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Abstract

Metaschedulers can distribute parts of a Bag-of-Tasks

(BoT) application among various resource providers in or-

der to speed up its execution. When providers cannot dis-

close private information such as their load and computing

power, which are usually heterogeneous, the metascheduler

needs to make blind scheduling decisions. We propose three

policies for composing resource offers to schedule deadline-

constrained BoT applications. Offers act as a mechanism

in which resource providers expose their interest in exe-

cuting an entire BoT or only part of it without revealing

their load and total computing power. We also evaluate

the amount of information resource providers need to ex-

pose to the metascheduler and its impact on the scheduling.

Our main findings are: (i) offer-based scheduling produces

less delay for jobs that cannot meet deadlines in compari-

son to scheduling based on load availability (i.e. free time

slots); thus it is possible to keep providers’ load private

when scheduling multi-site BoTs; and (ii) if providers pub-

lish their total computing power they can have more local

jobs meeting deadlines.

1. Introduction

Bags-of-Tasks (BoTs) are parallel applications with no

inter-task communication. A variety of problems in several

fields, including computational biology [18], image pro-

cessing [23], and massive searches [3], have been modeled

as BoT applications. In comparison to the message passing

model, BoT applications can be easily executed on multiple

resource providers to meet a user deadline or reduce the user

response time. Although BoT applications comprise inde-

pendent tasks, the results produced by all tasks constitute

the solution of a single problem. In most cases, users need

the whole set of tasks executed to be able to post-process or

analyze the results. Therefore, the optimization of the ag-

gregate set of results is important, and not the optimization

of a particular task or group of tasks [4].

Large-scale parallel applications have been deployed in

computing facilities such as TeraGrid, DAS-3, Grid’5000,

and NAREGI. However, the academic and industry com-

munities have also been considering the utility computing

paradigm for executing these applications on environments

such as Sun Grid, IBM On-Demand Computing, and Ama-

zon Elastic Compute Cloud (EC2) [9]. These environments

provide access to resources by charging users according to

the application’s demand, which is specified in contracts

called Service Level Agreements (SLAs).

The execution of a BoT application on multiple utility

computing facilities is an attractive solution to meet user

deadlines. This is because more tasks of a single BoT ap-

plication can execute in parallel and these facilities have

to deliver a certain QoS level, otherwise the providers are

penalized. A service provider containing a metasched-

uler is responsible for distributing the tasks among re-

source providers according to their load and system con-

figuration. However, allocating resources from multiple

providers is challenging because these resource providers

cannot disclose much information about their local load to

the metascheduler. Workload is private information that

companies do not disclose easily since it may affect the

business strategy of competitors.

Much work has been done on scheduling BoTs [7, 15,

16]. However, little effort has been devoted to schedule

these applications with deadline requirements [6, 14, 24],

in particular considering limited load information available

from resource providers. Therefore, we extend the existing

solutions and contribute to the research field in the follow-

ing ways:

• We introduce three policies for composing offers to

schedule BoT applications (Section 4). Offers are a

mechanism in which resource providers expose their



Figure 1. Components interaction for scheduling a bag-of-tasks on multiple resources with offers.

interest in executing an entire BoT or only part of it

without revealing their local load and system capabili-

ties. Whenever providers cannot meet a deadline, they

generate offers with another feasible deadline. For the

offer generation within resource providers (Section 3),

we leverage the work developed by Islam et al. [12,13],

whereas the concept of combining offers for execut-

ing an application on multiple resource providers is in-

spired by the provisioning model of Singh et al. [22]

and the capacity planning of Siddiqui et al. [21].

• We investigate the amount of information resource

providers need to expose to the metascheduler and its

impact on the scheduling of jobs local and external to

the resource providers (Section 5).

Even though the main motivation of this work is schedul-

ing deadline-constrained BoTs on utility computing facili-

ties, the policies can also be used in other scenarios. There-

fore, we have not included pricing and economic models in

this work. Note that our study can be used for other ap-

plications rather than Bag-of-Tasks. Services running on

multiple resource providers also require a coordinated allo-

cation based on the load information access and services’

demands. Another example is the scheduling of parallel

phases of workflows, in which a group of tasks have to fin-

ish, so as the workflow can proceed to the next stage.

2. Architecture and Scheduling Policies

A metascheduler receives user requests to schedule

BoTs on multiple autonomous resource providers in on-

line mode. Users provide the number of tasks in the bag,

their estimated required time, and a deadline to execute the

entire BoT. The resources considered are space-shared ma-

chines such as clusters and massively parallel processing

machines. Resource providers are responsible for schedul-

ing both local and external jobs using the Earliest Deadline

First. The local jobs can be both sequential and message

passing parallel applications, whereas the external jobs are

the BoT applications. The metascheduler has no access to

the scheduling queues.

As illustrated in Figure 1, the scheduling of a BoT ap-

plication consists of 5 steps. In step 1, the metascheduler is

responsible for exposing the application requirements to the

resource providers. In step 2, the resource providers gener-

ate a list of offers that can serve the entire BoT or only part

of it. Once the resource providers generate the offers, they

send them to the metascheduler (step 3), which composes

them according to the user requirements (step 4), and sub-

mits the tasks to resource providers (step 5).

Scheduler’s Goal. Our goal is to meet users’ deadlines, and

when not possible, try to schedule jobs as close as possible

to these deadlines. The challenge from the metascheduler’s

point of view is to know how much work to submit to each

resource provider such that it meets the BoT user’s deadline,

whereas from the resource providers’ point of view is to

know how much work they can admit without violating the

deadlines of already accepted requests.

3. Offer Generation

3.1. Deadline-aware offer generation

An offer consists of a number of tasks, and the maximum

time the resource provider can complete the work. These

offers are to execute part or the entire BoT. The resource

provider could follow different policies to generate a list

of offers. For instance, a resource provider could generate

offers that (i) are more profitable [11,19]; (ii) provide some

slack in case of resource failures or to increase the chances

of admitting more jobs in future; or (iii) do not violate the



deadline of already scheduled tasks and the new task. In

this work, we support the third approach and will leave the

other two for future work.

The offer generation uses the BoT information provided

by the metascheduler, which includes estimated execution

time of each task, number of tasks, and deadline. Different

from scheduling based on FIFO with conservative backfill-

ing for example, where it is possible to identify time slots by

simply calculating the start and completion time of tasks, an

Earliest Deadline First based queue cannot follow such an

approach. The reason is that the offer generation involves

the rescheduling of the already accepted jobs, and hence the

free time slots depend on the new submitted job.

In order to generate the list of offers Φ, the resource

provider:

1. Defines a set of possible number of tasks∆ it is willing

to accept. It creates this list by calculating a percent-

age of the total number of tasks in the BoT application

(e.g. ∆ ← {BoT s, 0.75 ∗ BoT s, 0.50 ∗ BoT s, 0.25 ∗
BoT s, 0.10∗BoT s}, where s is the BoT size, i.e. total

number of tasks).

2. A procedure genOffer generates an offer for each BoT

size. To generate an offer, the resource provider cre-

ates a temporary job jk that has the BoT specifications,

which include deadline and estimated execution time,

but with the different number of tasks, defined in ∆.

The algorithm used is the Earliest Deadline First.

3. The genOffer procedure returns the completion time

of that offer. This time can be the deadline provided

by the user (in the case of a successful schedule), or a

completion time that is longer than the deadline (when

the scheduler cannot meet the user deadline).

4. The algorithm compares the current offer with the pre-

vious offer in Φ. If the completion time is the same,

the previous offer simply has its number of tasks in-

creased. If the completion time is longer, the resource

provider includes the current offer in the list Φ.

FEEDBACK. In order to provide users with feedback when

it is not possible to meet their deadlines, we use the ap-

proach proposed by Islam et al. [13]. The idea is to use a

binary search that has as its first point the deadline defined

by the user and its last point as the longest feasible deadline,

i.e. the one when the job is placed in the last position of the

scheduling queue.

3.2. Load-aware offer generation

As base for comparison in our evaluations, we will use

a policy based on free time slots presented by Singh et

al. [22] (FreeTimeSlots policy). In this policy, the resource

provider uses the current schedule containing running and

pending jobs. The resource provider generates windows

for each processor that represent their time availability, also

known as time slots. Different from Singh et al. [22], we

analyze and provide the time slots for the entire scheduling

queue, not only part of it.

4. Offer Composition

The metascheduler is responsible for composing the of-

fers from resource providers and giving the user a single

offer with a feasible deadline that can be met. The offer

composition determines how much work the metascheduler

should send to each resource provider; and when these tasks

should receive the resources. The goal of the metascheduler

is to meet their users’ deadlines, or get as close as possible

to the deadlines.

Once the metascheduler receives the offers from re-

source providers, it analyses whether it is possible to meet

user’s deadline. We have developed one policy for when the

user’s deadline cannot be met (OffersNoLB), and two poli-

cies when it is possible to meet the user’s deadline (Offer-

sWithPLB andOffersWithDBLP). These last two policies try

to balance the load distributed among the resource providers

according to the information available to the metascheduler.

4.1. When user’s deadline cannot be met

For the OfferNoLB policy, after collecting the offers

from resource providers, the metascheduler:

1. Creates a list with all the offers.

2. Sorts the list such that all offers that meet the user’s

deadline come before those that do not meet. For those

that meet, the offers are sorted in decreasing order of

number of tasks. For those that do not meet, the offers

are sorted by the ascending order of completion time.

3. Removes all offers after the first offer that is able to

execute the entire BoT.

4. Creates a list L that is dynamically updated with pos-

sible composite offers. The creation of L is based on

the order of the offers. For each offer analyzed, the

algorithm updates the number of remaining requested

tasks and the last completion time of each list that uses

that offer. Note that what makes this algorithm simple

is the list pre-processing, i.e. sorting and filtering.

5. Returns the first composite offer in L that provides the

earliest possible deadline.



Table 1. Example of offer composition with the OfferNoLB policy for a BoT with number of tasks = 512

and deadline = 40 time units.

Operation Offers (size, deadline)provider

Original Offers (256, 40)1, (512, 100)1, (128, 40)2, (512, 200)2, (64, 40)3, (512, 200)3

Sorted Offers (256, 40)1, (128, 40)2, (64, 40)3, (512, 100)1, (512, 200)2, (512, 200)3

Filterd Offers (256, 40)1, (128, 40)2, (64, 40)3, (512, 100)1

Composite Offers (List L) {(128, 40)2, (64, 40)3, (320, 100)1} or {(256, 40)1, (128, 40)2, (64, 40)3 (not enough tasks)}

Selected Composite Offer (128, 40)2, (64, 40)3, (320, 100)1

Table 1 illustrates an example on how the metasched-

uler composes offers. The example considers a list of of-

fers Φ = {(s1, d1)rid1
, ..., (sn, dn)ridn

} where rid is the

resource provider id, s is the BoT size, and d is the of-

fer’s deadline, and a BoT with deadline = 40 time units and

number of tasks = 512. As we can observe, the choice of

the offers is not greedy. From the example, the metasched-

uler does not use the offer (256, 40)1, which is the best of-

fer, because the remaining resource providers would end up

completing the BoT by 200 time units rather than 100 time

units, which is the next best offer from resource provider 3

that can accept enough tasks ((512, 200)3).

4.2. Balancing the load when possible to
meet user’s deadline

When it is possible to meet the user’s deadline, the

metascheduler tries to balance the number of tasks to be

submitted to each resource provider. This balance allows

jobs local to resource providers to meet more deadlines. The

policy for load balancing depends on the amount of infor-

mation the metascheduler has about the resource providers.

We have developed two policies for load balancing: (i)

OffersWithPLB (Proportional Load Balancing) balances

the load according to the size of the offers; and (ii) Of-

fersWithDPLB (Double Proportional Load Balancing) bal-

ances the load according to the size of the offers and the

total computing power of resource providers. These poli-

cies work only with offers that meet user’s deadlines; all the

other offers are discarted. Therefore, each resource provider

has only one offer that meets the deadline.

The OffersWithPLB policy uses the offer size in order

to balance the number of tasks submitted to each resource

provider. The proportional parameter P is calculated per

offer as follows: P ← OfferSize / totalOfferedTasks, where

OfferSize is the number of tasks in an offer, and totalOf-

feredTasks is the total number of tasks from all offers. For

each offer, the number of tasks is multiplied by P . As the

metascheduler does not know the load and the total com-

Algorithm 1: Pseudo-code for composing offers using

the OffersWithDPLB policy.

Sort offers by decreasing order of their size (offers of same1

size are sorted by decreasing order of resource provider’s

total computing power)

for each offer size in offers list do2

P← totalTasksOfferedThisSize / totalOfferedTasks3

remainingNTasksSameSize← P * BoTSize4

totalCPower← total RPs’ computing power of offers of5

this size

for all offers with this size do6

if last offer from this group then7

nTasks← remainingNTasksSameSize8

else9

nTasks← P * BoTSize10

DP← offer.RPCPower / totalCPower11

nTasks← DP * nTasks12

if nTasks > offer.nTasks then13

nTasks← offer.nTasks14

offer.setNTasks(nTasks)15

remainingNTasksSameSize.decrement(offer.nTasks)16

compositeoffer.add(offer)17

puting power of resource providers, the offer size serves as

an indicator of how much work a resource provider should

receive in relation to the others.

For the OffersWithDPLB policy (Algorithm 1), the pa-

rameter P is calculated by the group of offers with the same

number of tasks (Line 3). The additional parameter Dou-

ble Proportional (DP) is used to distributed the load to a

given group of resource providers that contains offers with

the same number of tasks (offer size) according to their ca-

pabilities (e.g. total number of resources a provider hosts)

(Line 11). It is not always possible to distributed the tasks of

a given offer size exactly proportionally to the resource ca-

pabilities. For this reason, we sort the offers of the same size

in a decreasing order of providers’ total computing power

(Line 1) and we adjust the number of tasks to the resource

provider when necessary (Lines 13-14).



Table 2. Summary of workloads used to perform the experiments.

Location Trace Procs Jobs Load Job Req Procs Job Req Time

Cluster 1 CTC SP2v2.1 430 3,478 49% 1 ≤ procs ≤ 306 1h ≤ time ≤ 18h

Cluster 2 HPC2N v1.1 240 959 56% 1 ≤ procs ≤ 128 1h ≤ time ≤ 120h

Cluster 3 HPC2N v1.1 240 4,913 48% 1 ≤ procs ≤ 128 1h ≤ time ≤ 120h

Cluster 4 SDSC SP2 v3.1 128 1,088 54% 1 ≤ procs ≤ 115 1h ≤ time ≤ 18h

Cluster 5 LPC-EGEE v1.2 140 6,574 52% 1 ≤ procs ≤ 1 2h ≤ time ≤ 72h

External SDSC BLUE v3.1 1178 969 54% 64 ≤ procs ≤ 632 1h ≤ time ≤ 36h

5. Evaluation

We have evaluated the scheduling policies by means of

simulations to observe their effects in a long-term usage.

Simulations have allowed us to perform repeatable and con-

trollable experiments. We have used our event-driven sim-

ulator, named PaJFit (Parallel Job Fit) [17], which we have

extended to support BoTs on multi-site environments. We

have used real traces from supercomputers available at the

Parallel Workloads Archive1 and extended them according

to our needs.

We have evaluated the following scheduling policies:

• FreeTimeSlots: scheduling based on free time slots,

i.e. the metascheduler has a detailed access to the load

available (Section 3.2);

• OffersWithPLB: scheduling based on offers. The

scheduler composes offers based on their sizes (Sec-

tion 4.2);

• OffersWithDPLB: the metascheduler considers of-

fer sizes and the total computing power of resource

providers (Section 4.2);

• OffersWithDPLBV2: an extension of OffersWithD-

PLB in which the metascheduler has access to the re-

source providers’ load to be processed (not the free

time slots). This information is used in the same way to

calculate the parameter DP described in Section 4.2;

For the offer-based policies, i.e. OffersWithPLB, Offer-

sWithDPLB, and OffersWithDPLBV2, when no offer can

meet the user deadline, the metascheduler follows the Of-

fersWithNoLB policy described in Section 4.1.

5.1. Experimental configuration

TRACES. We have modeled an environment composed of

five clusters with their own schedulers and loads, and one

metascheduler that receives external (BoT) jobs that can be

executed in either a single or multiple clusters. For the local

1Parallel Workloads Archive:

http://www.cs.huji.ac.il/labs/parallel/workload

jobs, we have used the traces: 430-node IBM SP2 from The

Cornell Theory Center (CTC SP2v2.1), 240-procs AMD

Athlon MP2000+ from High-Performance Computing Cen-

ter North (HPC2N v1.1) in Sweden, the 128-node IBM SP2

from The San Diego Supercomputer Center (SDSC SP2

v3.1), and the 70 dual 3GHz Pentium-IV Xeons from LPC

Clermont-Ferrand in France (LPC-EGEE v1.2). We have

used two parts of the trace HPC2N, from different years, to

simulate two clusters. For the external jobs, we have used

the trace of a bigger machine from the San Diego Super-

computer Center Blue Horizon with 1,152 processors: 144-

node IBM SP, with 8 processors per node, considering jobs

requiring at least 64 processors (SDSC BLUE v3.1). We

have simulated 60 days of these traces.

LOAD. Regarding the load used in the resource providers,

approximately 50% comes from the multi-site BoTs (exter-

nal load), which could be executed in any cluster or multi-

ple clusters, and approximately 50% comes from users sub-

mitting parallel or sequential jobs directly to a particular

cluster (local load). The global load is therefore the exter-

nal load plus the local load submitted to the clusters. We

have chosen the same load for local and external loads in

order to be able to compare the impact of the scheduling

policies on local and external jobs in a fair manner. We

were able to vary the loads using a strategy similar to that

described by Shmueli and Feitelson to evaluate their back-

filling strategy [20], in which they modify the jobs’ arrival

time. However, we fixed the simulation time interval and

modified the number of jobs in the traces. Table 2 sum-

marizes the workload characteristics. More details on the

workloads can be found at the Parallel Workloads Archive.

DEADLINES. To the best of our knowledge, there are no

traces available with deadlines. Therefore, we have incor-

porated deadlines in the existing traces using the following

function: T s
j +T r

j +k, where T s
j is the job submission time,

T r
j is the job estimated runtime, and k is a parameter that

assumes three values according to two Deadline Schemas.

For Deadline Schema 1, k assumes the values 18 hours, 36

hours, and 10 days, and for Deadline Schema 2, k assumes

the values 12 hours, 1 day, and 1 week. Therefore, Deadline



Schema 2 has more jobs with tighter deadlines than Dead-

line Schema 1. We have used a uniform distribution for

the values of k for all jobs in each workload. Note that k

is not a function of job size. Modeling k independently of

job size allowed the environment to have both small and big

jobs with relaxed and tight deadlines. We have generated 30

workloads for each original trace varying the seed for the

deadlines. By having 60 days of simulated time, 30 work-

loads with different deadlines, and 2 deadline schemas, we

believe that we have been able to evaluate the policies under

various conditions.

METRICS. We have assessed five metrics:

1. Jobs Delayed: number of jobs that were not able to

meet their deadlines;

2. Work Delayed: amount of work (processors x execu-

tion time) of the jobs that were not able to meet their

deadlines;

3. Total Weighted Delay: weighted difference between

jobs’ deadlines and their new deadline given by the

system;

TWDelay =
∑

DN
j

>Dj

Rj ∗

((

DN
j − T s

j

Dj − T s
j

)

− 1

)

∗ 100

(1)

Where Dj is the job deadline, D
N
j is the new job dead-

line provided by the system, Rj is the number of tasks

of the job, and T s
j is the job submitted time. We used

the value Rj as the weight for the percentage differ-

ence between the time of the original and new dead-

line.

4. Clusters per BoT: number of clusters used by BoTs;

5. System Utilization: global system utilization.

For utility computing environments, the first two met-

rics represent the loss in revenue due to possible rejections,

whereas the third metric could represent penalties for not

meeting user’s demand. The last two metrics allow us to

verify how jobs are spread across the clusters and the im-

pact of the policies on the system utilization.

GOAL. Assess the impact of the information available to

the metascheduler for scheduling deadline-constrained jobs.

5.2. Results and analysis

The graphs we show in this section contain the averages

of 30 simulation runs, each with different workloads, along

with their standard deviations. We show the results for the

external load, local load and both together since external

and local load have different characteristics. We first ana-

lyze the jobs that are not able to meet their deadlines when

submitted to the system. Figures 2 and 3 represent number

of jobs and their respective amount of work (time x number

of tasks) delayed in relation to the total number of jobs in

the system and total amount of work respectively.

Deadline Tightness. We observe that the difference in the

results among the offer-based policies increases when jobs

have more relaxed deadlines (Schema 1 has more relaxed

deadline jobs than Schema 2). That is because as jobs have

more relaxed deadlines in Schema 1, resource providers

can reschedule more jobs in order to generate better offers.

Therefore, the metascheduler has more options to schedule

BoT applications. When it is not possible to meet a user

deadline, which is the more frequent in Schema 2, the load

balancing policies cannot be used. The metascheduler has

to use the OffersWithNoLB policy (Section 4.1) for most of

the jobs.

Information access. In relation to the differences between

the FreeTimeSlots policy and offer-based policies we ob-

serve that the former policy handles local jobs better or sim-

ilar to offer-based policies. That is because the metasched-

uler has more detailed load information using the Free-

TimeSlots policy, and hence it can better distribute the load

among resource providers. As local jobs do not have the

option to choose the resource providers, they enjoy more

benefits using this policy. We observe that the OffersWithD-

PLBV2 policy can generate similar results as FreeTimeSlots

for local jobs. This happens because inOffersWithDPLBV2,

the metascheduler has rough access to the local loads, which

is enough to balance the load and give local jobs equal op-

portunity. Finally, we observe that for these two metrics,

having access to the providers’ total computing power is

enough to provide as good results as the FreeTimeSlots pol-

icy, in which the metascheduler has a detailed access to the

resource providers’ loads, i.e. the free time slots. If rough

load information is also available (OffersWithDPLBV2), it

is possible to get even better results.

Job delays. Figure 4 illustrates total weighted delay for not

meeting the deadlines of local, external, and global load.

This metric is interesting because it shows the difference

between what users asked and what the system was able

to provide. We observe that the behavior of this metric is

similar to the previous metrics, except that the delayed ex-

ternal jobs suffer much more in the FreeTimeSlots policy. In

this policy, the providers disclose their free time slots to the

metascheduler, which has no knowledge of the deadlines

of the already accepted jobs. Therefore, the metascheduler

makes blind decisions in terms of deadlines, which have a

considerable impact on external jobs. Thus, even though re-

source providers disclose detailed information of their local



Deadline Schema 1                 Deadline Schema 2

10

15

20

25

Jo
b

s 
D

el
ay

ed
 (

%
)

OffersWithDPLBV2

OffersWithDPLB

OffersWithPLB

FreeTimeSlots

(a) Local Load.

Deadline Schema 1                 Deadline Schema 2

10

15

20

25

30

35

40

45

Jo
b

s 
D

el
ay

ed
 (

%
)

OffersWithDPLBV2

OffersWithDPLB

OffersWithPLB

FreeTimeSlots

(b) External Load.

Deadline Schema 1                 Deadline Schema 2

10

15

20

25

Jo
b

s 
D

el
ay

ed
 (

%
)

OffersWithDPLBV2

OffersWithDPLB

OffersWithPLB

FreeTimeSlots

(c) Global Load.

Figure 2. Number of jobs delayed for local, external, and global load.
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Figure 3. Amount of work delayed for local, external, and global load.

Deadline Schema 1                 Deadline Schema 2

1000

2000

3000

4000

5000

6000

T
o

ta
l W

ei
g

h
te

d
 D

el
ay

 (
x 

10
00

)

OffersWithDPLBV2

OffersWithDPLB

OffersWithPLB

FreeTimeSlots

(a) Local Load.

Deadline Schema 1                 Deadline Schema 2
0

5000

10000

15000

20000

25000

T
o

ta
l W

ei
g

h
te

d
 D

el
ay

 (
x 

10
00

)

OffersWithDPLBV2

OffersWithDPLB

OffersWithPLB

FreeTimeSlots

(b) External Load.

Deadline Schema 1                 Deadline Schema 2
0

5000

10000

15000

20000

25000

T
o

ta
l W

ei
g

h
te

d
 D

el
ay

 (
x 

10
00

)

OffersWithDPLBV2

OffersWithDPLB

OffersWithPLB

FreeTimeSlots

(c) Global Load.

Figure 4. Total Weighted Delay for local, external, and global load.

load to the metascheduler using the FreeTimeSlots policy,

such a policy produces much worse results than the sim-

plest offer-based policy, i.e. OffersWithPLB. In this offer-

based policy, the metascheduler uses only the offers, with-

out knowing the resource providers’ total computing power

and load. This reveals that indeed, the offer sizes are a good

indicator to balance load among resource providers without

accessing their private information.

Load and System utilization. Another important factor is

the Number of Clusters used by the BoT applications. Fig-

ure 5 shows the number of clusters used by BoT applica-

tions for each policy. We observe that the tighter the dead-

lines, the fewer options the metascheduler has to distribute

the tasks of BoT applications among resource providers.

That is because there is more unbalance in the load when

jobs have tighter deadlines, and hence the metascheduler
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Figure 6. Global system utilization.

tends to use fewer options in offer-based policies, and fewer

time slots in the FreeTimeSlots policy. In addition, the

offer-based policies with double proportional load balanc-

ing tend to distribute the load better than the other two poli-

cies. Therefore, they allow more scheduling options for the

next jobs arriving into the system. Regarding the System

Utilization (Figure 6), we observe that the difference be-

tween the policies is minimal, i.e. less than 1 percent. Offer-

sWithDPLB has a minimal decrease in relation to the other

policies because it considers the total computing power of

providers without their actual loads. Therefore, a provider

that has less computing power than the others may receive

fewer tasks even if the other big providers have higher load.

This situation happens only when all offers that meet the

deadline have the same size.

6. Related Work

Iosup et al. [10] have performed an extensive analysis

of BoT scheduling in large-scale distributed systems. To

evaluate the scheduling algorithms, they have considered

different resource management architectures, task selection

policies, and task scheduling policies. Among all the poli-

cies they have presented, three support a certain level of

Quality-of-Service. These policies mainly work with prior-

ities, without considering the expected completion time of

the tasks. Casanova et al. [8] have also performed an ex-

tensive evaluation of policies for scheduling BoTs, but they

have assumed more detailed information on the character-

istics and load of all resources in the system is available.

Different from these projects, our work aims at providing

users with expected completion times that are based on user

requirements, in particular user deadlines, and the restricted

access of the scheduling queues.

Beaumont et al. [5] have investigated centralized and de-

centralized policies for scheduling BoTs considering both

CPU and network. Different from our work, their goal is to

maximize the throughput of user applications in a fair way.

Viswanathan et al. [24] have proposed scheduling strate-

gies for large compute intensive loads that are arbitrarily

divisible and have deadline constraints. They use a pull-

based scheduling strategy with an admission control to en-

sure the applications’ deadlines are satisfied. Different from

our approach, their work assumes a coordinator node that

knows all the tasks in the system. Users do not receive any

feedback when they submit their tasks, since the resource

providers ask for tasks from the coordinator node according

to their available capacity. In addition, users do not receive

a new estimation of completion time when deadlines cannot

be satisfied.

Benoit et al. [6] have presented scheduling techniques for

multiple BoTs. One of the strategies presented in their work

uses the Earliest Deadline First policy for the resources to

choose the next task to be executed among those they have

received. As in previous work, the deadlines have been used

as a priority to select tasks, without giving any feedback and

completion time estimations to the users.

Kim et al. [14] have proposed and compared eight

heuristics that consider priorities and deadlines for indepen-

dent tasks. Different from our work, tasks submitted to the

system are not part of BoTs, therefore their deadlines are

independent. Moreover, users submit the tasks directly to

a centralized entity, i.e. resource providers have no local

load. Abramson et al. [1, 2] proposed a broker to sched-

ule parameter sweep applications (a subclass of BoT ap-

plications) with deadline constraints. Similar to the work

developed by Kim et al., the deadlines of the tasks are inde-

pendent, whereas in our case, the tasks in a BoT application

share the same deadline, thus requiring a coordinated allo-

cation strategy. Yeo and Buyya [25] have also investigated

scheduling of tasks with deadline constraints, but focusing

on single cluster environments and with no feedback when

deadlines are not possible to be satisfied.

Much closer to our work, Islam et al. [12, 13] have in-

vestigated policies for admission control that consider jobs

with deadline constraints and response time guarantees.

Moreover, they provide a feedback for earliest feasible com-

pletion for non-admitted jobs. The main difference between

their work and ours lies in the fact that they consider parallel



jobs submitted to a single site, whereas we consider BoTs

submitted to a multi-site environment.

Siddiqui et al. [21] have introduced a mechanism for

capacity planning to optimize user QoS requirements in a

Grid environment. Their mechanism supports negotiation

and is based on advance reservations. A co-allocation re-

quest contains sub-requests that are submitted to the re-

source providers, which in turn send counter-offers when

users and resource providers cannot establish an agreement.

Although they use the concept of offers, which give a feed-

back to the users, these offers are for negotiations and there-

fore have a different role from the offers in our work. More-

over, our work specifically investigates the scheduling of

BoTs.

Singh et al. [22] have developed a multi-objective Ge-

netic Algorithmmechanism for provisioning resources. The

resource providers publish their available slots, or offers, so

that applications can use them according to their require-

ments (e.g. number of processors, time, and cost). The use

of offers presented in our work is similar. However, in their

work, resource providers generate offers for queues based

on FIFO with conservative backfilling, and jobs do not have

deadline constraints.

7. Conclusions

We introduced three policies for composing resource

offers from multiple providers to schedule deadline-

constrained BoT applications. These offers express the in-

terest of resource providers in executing an entire BoT or

only part of it without revealing their local load and to-

tal system capabilities. When the metascheduler receives

enough offers to meet user deadlines, it can decide how to

balance the tasks among the resource providers according

to the information it has access, such as resource providers’

total computing power and their local loads.

From our experiments, we observed that by using the

free time slots of resource providers, BoT applications

cannot access resources in short term even when local

jobs could be rescheduled without violating their deadlines.

The only benefit of publishing the free time slots to the

metascheduler is that it can balance the load among resource

providers, which makes more local jobs meet deadlines.

However, when using offer-based policies, more BoTs can

meet deadlines and the delays between the user deadline

and the new deadline assigned by the system is much lower

(in some cases 50% lower) in comparison to the policy that

uses free time slots (FreeTimeSlots).

We also observed that the simplest offer-based policy

(OffersWithPLB) produces schedules that delay fewer jobs

in comparison to the FreeTimeSlots policy. However, Offer-

sWithPLB rejects more local jobs than FreeTimeSlots. This

happens because OffersWithPLB cannot balance the load

among resource providers. If resource providers also pub-

lish the total computing power (the OffersWithDPLB pol-

icy), the metascheduler can balance the load and have sim-

ilar acceptance rates as the FreeTimeSlots policy for local

jobs. If the resource providers can make their load avail-

able (OffersWithDPLBV2), the metascheduler can reduce

even more the number of jobs delayed; however the ben-

efit is not significant. Therefore, our main conclusions are:

(i) offer-based scheduling produces less delay for jobs that

cannot meet deadlines in comparison to scheduling based

on load availability (i.e. free time slots); thus it is possi-

ble to keep providers’ load private when scheduling multi-

site BoTs; and (ii) if providers publish their total computing

power they can have more local jobs meeting deadlines.
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