OpenStackDP scales well compared to other API
modes.

We compared OpenStackDP with the conventional
NFV hosting in compute node VMs. We generate a burst
of 64–1514 Bytes TCP packets through one ingress port
and egress through the second port on the gateway. For
realistic comparison, we tested with different NFs, from
simple forwarding and monitoring to heavy NFs such as
Deep-Packet Inspection (DPI).

Throughput
OpenStackDP reached 96% available bandwidth for all
packet cases except for composite SFCs (heavy NF being
the bottleneck). The graph in Fig. 26b shows a peak rate
of 7.6 Gbps for NFV in the OVS-DPDK/Kernel. The clas-
sic OVS involved detours and asynchronous process cost,
and hence it achieved a lower bandwidth rate.

Fig. 26 a OpenStackDP API Scaling b NFV Throughput

Fig. 27 a Latency Curves b IDS Launching Speed

Page 29 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Latency
CDF (Cumulative Distribution Function) graph in Fig. 27a
shows that more than 98% of packets incur less than 1.30
msecs and average 0.9 msecs delay through the Open-
StackDP modules (vMon, vIDS, vACE). The OVS-Kernel
switch incurs 2.16 msecs due to detouring and I/O overhead.

Firewall IDS service launch time
This measures the time it takes to start up the IDS appli-
cation, Container, and VM and then run it. In Open-
StackDP, this is the time it takes from sending a user
request to starting the IDS service. The averages of each
test are displayed in Fig. 27b. The basic scenario has a
0.24 s average launch time due to no virtualization or con-
nectivity costs. The container scenario’s average launch
time is 1.3 s, 11 times the baseline. Because the N-IDS
method requires numerous steps to create an IDS, the
launching time is longer, 3.4 s on average. OpenStackDP
requires only 1.7 s (approximately 15%) to launch, making
it more “elastic.” With OpenStackDP, processing and net-
work communication are faster than opening a container.

Security incident response performance
In this experiment, we assess OpenStackDP security
monitoring/detection speed and resource utilization per-
formance in an OpenStack cloud with a specific network
traffic load. OpenStackDP can easily create, launch, change,
and destroy IDS services. We use the “Mid-Atlantic Col-
legiate Cyber Defense Competition (MACCDC)” network
trace to mimic the actual security incident and test Open-
StackDP applications (“flow-analyzer and dynamic NF
handler”) in terms of response and speed. Each test starts
with a traffic sender and recipient VM. tcpreplay sends net-
work traffic from the source VM to the receiving VM.

We compare the following scenarios:

▪ Baseline-IDS: Sniffer service running on a comput-
ing node.
▪ Container-IDS: Sniffer service running inside a
Docker container on a computing node.
▪ Virtual Machine: Sniffer service running as a VM
in the tenant network by installing a tap/mirroring
on the switch.
▪ N-IDS Service: IDS Sniffer service runs on the net-
work node, mirroring configured to a particular Neu-
tron port.

Dynamic DDoS detection and mitigation
We created a VNF chain for the dynamic firewall
pipeline with a rate-limiting filter (threshold) to/from
the same domain (potentially a DDoS campaign).
Figure 28a shows the traffic network throughput.
The attack starts around 10 seconds into the test, and
the application detects and responds in 32 seconds,
restoring regular service. While the recovery time
varies slightly amongst attacks (e.g., TCP, UDP, ICMP),
the total recovery time is still reasonable. Figure 28b
shows the testbed traffic trace. We started the attack at
@1 Gbps and gradually built up to affect the network
substantially. The DDoS Detector NF records anoma-
lous flows in packets traveling across the chain. When
the traffic hits (4.5 Gbps), the alarm is raised to label
it suspicious and redirect it for further scrubbing. An
SFC Sandbox VNF to handle suspicious packets is
bootstrapped in under 3 seconds. The outbound traffic
rate returns at time#29 s (Sandbox deleted the attack),
even as inbound traffic grows.

Fig. 28 a Dynamic DDoS detection b Dynamic NF insertion in SFC

Page 30 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Access control performance
According to the research [40], not all OpenStack func-
tions are now under policy enforcement. One hundred
five out of 371 operations are uncontrolled. Among the 64
open interface functions, 41 are vital and unprotected by
policy, such as modifying arbitrary system or network ses-
sion metadata. Without authorization, 19 out of 89 func-
tions can be invoked. This puts the system at risk because
any cloud user/ adversary can identify unprotected calls
and gain entry through those functions without authori-
zation. It allows cloud providers to assess overall security
by reviewing management communication calls. Unreg-
istered operations are denied by default. As a result, all
accesses are regulated inside the networking node/seg-
ment or dataplane of the OpenStack SDN platform.

We benchmarked with the OpenStack Tempest [63]
and contrasted it with the OpenStack “Liberty” [14]
platform. Table 7 shows that our security framework
overhead time is reasonable, given the average cost of
9.7%—the vACE-DTARS app communication delays
cause this overhead. At the Glance, the worst case was
8%. This outcome is predicted given the relative speed of
each glance call compared to permission verification. The
vACE module does not influence the ceilometer because
it requires less access control. Compared to the latency
through a major public network, the overhead per func-
tion call is about 127 ms. We tested the OpenStackDP

capacity to filter packets at each protocol layer with
the Tempest benchmark, and the results are shown in
Table 8. The OpenStackDP service examines the packet
transfer using a set of lightweight filters. In this test, we
observe the advanced filtering capabilities (L2-L7 rules).
The service will measure the packet transmission speed
between the two networks with the OpenStackDP NIDS
Gateway. The filtering criteria will be random without
disrupting the TCP connections between the endpoints.
The test launched 1000 × 1024 Mbyte packets and trans-
ferred them over TCP using the Linux programs dd and
netcat. The throughput and the end-to-end time is taken
to enforce the rules in the firewall embedded in the data
plane are sustained close to the wire-rate 9.8 Gbps.

Comparison with related security solutions
In this experiment, we compare OpenStackDP with five
related solutions for OpenStack Cloud and analyze the
ability to defend against attacks. All the key metrics, such
as network bandwidth, connectivity loss, flow table per-
sistence, packet losses, and latencies, are examined and
discussed. We have selected some research works focus-
ing on using SDN technology in the cloud data center
with an OpenStack environment [34, 39, 43, 45, 46]. Most
of the prior works were based on SDN Controller-based
solutions. Our solution is one of the few research pro-
jects that exploited the high-speed dataplane and rede-
signed the network node of the OpenStack architecture.
We implemented these solutions (as application modules
in the OpenDayLight SDN Controller), from the com-
pared works, in our testbed with the same environmental
set-up according to the above observations to retain their
original novelties and functionalities. We have imple-
mented the solutions optimally closest to the description
in the original paper and with appropriate assumptions
and normalizing for the common testbed (hardware/sim-
ulator platform).

The strategy of our comparison experiments is:- a)
Each experiment evaluates certain performance criteria
or metrics. b) Not all these related works can be tested
as the scope of their solution is limited, not applicable,
or doesn’t qualify. So, all these 5 works or only a sub-
set of works are selected to run those tests. The data is
normalized and plotted for comparison. e.g., in Threat
model validation section, to test the Threat model with
the STRIDE approach, only two works, SecSDN-Cloud
[43] and FWaaS [39], are compared with the Open-
StackDP. These works were chosen because of the
completeness of their solution under all major aspects.
We have organized and presented the performance in
Comparison with related security solutions, Security
analysis, and Threat model validation sections with the
above assumptions.

Table 7 Unprotected Ops map

Service Processing Time (Seconds) Overhead (%)

Liberty OpenStackDP

Nova 652 680 4.2

Glance 229 249 8

Neutron 230 278 20.8

Cinder 136 140 2.9

Heat 292 300 2.7

Ceilometer 618 628 1.6

Table 8 Tempest benchmark

Number of Filter Rules Result

L2 L3 L4 L7 Time (sec) Bandwidth
(Gb/s)

0 0 0 0 18.09 9.8

100 0 0 0 20.08 9.7

0 100 0 0 21.7 9.6

0 0 100 0 22.2 9.6

0 0 0 100 80.9 9.1

100 100 100 100 110.4 8.8

Page 31 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

• PDSDN [46]: Policy-Driven-SDN-controller employs
a batch processing network scheme. A control plane
application is implemented to process the policies
according to the user’s permissions and operations
priority. We implemented a policy assigning module
in the SDN Open Daylight Controller, a policy pars-
ing/conflict resolution method, and a policy execu-
tion module. The authors of PDSDN mainly tested
the performance by creating some virtual subnets.
We also compared our scheme with PDSDN regard-
ing system processing time and load increment.

• SecSDN‑Cloud [43]: Secure-SDN-Cloud solves flow
table reliability problems, controller saturation, and
side-channel attacks. The security mechanisms are
implemented in the SDN Controller. The authors
of [43] implemented the SecSDN-cloud in the
OMNeT++ simulator and evaluated its performance
in terms of packet loss, end-to-end delay, throughput,
latency, and bandwidth. We adapted their SecSDN
cuckoo search algorithm that involves multiple con-
trollers. To guard against this attack type, SecSDN-
cloud employs a third-party cloud-monitoring server
to execute the EGA-CS algorithm that assigns con-
trollers to switches. We implemented the scheme in
the Mininet simulator and compared it with Open-
StackDP in the simulation environment. We mainly
tested the ability to resist three attack types: flow
table overloading, control plane saturation, and Byz-
antine attacks.

• ECSD [45]: Enhanced-Compromised Switch Detec-
tion is an SDN scheme that applies a multivariate
time-series technique for detecting anomalies in
traffic passing through switches. This framework
aims to detect a compromised switch in SDN
architecture synchronized with an OpenStack con-
troller, and it is implemented as an extension in the
Control Plane. We adapted their Defense Scheme
(ECSD), coded an application module in our SDN

environment, and integrated it into the OpenStack
network environment to detect compromised
switch attacks. To simulate the compromised
switch attacks, we manipulated the Open Daylight
SDN controller to perform the attacks mentioned
in that paper.

• FWaaS [39]: Firewall-as-a-Service is a Stateful Fire-
wall design. The matching table of the data plane is
modified to add state detection logic and a provi-
sioning application in the control plane manages the
deployed firewall services. As the authors implement
a prototype using P4, we adapted the algorithm of
stateful firewall filtering to our environment, imple-
mented in Python. In the experiment, we utilized the
Mininet to deploy the virtual network on the Open-
StackDP platform. In this case study, we compared
the stateful firewall implementations to control the
internal network to access the external network.

• NIDSaaS [34]: “Network-Intrusion-Detection-System-
as-a-Service” is designed to run on the designated
host(s) directly. The system may generate and remove
IDS services dynamically and update rule sets on
demand in an OpenStack cloud. The NIDSaaS proto-
type consists of a user client, a service plugin, a ser-
vice plugin agent, and a Snort-driven NIDS provider.
We implemented their NIDS service in our testbed on
the OpenStack network node and sniff on a designated
Neutron port to which the target network traffic is
mirrored.

Holding time on flow table (Fig. 29a)
We believe holding time to be a crucial statistic for eval-
uating the resistance of the OpenStackDP to “flow table
overloading attacks.” The switching design that displays
long durations of entries in flow tables even when attack
rates are increased suggests a more secure SDN. Con-
sumption of southbound channel bandwidth relates to

Fig. 29 a Holding Time in Flow tables, b Detection Speed

Page 32 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

the attack, and the SDN controller should spend as few
resources on network ports as possible.

Detection speed (Fig. 29b)
We ran a series of compromised switch assaults to test
the detection speed of a new attack. The ECSD and Sec-
SDN-Cloud systems trigger an alarm approximately
0.15 seconds slower than OpenStackDP. The reason is
that OpenStackDP uses data plane modules to acceler-
ate its performance. As a result of their intricate design
and numerous policy decision-making steps, FWaaS
and NIDSaaS systems raise detection alarms slowly. In
summary, the detection time is highly dependent on a
scheme’s lightweight or heavyweight nature, and Open-
StackDP outperforms the other alternatives.

Effectiveness of the QoS
We examine how Security affects QoS. The effective-
ness of QoS is described in terms of essential characteris-
tics: Fig. 30a workload management, Fig. 30b throughput,
Fig. 31a end-to-end delay, and Fig. 31b packet loss. The
response time represents the time required to finish the

workload and produce the required result. We tested three
scenarios to assess the response time. (1) No Attack: The
system completes the workloads in the required time with
normal traffic. (2) Attacks without IDS occur, compromis-
ing workload response time and QoS. (3) Attack With IDS:
Attacks affect workload response time, but IDS enhances
QoS by recognizing and neutralizing them. We counted the
packets dropped by the switches, which gave the ratio of
benign/malign packet loss due to the attack. OpenStackDP
detects the attack pattern and enforces mitigation policies
quickly, and other solutions discard fewer malicious pack-
ets because they are less efficient at detecting anomalies.

Intrusion detection
To illustrate our outlier detection model, we picked the
packet/byte attribute of the flows and replayed the trace
files with attacks (mixed rate). The points observed outside
the boundary conditions are marked as anomalies, and
further classification will determine–spikes of benign traf-
fic or attack packets. The comparison of key performance
metrics across the solutions is presented in Fig. 32. We

Fig. 30 a QoS with workloads b Throughput

Fig. 31 a End-to-end delay b Packet loss

Page 33 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

consistently surpass the competition in terms of detection
rate and accuracy, with 99.81% and 99.40%, respectively,
being the highest. The F1-score is helpful for thoroughly
evaluating OpenStackDP performance because it consid-
ers both False Positives and False Negatives. Table 9 illus-
trates the OpenStackDP’s detection accuracy.

Security analysis
The OpenStackDP system’s monitoring mechanisms
detect malware, network-centric attacks, and malicious
traffic. As a result of the cross-plane design, response
times vary depending on the type of assault being

intercepted. Through experiments described in this
section, this paper demonstrates the efficacy of Open-
StackDP by classifying it through phases in distinct types
of attacks (covering about 90% of all known network
attacks). In addition to these situations, OpenStackDP’s
protection capabilities extend far beyond what is covered
in Table 10. These examples show how the system per-
forms under various traffic scenarios.

List of attacks and countermeasures
Table 11 lists the most common attacks in the Cloud
infrastructure and the corresponding mitigation solution
implemented in the OpenStackDP solution.

We track the amount of time fraudulent flows spend
in the OpenStackDP pipeline before being mitigated
(“Scan, DoS, DDoS, Slow-rate, application-level”). The
attacks are recognized and remediated at a certain
point in the OpenStackDP detection pipeline (as illus-
trated in Fig. 33).

Figure 34 shows how the detection speed varies
depending on the layer (switch/controller) and IDS

Fig. 32 Comparison of IDS Metrics

Table 9 Classification accuracy

Traffic Type Dataset Count Correct Incorrect Accuracy (%)

Benign 16,72,234 16,24,074 48,160 97.12

HTTP Flood 18,28,545 17,77,894 50,651 97.23

Slow Read 4,56,567 4,46,933 9634 97.89

Port Scan 8,23,456 8,20,739 2717 99.67

DoS Flood 24,45,678 24,07,770 37,908 98.45

Table 10 Defense capabilities against the various classes of attacks

Attack Type Attack Identification Field of Interest Detection Method Mitigation Method

Scanning Increase in Attacker, Host A, ratio to target addresses IP Address Port Level 1 (data-plane)
Level 2 (NFV)

Block/Drop

DoS Volume of traffic flows from/to a single IP exceeds a threshold IP Address TTL Level 1 (data-plane)
Level 2 (NFV)

Block/Drop

DDoS volume of traffic from multiple IPs targeting exceeds a threshold IP Address TTL Level 1 (data-plane)
Level 2 (NFV)
Level3-(control-plane)

Block/Drop

Slow Rate opens a great number of half-open connections and initiates
request with no replies

IP Address Port Level 1 (data-plane)
Level 2 (NFV)
Level3-(control-plane)

Block/Drop

App layer correlation/asymmetric volume between Request/Response Port Protocol Level3-(control-plane)
Level 4- (application)

Block/Drop/Remediate

Page 34 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Table 11 List of attacks and countermeasures

Components Attacks Countermeasures

Tenants and User Applications Brute Force Intrusion Prevention System

Privilege escalation Virtualization of Services

Insider Attacks Authentication and Security Group

Policy Violation Global View and Access Control

Gateway and Internal Network Injection Attack Policy Validation and Enforcement

MITM Defense Mechanism

DNS Poisoning DNS Proxy in the Switch

Reply Attacks Flow analysis and Dynamic Rules

Wormhole Port Monitoring

Flooding Rate limiting and Proxy Firewall

Cloud Servers and Controller Devices SQL Injection Input Validation

Application Persistent Attacks Packet History Analysis and Stateful Firewall

Weak Authentication 2-level Authentication

DDoS SDN Global View, Flow Analysis & Dynamic
Rule Updating

Backdoors and Exploits Anomaly Detection system

Malicious Application Anti-Virus software modules

Fig. 33 Depth traveled by attack traffic in the pipeline

Page 35 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

classifier overhead (Signature/Anomaly). To detect and
mitigate or remediate an application attack, we needed to
conduct protocol correlation/analytics, which adds over-
head at all levels of the OpenStackDP analytics pipeline.

Figure 35 plots the data points (Bandwidth/Through-
put parameter) measured over time, during normal
traffic, and when an insider attack began from one ten-
ant (User-A Attacker) to other tenants (User B, User
C) in the cloud network and ended. With the Open-
StackDP, the throughput for the legitimate users is
restored after a brief drop for 8–12 secs.

Fig. 34 Detection Times for different classes of attacks

Fig. 35 Throughput Performance during Insider Attacks

Table 12 Components of DFD

Item Symbol

Process Circle

Data Flow Arrow

Data Sore Two Parallel
Horizontal
line

Interactors Rectangle

Trust boundary Dotted line

Page 36 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Threat model validation
Each component should be assessed against a specific
threat type to validate and analyze a DFD (“Data Flow
Diagram”) to detect and mitigate threats. Table 12 lists
the five different types of DFD components. Only a
small percentage of STRIDE’s threat categories affect
each DFD’s components [16]. For example, users are
only susceptible to spoofing and repudiation risks when
interacting with each other. The STRIDE approach has
analyzed many SDN protocols, architectures, and appli-
cations [64, 65]. Two SDN cloud networking platforms,
SecSDN-Cloud [43] and FWaaS [39] are compared with
the OpenStackDP. These works were chosen because
of the completeness of their solution under all major
aspects, closest to our model, and are recent. Using the
definitions of the data flows, processes, and DFDs, Sec-
SDN-Cloud and FWaaS, and OpenStackDP are ana-
lyzed using the STRIDE [50] framework. The DFD of the
OpenStackDP is shown in Fig. 36. In this case, the Open-
StackDP SDN apps and OpenDayLight controller are
considered one process. Both the network devices trans-
mitting and receiving data and the administrator using
SDN applications are participants in the DFD. The secu-
rity analysis should consider the communication flow
between the administrator, Helion, the SDN controller,
and the network device. Hardware and SDN controllers

Fig. 36 DFD for OpenStackDP Framework

Table 13 Security analysis for the components of OpenStackDP

*Denotes threat can be mitigated by suggested methods, ✓ denotes threat can be mitigated as architecture provides countermeasures to mitigate

Table 14 Security analysis of SecSDN-Cloud [43]

*Denotes threat can be mitigated by suggested methods, ✓ denotes threat can be mitigated as architecture provides countermeasures to mitigate, - denotes out of
scope

Page 37 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

are separated by a trust boundary, while a trust bound-
ary separates OpenStackDP and the administrator. The
STRIDE model considers the OpenStack components,
SDN Controller and Dataplane Switches, OpenStackDP
applications, and corresponding threats and mitigation
methods.

The following tables show the summary of the security
evaluation of the OpenStackDP (Table 13), SecSDN-
Cloud (Table 14), and FWaaS (Table 15).

SecSDN-Cloud and FWaaS both allow middlebox
interposition in cloud networks (DPI) and vulnerable
to security risks. SecSDN-Cloud employs the Libvert
API for managing the network components and control.
OpenStackDP supports numerous security capabilities
that can be utilized with current applications and those
built into the protocol. It is up to the customer to con-
figure the network devices that will allow OpenStack’s
Helion services to be integrated into an existing data
center infrastructure. It also defines firewall rules at the
deployment’s perimeter (to guard against external mis-
use) and router rules within the OpenStackDP deploy-
ment to defend against insider threats or administration
errors and misconfigurations.

Result discussion
OpenStack Data plane research has been limited to the
control plane [26, 37, 44] and forwarding problems of
the data plane switches. Using these insights, we inves-
tigated the existing threat models for SDN-based Open-
Stack platforms and the data plane-to-control plane
trade-off. Because virtual switches like OvS are widely
used in cloud operating systems. In contrast to kernel-
based countermeasures (using group security), our
measurements show that user-space countermeasures
have no performance overheads. We summarize some
key findings in Table 16, which proves the practical-
ity and effectiveness of applying SDN mechanisms in
OpenStack networking architecture, especially Open-
StackDP, to detect access violations and network-centric
attacks in our practical experimental setup. Simulations

and analysis show that the OpenStackDP is superior to
those of earlier SDN designs. Detection performance,
CPU utilization, improved Quality of Service (QoS),
and scalability are some of the key metrics of the evalu-
ation. OpenStackDP accurately detects compromised
network components and attacks across most factors and
will support future applications/use cases in the Cloud
ecosystem.

Light‑weight flow‑based IDS
Compared to the packet-based method, the flow-based
IDS [66, 67] deals with a fraction of the total amount of
data that needs to be monitored and processed, optimal
storage requirements. Also, the IDS is robust against
encrypted payload attacks and with fewer privacy issues.
Our approach in OpenStackDP is further optimized since
we have extended the core switching layer in the data
plane to execute first-stage attack detection and DDoS
prediction functions, stateful firewall functions (cached
flow rules/action set) instructed by the controller on the
switches. This has enabled improvements in our system
by reducing control channel traffic and CPU processing
overhead at the controller. This scheme also contributes
to the speed of detection in the data plane as it is criti-
cal not to create a larger bump in the wire speed. As dis-
cussed in Performance evaluation section and Table 10,
the flow records are generated in the high-speed hard-
ware switch. Therefore, no performance overhead from
computational resources occurs in IDS. To reduce the
negative effect on the flow sampling over the entire
packet stream, the sampling process on only a subset of
the packets is considered for flow generating, thus reduc-
ing the load on the router resources. Pre-filtering and
aggregating flows are offloaded to the TAP/probe device
on the hardware switch.

Data sets and fine‑tuning the ML‑based IDS
Our study explored the behavior and application of multi-
ple DDoS datasets for machine learning in the context of
intrusion detection. Selecting datasets for this study was

Table 15 Summary of the security analysis for the FWaaS [39]

*Denotes threat can be mitigated by suggested methods, ✓ denotes threat can be mitigated as architecture provides countermeasures to mitigate, - denotes out of
scope

Page 38 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

Table 16 Key findings from this research

Page 39 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

challenging due to the shortage of DDoS-specific datasets,
despite being one of the most devastating security attacks.
Moreover, all datasets chosen are recently dated to ensure
that all instances and features are relevant and up to date.
The classifier was trained to detect a certain attack cat-
egory using selected features in comparable ML-based
NIDS prior works. Only a small portion of the CICIDS
2017 dataset instances was used to evaluate their system.
Conversely, in our research, we use all the instances of the
CICIDS2017-2018-2019 datasets. A comprehensive data-
set and traffic emulation were conducted to recreate the
representative traffic of a real-world network [62] and to
be in parity with the latest trends.

Feature analysis when compared to other IDS
schemes, which selected about 4 to 6 features for classi-
fication; we have utilized about 10 to 16 features and cre-
ated multi-variate classification, and performed anomaly
detection based on traffic flow, SDN protocol behaviors,
and so on. Although this increased the complexity, our
experiments proved that the features monitored to deter-
mine anomalies and detect attacks are the right ones and
effective in terms of accuracy and predicting the attacks
at the dataplane based on coarse-grained security mecha-
nisms. On the contrary, other proposals classified with
a limited feature set slipped certain attacks through the
IDS and made the downstream services unresponsive to
normal users.

Exploit experiment
In our OpenStack stock version, about 9 information
flow vulnerabilities were reported after our installation.
Six are present in our deployment, and 3 are not. To con-
duct the comparison, we did not patch the cloud services
in our testbed and tried to exploit them in vanilla Open-
Stack and OpenStackDP, respectively.

Qualitative analysis
To see how our solution can improve OpenStack security,
we performed a qualitative analysis of all 78 vulnerabili-
ties identified in OpenStack networking (software ver-
sions from 2016 to 2019). We found that almost 30% of
OpenStack vulnerabilities are related to information flow
problems already studied in this research, and Open-
StackDP systematically mitigates those vulnerabilities.

Limitations and future work
Although this study has successfully demonstrated the
significance of the feature dimensionality reduction tech-
niques, which led to better results in terms of several per-
formance metrics and classification speeds for an IDS, it has
certain limitations and challenges, summarized as follows.

Data sets
The general inadequacy of static attack datasets also
introduces severe impediments to machine learning-
based IDS deployment. Models trained with labeled data
from a specific domain don’t usually transfer or general-
ize to other domains. For example, data streams obtained
from cloud-based Linux services cannot be used to pre-
dict cyber-attacks against enterprise Windows endpoints
due to the intrinsic differences between the operating
environments. This limitation impairs IDS model evo-
lution and the adaptation of machine learning defenses
against new and emergent attack techniques. None-
theless, a well-recognized challenge in custom dataset
generation is capturing the multitude of variations and
features manifested in real-world scenarios.

Fault tolerance
The key aspect of fault tolerance in our system is the
ability of the multi-level and cross-plane scheme to
detect a large set of well-known attacks. Our models
have been trained to detect the 14 up-to-date and well-
known attacks. Moreover, deploying distributed intru-
sion detection systems in the network can enable fault
tolerance.

Model resilience
We achieved an FP rate of 0.001, which may reflect a
built-in attack resiliency. Moreover, our models were
trained in an offline manner. This ensures that an
adversary cannot inject misclassified instances dur-
ing the training phase. On the contrary, such a case
could occur with online-trained models. Therefore, it is
essential for the machine learning system employed in
intrusion detection to be resilient to adversarial attacks.

Hardening the ML‑based solution
It is a common trend that cybersecurity and malware
analytics systems employ ML/DL-based AI algorithms
to analyze correlations and patterns in the traffic data
and detect/classify the attacks. As these methods are
widely exploited, sophisticated cyber-criminals devise
adversarial ML attacks to breach these NIDS. Our study
showed that it is possible to derive an unsupervised
anomaly detection method built on boosting meta-
learning, which has much better detection performance
than regular unsupervised algorithms and is robust to
zero-day attacks. This opens an interesting scenario
and future works on whether and under which cir-
cumstances unsupervised meta-learning may achieve
detection performance that can compete with super-
vised solutions. To such extent, we fore- see a valida-
tion process which involves more public datasets in the
domain of security, as well as widely used supervised

Page 40 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

algorithms [68] and deep neural network that suit the
analysis of tabular data.

Zero‑day attacks
Many IDSs show deficiencies in identifying novel, zero-
day attacks. These attacks exploit either new vulner-
abilities or known vulnerabilities in novel and different
ways and cannot be matched against known signatures.
Unsupervised anomaly detection algorithms infer pat-
terns from a training set and discover the underly-
ing structure of the data without reference to known
outcomes (i.e., labels are unknown at training time).
Instead, they assume that ongoing attacks temporarily
alter the values of system indicators concerning their
expected values. This way, they learn a model decou-
pled from labels assigned to data points in the training
set and therefore fit the detection of zero-day attacks.
It is possible to mimic zero-day occurrence by remov-
ing specific attacks from the training set and provid-
ing them only during evaluation in the test set. Proper
tuning and selection have to be derived according to a
precise strategy and its application through appropriate
tooling and experimental campaigns. In the future, we
would like to improve the robustness of our approach
by detecting those types of Zero-Day Attacks whose
behaviors are independent of existing attacks. We will
perform tests to improve accuracy in the case of multi-
class classification. The limitation of the proposed work
is that the exact category of high/low volume attack
variants is not detected due to its implementation
approach, which will be explored in the future.

Detection of attacks exploiting the unpatched known
vulnerabilities
In the security domain, supervised ML algorithms are
commonly adopted to defend against known threats, and
they are embedded into IDSs, which aim to detect attack-
ers that exploit known security breaches or vulnerabilities.
We demonstrated in our research the security improve-
ment made by OpenStackDP over the off-the-shelf
OpenStack through a system exploit experiment and a
qualitative analysis. Our ML-Pipeline aims to mine attack
patterns from entire data streams rather than merely to
classify individual packets as attacks; mixing benign with
malicious activities in the environment does not impair
our IDS ability to learn attacker patterns, even in the pres-
ence of evasive behaviors. This is practical and reveals
that OpenStackDP captures the entirety of the attacker’s
activity, feeding it back to the classifier. We measured our
approach’s ability to detect previously unseen, unpatched
exploits [69]. In this experiment, CVE-2017-5941 is used
as an 𝑛-day vulnerability for which no patch has been
applied. The resulting detection accuracy and precision

show that the OpenStackDP pipeline helps the classifier
learn attack patterns unavailable at initial deployment to
learn exploits for which the classifier was not pre-trained.
Therefore, we note that by design, OpenStackDP can miti-
gate unseen/unpatched vulnerabilities to some extent bet-
ter than the other comparable IDS.

Attacks through cloud service vulnerabilities
One significant problem with this distributed computing
environment is that cloud services are complex software
components prone to vulnerabilities. Current cloud plat-
forms assume a flawed design where distributed cloud
services fully trust each other. Consequently, a security
breach in a single cloud service (due to an unpatched
component version or misconfiguration) may allow
adversaries to propagate attacks to other cloud services,
producing security risks for any user’s cloud resources.
Our solution OpenStackDP provides defenses to pro-
tect communications among services, hosts, nodes, and
mechanisms but neither defense prevents a compro-
mised cloud service from misbehaving or propagating
attacks. Current defenses against such cloud service vul-
nerabilities are often limited and we intend to study these
internal-attacks systematically and more qualitatively.

Conclusions
Automatic network strategy optimization based on
artificial intelligence enables engineers to perceive net-
work traffic conditions comprehensively, data response
time, service transmission status, and other informa-
tion through automated learning and data analysis and
automatically tune the network based on network traffic
and health status changes. In addition, consistency and
integrity checks of the tuning strategy are automatically
performed to reduce the chance of errors and the risk of
network operation.

We proposed an OpenStackDP security framework
applicable to SDN-managed OpenStack Cloud infra-
structures. Softwarization and virtualization of network-
ing functions and services have changed the status quo
of enterprise networks. The NIDS service architecture
provides cloud tenants with efficient intrusion detection
services. OpenStackDP makes it simple to create, man-
age, and terminate NIDS services.

Experiments conducted under OpenStack demonstrate
that OpenStackDP achieved a detection rate of 97% even
while maintaining low latency. The results show the poten-
tial of software-defined systems to become more wide-
spread and integrated with OpenStack, advancing this
Open-Source platform to move fluidly into a complete
integrated stack for virtualized data centers. This research
combined SDN, NFV paradigms, and ML/AI tech-
niques to provide an intelligent and efficient data plane

Page 41 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

and networking fabric for securing the OpenStack archi-
tecture. As stated previously, our contributions should
directly impact how we secure virtual switches, network
components, and SDN systems. Our proposed technique
OpenStackDP surpassed the previous schemes in terms
of detection performance, accuracy, and CPU use. Open-
StackDP consumes more resources, but overall, the trade-
off is acceptable. However, we evaluate only payloads that
have not been encrypted using the Open SSL/TLS traffic
in SDN. We plan to apply this high-performance data-
plane-based OpenStackDP scheme to 5G Clouds, which
demands ultra-low latency, high bandwidth, better authen-
tication, and granular access control. We have advanced
the state-of-the-art in cloud security research, designing
software-defined OpenStack architectures and improving
the agility and security posture of the Cloud Infrastructure.

Authors’ contributions
Prabhakar Krishnan conceived and designed this study. He performed the
experiments and wrote this paper. Kurunandan Jain contributed to the design
and security analysis of the research. Amjad Aldweesh contributed to the
threat modeling and validation, designing new experiments. P. Prabu provided
critical feedback and helped shape the analysis and the interpretation of the
results. Rajkumar Buyya critically reviewed and supervised the overall research,
analysis, and manuscript. All authors discussed and contributed to the final
manuscript. The authors read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

Declarations

Competing interests
The authors declare no competing interests.

Received: 24 June 2022 Accepted: 13 February 2023

References
 1. Singh S, Jeong YS, Park JH (2016) A survey on cloud computing security:

issues, threats, and solutions. J Netw Comput Appl 75:200–222
 2. Data breach investigations report (2019) https:// www. veriz on. com/

busin ess/ resou rces/ repor ts/ 2019- data- breach- inves tigat ions- report. pdf.
Accessed 24 Feb 2023

 3. Jararweh Y, Al-Ayyoub M, Benkhelifa E, Vouk M, Rindos A (2016) Software
defined cloud: Survey, system and evaluation. Future Generation Com-
puter Systems 58:56–74

 4. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford
J, Shenker S, Turner J (2008) “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review 38(2):69–74.
https:// doi. org/ 10. 1145/ 13557 34. 13557 46

 5. Open Virtual Network Project. https:// www. ovn. org/ en/. Accessed 24 Feb
2023

 6. Cheng Q et al (2018) Guarding the perimeter of cloud-based enterprise
networks: an intelligent SDN firewall. In: 2018 IEEE international confer-
ence on data science and systems, pp 897–902

 7. Using the Cisco Span Port for traffic analysis. https:// www. cisco. com/c/
en/ us/ td/ docs/ switc hes/ metro/ me360 0x_ 3800x/ softw are/ relea se/

15-4_ 1_S/ confi gurat ion/ guide/ 3800x 3600x scg/ swSPAN. pdf. Accessed
24 Feb 2023

 8. OpenvSwitch. http:// docs. openv switch. org. Accessed 24 Feb 2023
 9. OpenStack: open-source software for creating private and public

clouds. https:// www. opens tack. org. Accessed 24 Feb 2023
 10. OpenStack Networking architecture. WWW document. https:// docs.

opens tack. org/ secur ity- guide/ netwo rking/ archi tectu re. html. Accessed
24 Feb 2023

 11. Hui K (2013) Laying cinder block (volumes) in OpenStack. Part 1: the
basics. WWW document. Available at: https:// cloud archi tectm usings.
com/ 2013/ 11/ 18/ laying- cinder- block- volum es- in- opens tack- part-1-
the- basics/. Accessed 24 Feb 2023

 12. OpenStack Docs: TAP as a Service (TAPaaS). https:// docs. opens tack.
org/ drago nflow/ latest/ specs/ tap_ as_a_ servi ce. html. Accessed 24 Feb
2023

 13. Krishnan P, Achuthan K (2019) CloudSDN: enabling SDN framework for
security and threat analytics in cloud networks. In: Lecture notes of the
Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, vol 276. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 030- 20615-4_ 12

 14. Openstack liberty. https:// www. opens tack. org/ softw are/ liber ty.
Accessed 24 Feb 2023

 15. OpenStack. DevStack. https:// docs. opens tack. org/ devst ack/ latest/.
Accessed 24 Feb 2023

 16. Urias VE, Van Leeuwen B, Stout WMS, Lin H. "Applying a Threat model
to Cloud Computing" OSTI. gov, Sandia National Laboratories Albu-
querque, New Mexico, https:// www. osti. gov/ servl ets/ purl/ 15946 57.
Accessed 24 Feb 2023

 17. Dragonflow- Distributed SDN Controller for OpenStack. https:// www.
opens tack. org/ softw are/ relea ses/ ocata/ compo nents/ drago nflow.
Accessed 24 Feb 2023

 18. OpenDaylight. https:// www. opend aylig ht. org/. Accessed 24 Feb 2023
 19. networking-odl. http:// events. linux found ation. org/ sites/ events/ files/

slides/ netwo rking- odl. pdf. Accessed 24 Feb 2023
 20. https:// www. synop sys. com/ softw are- integ rity/ resou rces/ analy st- repor

ts/ open- source- secur ity- risk- analy sis. html? intcmp= sig- blog- ossra1.
Accessed 24 Feb 2023

 21. Thimmaraju K, Shastry B, Fiebig T, Hetzelt F, Seifert J-P, Feldmann A,
Schmid S (2018) Taking Control of SDN-based Cloud Systems via the
Data Plane. In Proceedings of the Symposium on SDN Research (SOSR
’18). Association for Computing Machinery, New York, Article 1, 1–15.
https:// doi. org/ 10. 1145/ 31854 67. 31854 68

 22. OpenStack Security Guide. http:// docs. opens tack. org/ secur ity- guide.
Accessed 24 Feb 2023

 23. Banikazemi M, Olshefski DP, Shaikh A, Tracey JM, Wang G (2013) Merid-
ian: an SDN platform for cloud network services. IEEE Communications
Magazine 51:120-127

 24. Patel P et al (2016) SDN and NFV integration in openstack cloud to
improve network services and security. In: International conference on
advanced communication control and computing technologies, pp
657–658

 25. Tissir N, El Kafhali S, Aboutabit N (2021) How much your cloud man-
agement platform is secure? OpenStack Use Case. https:// doi. org/ 10.
1007/ 978-3- 030- 66840-2_ 85

 26. Lane N, Koslovski G, Pillon M, Miers C, Gonzalez N (2020) Software-
defined network security over openstack clouds: a systematic analysis.
In: International conference on cloud computing and services science
(CLOSER), pp 423–429. https:// doi. org/ 10. 5220/ 00094 71304 230429

 27. Jacquin L, Shaw AL, Dalton C (2015) Towards trusted softwaredefined
networks using a hardware-based integrity measurement architecture.
In: IEEE conference on network softwarization

 28. Liu G, Trotter M, Ren Y, Wood T (2016) NetAlytics: Cloud-Scale Applica-
tion Performance Monitoring with SDN and NFV. In Proceedings of the
17th International Middleware Conference (Middleware ’16). Associa-
tion for Computing Machinery, New York, Article 8, 1–14. https:// doi.
org/ 10. 1145/ 29883 36. 29883 44

 29. Jeong S, Yoo J, Hong JW (2019) Design and implementation of virtual
TAP for SDN-based OpenStack networking. In: IFIP/IEEE symposium on
integrated network and service management, pp 233–241

https://www.verizon.com/business/resources/reports/2019-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/reports/2019-data-breach-investigations-report.pdf
https://doi.org/10.1145/1355734.1355746
https://www.ovn.org/en/
https://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x_3800x/software/release/15-4_1_S/configuration/guide/3800x3600xscg/swSPAN.pdf
https://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x_3800x/software/release/15-4_1_S/configuration/guide/3800x3600xscg/swSPAN.pdf
https://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x_3800x/software/release/15-4_1_S/configuration/guide/3800x3600xscg/swSPAN.pdf
http://docs.openvswitch.org
https://www.openstack.org
https://docs.openstack.org/security-guide/networking/architecture.html
https://docs.openstack.org/security-guide/networking/architecture.html
https://cloudarchitectmusings.com/2013/11/18/laying-cinder-block-volumes-in-openstack-part-1-the-basics/
https://cloudarchitectmusings.com/2013/11/18/laying-cinder-block-volumes-in-openstack-part-1-the-basics/
https://cloudarchitectmusings.com/2013/11/18/laying-cinder-block-volumes-in-openstack-part-1-the-basics/
https://docs.openstack.org/dragonflow/latest/specs/tap_as_a_service.html
https://docs.openstack.org/dragonflow/latest/specs/tap_as_a_service.html
https://doi.org/10.1007/978-3-030-20615-4_12
https://doi.org/10.1007/978-3-030-20615-4_12
https://www.openstack.org/software/liberty
https://docs.openstack.org/devstack/latest/
http://OSTI.gov
https://www.osti.gov/servlets/purl/1594657
https://www.openstack.org/software/releases/ocata/components/dragonflow
https://www.openstack.org/software/releases/ocata/components/dragonflow
https://www.opendaylight.org/
http://events.linuxfoundation.org/sites/events/files/slides/networking-odl.pdf
http://events.linuxfoundation.org/sites/events/files/slides/networking-odl.pdf
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1
https://doi.org/10.1145/3185467.3185468
http://docs.openstack.org/security-guide
https://doi.org/10.1007/978-3-030-66840-2_85
https://doi.org/10.1007/978-3-030-66840-2_85
https://doi.org/10.5220/0009471304230429
https://doi.org/10.1145/2988336.2988344
https://doi.org/10.1145/2988336.2988344

Page 42 of 42Krishnan et al. Journal of Cloud Computing (2023) 12:26

 30. Callegati F, Cerroni W, Contoli C, Cardone R, Nocentini M, Manzalini
A (2016) SDN for dynamic NFV deployment. IEEE Commun Mag
54(10):89–95

 31. SONA: DC Network Virtualization, The Open Network Operating System
(ONOS). https:// wiki. onosp roject. org/ displ ay/ ONOS/ SONA% 3A+ DC+
Netwo rk+ Virtu aliza tion. Accessed 24 Feb 2023

 32. Chi Y, Jiang T, Li X, Gao C (2017) Design and implementation of cloud
platform intrusion prevention system based on SDN. In: 2017 IEEE 2nd
international conference on big data analysis (ICBDA), pp 1–6

 33. Foresta F et al (2018) Improving OpenStack networking: advantages
and performance of native SDN integration. In: 2018 IEEE international
conference on communications (ICC)

 34. Xu C, Zhang R, Xie M, Yang L (2020) Network intrusion detection system
as a service in OpenStack Cloud. In: 2020 international conference on
computing, networking and communications (ICNC), pp 450–455.
https:// doi. org/ 10. 1109/ ICNC4 7757. 2020. 90494 80

 35. Virupakshar KB et al (2020) Distributed denial of service (DDoS) attacks
detection system for OpenStack-based private cloud. Procedia Comput
Sci 167:2297–2307

 36. Benet CH, et al (2017) “OpenStackEmu — A cloud testbed combining
network emulation with OpenStack and SDN.” 2017 14th IEEE Annual
Consumer Communications & Networking Conference (CCNC), 566-568

 37. Son J, Dastjerdi AV, Calheiros RN, Ji X, Yoon Y, Buyya R (2015) Cloud-
SimSDN: modeling and simulation of software-defined cloud data
centers. In: IEE/ACM international symposium on cluster, cloud and grid
computing, pp 475–484. https:// doi. org/ 10. 1109/ CCGrid. 2015. 87

 38. Malik A, Ahmed J, Qadir J, Ilyas MU (2017) A measurement study of open
source SDN layers in OpenStack under network perturbation. Comput
Commun 102, C:139–149

 39. Li J, Jiang H, Jiang W, Wu J, Du W (2020) SDN-based stateful firewall for
cloud. In: 2020 IEEE 6th Intl conference on big data security on cloud
(BigDataSecurity), pp 157–161. https:// doi. org/ 10. 1109/ BigDa taSec urity-
HPSC- IDS49 724. 2020. 00037

 40. Luo Y, Luo W, Puyang T, Shen Q, Ruan A, Wu Z (2016) OpenStack security
modules: a least-invasive access control framework for the cloud. In:
2016 IEEE 9th international conference on cloud computing (CLOUD),
pp 51–58. https:// doi. org/ 10. 1109/ CLOUD. 2016. 0017

 41. Jin X, Krishnan R, Sandhu R (2014) “Role and attribute based collabora-
tive administration of intra-tenant cloud IaaS.” 10th IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, 261-274

 42. Hoang XT, Bui ND (2021) An Implementation of Firewall as a Service for
OpenStack Virtualization Systems. ICISN 2021. In: Lecture notes in net-
works and systems, vol 243. Springer, Singapore. https:// doi. org/ 10. 1007/
978- 981- 16- 2094-2_ 12

 43. Abdulqadder IH, Zou D, Aziz IT, Yuan B, Li W (2018) SecSDN-cloud: defeat-
ing vulnerable attacks through secure software-defined networks. IEEE
Access 6:8292–8301. https:// doi. org/ 10. 1109/ ACCESS. 2018. 27972 14

 44. Benjamin B, Coffman J, Esiely-Barrera H, Farr K, Fichter D, Genin D, Glend-
enning L, Hamilton P, Harshavardhana S, Hom R, Poulos B, Reller N (2017)
Data protection in OpenStack. In: 2017 IEEE international conference on
cloud computing (CLOUD), pp 560–567

 45. Dinh PT, Park M (2020) ECSD: enhanced compromised switch detection
in an SDN-based cloud through multivariate time-series analysis. IEEE
Access 8:119346–119360. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30042 58

 46. Du X, Lv Z, Wu J, Wu C, Chen S (2016) PDSDN: a policy-driven SDN
controller improving scheme for multi-tenant cloud datacenter environ-
ments. In: 2016 IEEE International Conference on Services Computing
(SCC), pp 387–394. https:// doi. org/ 10. 1109/ SCC. 2016. 57

 47. Krishnan P, Duttagupta S, Achuthan K (2019) VARMAN: multi-plane
security framework for software-defined networks. Comput Commun
148:215–239. https:// doi. org/ 10. 1016/j. comcom. 2019. 09. 014

 48. Krishnan P, Duttagupta S, Buyya R (2021) OpenPATH: application-aware
high-performance software-defined switching framework. J Netw Com-
put Appl 193:103196, ISSN 1084-8045. https:// doi. org/ 10. 1016/j. jnca. 2021.
103196

 49. Real World threat modeling using the PASTA methodology. https:// www.
owasp. org/ images/ a/ aa/ AppSe cEU20 12_ PASTA. pdf. Accessed 2 Jan 2022

 50. Mininet. An instant virtual network on your laptop. http:// minin et. org/.
Accessed 24 Feb 2023

 51. Zhang X, You J (2020) A gated dilated causal convolution based encoder-
decoder for network traffic forecasting. IEEE Access 8:6087–6097.
https:// doi. org/ 10. 1109/ ACCESS. 2019. 29634 49

 52. Pfülb B, Hardegen C, Gepperth A, Rieger S (2019) A study of deep learn-
ing for network traffic data forecasting. In: International conference on
artificial neural networks, pp 497–512. https:// doi. org/ 10. 1007/ 978-3- 030-
30490-4_ 40

 53. Mousavi SH, Khansari M, Rahmani R (2020) A fully scalable big data
framework for botnet detection based on network traffic analysis. Inf Sci
512:629–640. https:// doi. org/ 10. 1016/j. ins. 2019. 10. 018

 54. Krishnan P, Achuthan K (2019) Managing network functions in stateful
application-aware SDN, security in computing and communications. In:
SSCC 2018. Communications in computer and information science, vol
969. Springer, Singapore. https:// doi. org/ 10. 1007/ 978- 981- 13- 5826-5_7

 55. Lu W, Tong H (2009) Detecting network anomalies using CUSUM and EM
clustering. In: Cai Z, Li Z, Kang Z, Liu Y (eds) Advances in computation
and intelligence. ISICA 2009. Lecture notes in computer science, vol 5821.
Springer, Berlin, Heidelberg. https:// doi. org/ 10. 1007/ 978-3- 642- 04843-2_ 32

 56. networking-sfc. https:// opend ev. org/ opens tack/ netwo rking- sfc. Accessed
24 Feb 2023

 57. Tavallae M, Bagheri E, Lu W, Ghorbani AA. Nsl-Kdd dataset. http:// www.
unb. ca/ resea rch/ iscx/ datas et/ iscx- NSL- KDD- datas et. html. Accessed 24
Feb 2023

 58. Sharafaldin I, Lashkari AH, Ghorbani AA (2018) "Toward generating a new
intrusion detection dataset and intrusion traffic characterization," Inter-
national Conference on Information Systems Security and Privacy, pp
108–116

 59. P.A.A. Resende, A.C. Drummond, The hogzilla dataset, http:// ids- hogzi lla.
org/ datas et. 2018

 60. University of New Brunswick. CSE-CIC-IDS2018 on AWS. 2018. Available:
https:// www. unb. ca/ cic/ datas ets/ ids- 2018. html

 61. University of New Brunswick (2019) DDoS evaluation dataset (CICDDoS2019).
unb.ca Available: https:// www. unb. ca/ cic/ datas ets/ ddos- 2019. html

 62. Hamza HH, Gharakheili TA, Benson, Sivaraman V (2019) Detecting volumetric
attacks on lot devices via sdn-based monitoring of mud activity. In: Proceed-
ings of the 2019 ACM symposium on SDN research, pp 36–48

 63. OpenStack Tempest. https:// github. com/ opens tack/ tempe st. Accessed
24 Feb 2023

 64. Brandt M et al (2014) Security analysis of software defined networking
protocols OpenFlow. In: OF-Config and OVSDB in IEEE ICCE 2014 (July
2014)

 65. Tasch M, Khondoker R, Marx R, Bayarou K (2014) Security Analysis of Security
Applications for Software Defined Networks. In Proceedings of the 10th
Asian Internet Engineering Conference (AINTEC ’14). Association for Com-
puting Machinery, New York, 23–30. https:// doi. org/ 10. 1145/ 26847 93. 26847 97

 66. Ring M, Wunderlich S, Grüdl D, Landes D, Hotho A (2017) Flow-based
benchmark data sets for intrusion detection. Proceedings of the 16th
European Conference on Cyber Warfare and Security, p 361–369

 67. Kim M, Kong H, Hong S, Chung S, Hong JW (2004) A flow-based method
for abnormal network traffic detection. In: 2004 IEEE/IFIP network opera-
tions and management symposium (IEEE Cat. No. 04CH37507), vol 1, pp
599–612

 68. Corchado E, Herrero Á (2011) Neural visualization of network traffic data
for intrusion detection. Appl Soft Comput 11:2042–2056. https:// doi. org/
10. 1016/j. asoc. 2010. 07. 002

 69. CVE security vulnerability database. Security vulnerabilities, exploits, refer-
ences, and more. https:// www. cvede tails. com/. Accessed 24 Feb 2023

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://wiki.onosproject.org/display/ONOS/SONA%3A+DC+Network+Virtualization
https://wiki.onosproject.org/display/ONOS/SONA%3A+DC+Network+Virtualization
https://doi.org/10.1109/ICNC47757.2020.9049480
https://doi.org/10.1109/CCGrid.2015.87
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00037
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00037
https://doi.org/10.1109/CLOUD.2016.0017
https://doi.org/10.1007/978-981-16-2094-2_12
https://doi.org/10.1007/978-981-16-2094-2_12
https://doi.org/10.1109/ACCESS.2018.2797214
https://doi.org/10.1109/ACCESS.2020.3004258
https://doi.org/10.1109/SCC.2016.57
https://doi.org/10.1016/j.comcom.2019.09.014
https://doi.org/10.1016/j.jnca.2021.103196
https://doi.org/10.1016/j.jnca.2021.103196
https://www.owasp.org/images/a/aa/AppSecEU2012_PASTA.pdf
https://www.owasp.org/images/a/aa/AppSecEU2012_PASTA.pdf
http://mininet.org/
https://doi.org/10.1109/ACCESS.2019.2963449
https://doi.org/10.1007/978-3-030-30490-4_40
https://doi.org/10.1007/978-3-030-30490-4_40
https://doi.org/10.1016/j.ins.2019.10.018
https://doi.org/10.1007/978-981-13-5826-5_7
https://doi.org/10.1007/978-3-642-04843-2_32
https://opendev.org/openstack/networking-sfc
http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html
http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html
http://ids-hogzilla.org/dataset
http://ids-hogzilla.org/dataset
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://github.com/openstack/tempest
https://doi.org/10.1145/2684793.2684797
https://doi.org/10.1016/j.asoc.2010.07.002
https://doi.org/10.1016/j.asoc.2010.07.002
https://www.cvedetails.com/

	OpenStackDP: a scalable network security framework for SDN-based OpenStack cloud infrastructure
	Abstract
	Introduction
	Background
	OpenStack architecture and SDN integration
	Security threats for an OpenStack cloud
	OpenStack networking security
	Neutron security
	Security group
	Virtual switch security

	New opportunities in SDN-managed clouds

	Related work
	Proposed SDN-enabled architecture
	Threat model
	Monitoring and anomaly detection components
	Switch monitor
	Flow monitor
	Match-action
	Feature selection

	Access control and enforcement services
	DTARS applications
	Policy management
	Attack mitigation

	Design and implementation
	Stateful SDN firewall
	Payload extraction
	DPMonitor (vMon)
	Firewall agent application (vIDS)

	OpenStack neutron SDN layers
	NetVirt
	networking-odl
	Neutron plugin
	Neutron agent
	Neutron API

	Anomaly and intrusion detection system
	Dynamic service function chaining system

	Performance evaluation
	Experimental setup
	Basic micro-benchmarks
	Attack simulation and DDoS attack emulation
	IPSIDS efficiency
	Dynamic threshold vs. detection rate

	Stateful dataplane performance
	Flow table scalability

	Cloud network configuration and neutron node
	Throughput
	Latency
	Firewall IDS service launch time

	Security incident response performance
	Dynamic DDoS detection and mitigation

	Access control performance
	Comparison with related security solutions
	Holding time on flow table (Fig. 29a)
	Detection speed (Fig. 29b)
	Effectiveness of the QoS
	Intrusion detection

	Security analysis
	List of attacks and countermeasures

	Threat model validation
	Result discussion
	Light-weight flow-based IDS
	Data sets and fine-tuning the ML-based IDS
	Exploit experiment
	Qualitative analysis

	Limitations and future work
	Data sets
	Fault tolerance
	Model resilience
	Hardening the ML-based solution
	Zero-day attacks
	Detection of attacks exploiting the unpatched known vulnerabilities
	Attacks through cloud service vulnerabilities

	Conclusions
	References

