
NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations

Saurabh Kumar Garg and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
Email: sgarg@csse.unimelb.edu.au

Abstract—As interest in adopting Cloud computing for
various applications is rapidly growing, it is important to
understand how these applications and systems will perform
when deployed on Clouds. Due to the scale and complexity of
shared resources, it is often hard to analyze the performance of
new scheduling and provisioning algorithms on actual Cloud
testbeds. Therefore, simulation tools are becoming more and
more important in the evaluation of the Cloud computing
model. Simulation tools allow researchers to rapidly evaluate
the efficiency, performance and reliability of their new algo-
rithms on a large heterogeneous Cloud infrastructure. However,
current solutions lack either advanced application models such
as message passing applications and workflows or scalable
network model of data center. To fill this gap, we have extended
a popular Cloud simulator (CloudSim) with a scalable network
and generalized application model, which allows more accurate
evaluation of scheduling and resource provisioning policies to
optimize the performance of a Cloud infrastructure.

Keywords-Cloud Computing, Modelling and Simulation, Par-
allel Applications

I. INTRODUCTION

Recently, Cloud computing paradigm [1] has rapidly

gained the attention of various communities including re-

searchers, businesses, consumers, and government organi-

sations. Due to various tempting benefits such as elastic

and scalable on-demand resources, Cloud service users are

exploring the ability of such scalable platforms for the

efficient and cost-effective execution of their applications

such as High Performance Computing (HPC), e-commerce,

social network and web applications. To successfully use

Cloud resources, applications need to be adapted to this

new environment and new scheduling solutions need to be

developed for good performance. Similarly, Cloud providers

need to determine proper configurations and scheduling

policies for efficient usage of their computational, network

and storage resources such that different application types

can be executed concurrently and in isolation.

Evaluation of alternative designs or solutions for Cloud

computing on real test-beds is not easy due to several rea-

sons. Firstly, public Clouds exhibit varying demands, supply

patterns, system sizes, and resources (hardware, software,

network) [2]. Due to such unstable nature of Cloud re-

sources, it is difficult to repeat the experiments and compare

different solutions. Secondly, there are several factors which

are involved in determining performance of Cloud systems

or applications such as users’s Quality of Service (QoS)

requirements, varying workload, and complex interaction

of several network and computing elements. Thirdly, the

real experiments on such large-scale distributed platforms

are considerably time consuming and sometimes impossible

due to multiple test runs in different conditions. Therefore,

a more viable solution is to use simulation frameworks

which will enable controlled experimentation, reproducible

results and comparison of different solutions in similar

environments.

Despite the obvious advantages of simulation in proto-

typing applications and developing new scheduling algo-

rithms for Cloud computing, there are a few simulators

for modelling real Cloud environments. For evaluating a

scheduling algorithm in a Cloud computing environment, a

simulator should allow users to define two key elements: (i)

an application model specifying the structure of the target

applications in Clouds, typically in terms of computational

tasks and data communication between tasks; (ii) a platform

model of Cloud computing data centers specifying the nature

of the available resources and the network by which they

are interconnected. Clouds currently deploy wide variety of

applications both from industrial enterprises and scientific

community[3]. The applications from industries vary from

simple web applications to the complex business workflows.

Similarly, scientific applications from areas such as climate

modelling, drug design and protein analysis range from

massively parallel applications to message passing applica-

tions. In terms of the platform, Cloud computing is quite

different from traditional distributed computing platforms

defined by service-oriented features such as resource elastic-

ity, multiple-level of services and multi-tenancy of resources.

Currently available Cloud specific simulation solutions

such as CloudSim [4] and GreenCloud [5] view datacenter

resources as a collection of Virtual Machines (VM). As

a result, they integrate either a very simplistic application

models without any communicating tasks, or limited network

model within the data center. Some of these application

2011 Fourth IEEE International Conference on Utility and Cloud Computing

978-0-7695-4592-9/11 $26.00 © 2011 IEEE

DOI 10.1109/UCC.2011.24

105

and platform models, while perhaps appropriate for some

type of applications such as single server web applications

or parameter sweep applications, become inadequate when

used to model a real Cloud computing environment running

different types of applications from different customers [3].

For example, precise evaluation of scheduling algorithms for

scientific applications, such as message passing parallel ap-

plications or multi-tier web applications, requires modelling

of the datacenter’s interconnection network. Since, current

Cloud simulators have no support for both of these features

simultaneously, these limitations may either result in non-

realistic data center solutions or in inaccurate solutions for

applications with communicating tasks.

To overcome these limitations of current Cloud simula-

tors, we develop a simulation framework NetworkCloudSim
which supports modelling of real Cloud data centers and

generalized applications such as HPC, e-commerce and

workflows. The main challenge addressed is the develop-

ment of application and network models that are sophisti-

cated enough to capture the relevant characteristics of real

Cloud data centers, but simple enough to be amenable for

analysis. In particular, we discuss issues and solutions in

regard to modelling a data center’s internal network and

applications. Our simulation framework is developed as an

extension of CloudSim. More precisely, our contributions
are the following:

• We have designed a new Cloud simulation framework,

NetworkCloudSim, which is equipped with more real-

istic application models than any other available Cloud

simulator. The components of simulation framework are

implemented as part of a widely used Cloud simulator,

CloudSim to support applications with communicating

elements or tasks such as MPI, and workflows.

• We have designed a network flow model for Cloud

data centers utilizing bandwidth sharing and latencies

to enable scalable and fast simulations. Most of the

parameters of our simulator are configurable, allowing

researchers to simulate a wide variety of network

topologies

• We have presented an experimental evaluation to show

the importance of network modelling in developing

accurate scheduling and resource management mech-

anisms for different Cloud applications.

II. RELATED WORK

In this section, simulation frameworks closely related to

our work are discussed. In the area of distributed computing,

from past many years Grid computing vastly interested sci-

entific community due to its advantages in delivering high-

performance services for compute- and data-intensive scien-

tific applications. To support the research and development

of Grid middleware, several simulators such as SimGrid [6]

and GridSim [7] have been proposed. Although these en-

vironments are capable of effectively and comprehensively

modelling Grid environment and applications, none of them

provide a clear abstraction of application, virtual and phys-

ical machines required by Cloud computing environment.

These abstractions are essential to model multi-layer ser-

vices (SaaS, PaaS and IaaS) of Cloud computing. In these

tools, there is almost no support for modelling virtualized

resources and application management environment.

In spite of the recent development and establishment of

many global Cloud computing environments by organiza-

tions such as Amazon, Yahoo and HP, still there are very

few simulation environments available for Cloud computing.

Major simulators designed specifically for Cloud computing

are CloudSim [4], GreenCloud [5] and MDCSim [8]. Green-

Cloud [5] simulator is an extension of the NS2 network

simulator for evaluation of energy-aware Cloud computing

data centers. The main strength of the GreenCloud simulator

is the detailed modelling of communication aspects of the

data center network. Being build on top of NS2, it imple-

ments a full TCP/IP protocol reference model which allow

integration of different communication protocols such as IP,

TCP and UDP with the simulation. However, this is also

a disadvantage since it limits its scalability to only small

data centers due to large simulation time and high memory

requirements. MDCSim [8] is a commercial discrete event

simulator developed at the Pennsylvania State University.

It helps user to model specific hardware characteristics

of different components of a data center such as servers,

communication links, and switches which are collected

from different vendors. CloudSim [4] is the most advanced

among the three simulation environments. CloudSim [4]

scales well and has a low simulation overhead. Its network

package maintains a data center topology in the form of a

directed graph. However, no network topology is designed

for modelling an internal data center network.

All these three simulators implement user application

models as simple objects describing computational require-

ments for the application. However, there is no support for

more realistic and complex applications with communicat-

ing tasks such as parallel & data-driven applications and

workflows. Currently supported workloads are more relevant

to grid networks rather than Clouds. GreenCloud [5] and

CloudSim [4] specify communication requirements of the

applications in terms of the amount of data to be transferred

before and after a task completion. MDCSim only supports

application with computation tasks.

The precision of a simulator and the validity of the

results are highly dependent on the degree of details that its

simulated components capture for imitating the behavior of

their physical analogs. Therefore, it is essential to incorpo-

rate key elements such as a generic application model and

data center network model in the Cloud simulation tools.

This work aims at developing such a tool to simulate the

scheduling of complex applications such as MPI on Cloud

data centers. We built our simulator on top of CloudSim

106

toolkit, leveraging the features of the original framework

and integrating various application models and flow-level

networking models. However, the principles outlined in this

work could be applied to other simulation platforms as well.

III. SIMULATING APPLICATIONS WITH

COMMUNICATING TASKS

A. CloudSim Architecture

The CloudSim simulator is currently the most sophis-

ticated discrete event simulator for Clouds. It has many

features which made us choose it for building our simulation

environment on top of it. Figure 1 shows components

of the CloudSim Architecture with the key elements of

NetworkCloudSim (shown by dark boxes). In this section,

we outline the functionality of different layers of CloudSim.

The detailed design and functionality of NetworkCloudSim’s

elements will be discussed in the later sections.

Figure 1: The CloudSim Architecture with

NetworkCloudSim elements

The bottommost layer of the CloudSim architecture han-

dles the interaction between CloudSim entities and compo-

nents. All components in CloudSim communicate through

message passing operations. The second layer consists of

several sub-layers that model the core elements of Cloud

computing. The bottommost sublayers model datacenter,

Cloud coordinator and network topology between differ-

ent datacenters. These components help in designing IaaS

infrastructure. The VM and Cloud Services provide the

functionality to design resource (Virtual Machine (VM))

management and application scheduling algorithms. The lay-

ers above help users to define their own simulation scenarios

and configurations for validating their algorithms. In this

paper, we incorporate a generalized application model and

components to design arbitrary network topologies within

datacenters. We will discuss the issues and solutions to

support such features in the next section.

B. Design issues and solutions

Despite of several useful features of CloudSim, it cannot

be used to model very complex data centers with different

application models and networked resources. To make this

environment more realistic, the following features and issues

related to them are resolved.

1) Application Model: As discussed previously, simu-

lation of parallel and distributed applications is not fully

considered in most of current Cloud computing simulators.

Although it is possible to define jobs that require more than

one processor, their simulation time is just obtained by scal-

ing them to one processor. This approach is not appropriate

in more sophisticated application models such as MPI and

workflow. The application models in Cloud computing can

vary from multi-tier web applications such as e-commerce

to scientific applications [3]. Typically such applications

consist of several tasks, which communicate with each other.

A task consists of some computation and communication

phases. This is true for both scientific applications and web

applications. A web application consists of several tiers,

each tier running on a different server and communication

is between these different tiers.

In order to simulate the behaviour of such complex par-

allel and distributed applications, new structures and func-

tionality are added to CloudSim in this work. For helping

users to model such communicating tasks, we designed the

NetworkCloudlet class that represents a task executing in

several phases/stages of communication and computation.

Figure 21 shows how we can model these applications in

NetworkCloudSim. To model the application itself, a basic

and general structure (i.e. a Java class), called AppCloudlet
is defined. Each AppCloudlet object consists of several

communicating elements (NetworkCloudlet). Each element

runs in a single virtual machine and consists of communi-

cating and computing stages. Each computation stage can be

defined either by the number of MIPS or seconds involved

in it. The communications are characterized by the amount

of transferred data.

Although, the above features enable users to model com-

plex applications in their simulation environment, still the

precise execution of such applications depend highly on

the underlying network model. In the next section, we will

discuss issues in designing a network model for a data center

and how it is addressed in NetworkCloudSim.

2) Network modelling: Modelling comprehensive real-

istic network topologies within data center is an impor-

tant consideration because the data latency due to over-

subscription of resources such as network can affect Quality

of Service offered to the Cloud customer. In addition, to

accurately evaluate applications with communicating task

and virtual machine migration, it is also necessary to take

into account the network topology and bandwidth. In fact, in

1S-Sending the data stage and R-Receiving the data stage

107

Figure 2: Modelling of Applications in NetCloudSim

many applications this is the main factor to characterize the

performance. Even though there is a network model within

CloudSim which helps in designing different topologies, it

is limited to communication between different data centers

and does not model bandwidth sharing on the network links.

This network cannot be extended to model network within a

data center. Several Cloud features such as virtual machine

migration create significant network overhead [9], however

currently in CloudSim only the CPU overhead is modelled.

There are two issues in designing network:

• Which model should be chosen?: There are two ways

to design a network within CloudSim: packet network

or flow network model [10]. Both of these models are

widely used in simulation environments for distributed

systems and has their advantages and disadvantages.

Among these two models, the flow network model

results in a very low computational overhead in com-

parison to its counterpart. The flow network model also

gives a good approximation to real network models

such as TCP/IP [10] [11]. Since, the time is one of the

key factor in simulation environments, the flow network

model is designed within NetworkCloudSim.

• What should be the topology of virtual machine
interconnections?: It is assumed subtly in the current

CloudSim implementation that each VM is connected

with all other virtual machines. The drawback of fully

connected model is that it fails to model realistic

data center environment. The communication links are

generally shared and interconnected through fat-tree

type of network architecture [12]. To tackle this issue,

we have added three level of switches: root, aggregate

and edge level. Users can design customized type of

switches and their ports according to the data center

environment they want to simulate.

Network flow Model Design: We consider a network

flow model that captures the steady-state behaviour of net-

work transfers. In the system, the point to point communi-

cation of data from one entity (u) to another (v) is called a

flow (f = sizef , u, v), where sizef is number of bytes in the

flow. If bw is the bandwidth available between two entities,

and lat is the network latency, then duration of a single net-

work flow can be computed as:delay = lat+sizef/bw. This

approach significantly improves the speed of simulations in

case of large network transfers. In NetworkCloudSim, we

model only delays between two directly connected entities.

This feature allows more accurate calculations than when

flow duration is calculated over multiple links.

Since CloudSim is an event-based simulator, where differ-

ent system models/entities communicate via sending events,

the event management engine of CloudSim is utilized to

induce delays in transmitting message to entities. In case of

multiple simultaneous flows, we need to calculate the appro-

priate bandwidth available to each flow between the entities.

Currently, as a proof of concept for NetworkCloudSim’s

network implementation, the bandwidth is equally shared

by the active flows, i.e each flow gets bw/n bandwidth

if there are n flows. Some internal network models have

been characterized by attributes such as the bandwidth, the

latency, and the network topology. In NetworkCloudSim,

users can easily add their own more complex metrics for

sharing bandwidth between multiple active flows.

IV. IMPLEMENTATION

NetworkCloudSim extends CloudSim’s [4] functionality

with the introduction of concepts that model generalized

application behavior and internal network of a data center.

There are three main actors (or Entities) in the Network-

CloudSim: Switch, NetworkDatacenter, and NetworkData-

centerBroker. The design of NetworkCloudSim as shown in

Figure 3 has the following main components.

1) Classes to model a network topology: To model a

network within the datacenter, the following classes

108

Figure 3: Class Diagram of NetworkCloudSim

have been added to the NetworkCloudSim.

• Switch represents a network entity which can be

configured as a router or switch. It can model

delays in forwarding any data to either host or

another switch based on where the data belongs.

Currently, to allow modelling various topologies,

three types of switch are modelled: root, aggregate

and edge switch. The edge switch is directly

connected to hosts and has uplinks connected

to another switch. Aggregate switch has uplinks

and downlinks to switches. The root switch is

modelled as a network entity that is directly

connected to the Internet/outside data center and

has downlink to other switches.

• NetworkPacket and HostPacket: These classes

represent a data flow from one VM to another in

a data center. Since on each host the VMs are

connected through a virtual network created by

the hypervisor, the delay in transferring data from

one VM to another hosted on the same server

is negligible in comparison to when transferred

through the data center’s real network. To model

the difference between these two networks, we

designed two types of packets: HostPacket and

NetworkPacket. HostPacket is the packet that trav-

els through the virtual network. Whereas Net-

workPacket is the packet which travel from one

server to another. Each packet contains ids of the

sender VM and receiver VM, time at which it is

send and received, type and virtual ids of tasks,

which are communicating.

To make CloudSim aware of the network, all the key

classes are also extended. For example, NetworkHost

extends native Host class and NetworkVM extends

VM.

2) Classes for Application Modelling: To model gen-

eralized applications and simulate communication be-

tween different tasks the following Classes have been

designed.

• NetworkCloudlet: The Cloudlet class has been

extended to represent a generalized task with

various stages (TaskStage). Each stage can be

computation, sending some data or receiving some

data. This class also contains information of the

application to which this cloudlet belongs. Each

NetworkCloudlet represents the smallest entity

executing on a VM.

• AppCloudlet: It represents an application with

multiple tasks (NetworkCloudlet(s)).

All scheduling classes are extended to make them

aware of tasks with communication, and thus being

able to simulate their execution.

The next section explains the scheduling mechanisms for

simulating the execution of applications with communicating

tasks.

V. SCHEDULER AND EXECUTION OF

NETWORKCLOUDLET

As discussed previously, VM scheduler needs to take

into account the communication and computation stages of

applications. Therefore, a new scheduler is implemented for

each VM within NetworkCloudSim. NetworkCloudSim has

two levels of scheduling, one at Host level (i.e. scheduling

of tasks on VMs) and another at the VM level where real

applications are executed. For scheduling any application,

networkcloudlets are scheduled on different VMs by the Net-

workDatacenterBroker. At the VM level, networkcloudlet

109

Figure 4: Sequence Diagram: Communication between NetworkCloudSim Entities

can run either in time shared or space shared mode. We

have currently implemented a space shared scheduling policy

which is more widely used. Algorithm 1 describes the

execution process of a NetworkCloudlet on a VM. For

each networkcloudlet, the scheduler checks the current stage

of execution. There are four execution phases in which

a networkcloudlet can be: Send, Recv, Execution and

Finished. If stage is Execution, the networkcloudlet’s

execution time is updated until the next scheduling event.

If the stage is Send, the packet is constructed by the VM

scheduler and submitted to the send-packet-queue of the

VMs. After updating the execution stage of each network-

cloudlet, VM scheduler will forward theses packets either to

VMs on the same Host and to the switches (to forward to

Host containing the VM). If the stage is Recv, the scheduler

checks whether there is any packet in packet recv queue.

If a packet is received, the current stage of networkcloudlet

is updated. If the stage is Finished, the total execution

time of networkcloudlet is calculated and it is removed from

the execution queue. The messages are sent to Network-

DatacenterBroker to notify about the networkcloudlet (task)

completion. In the current implementation of VM scheduler,

the non-blocked send approach is adopted such that a

sender will not be blocked even though the corresponding

receiver VM is not ready for receiving the packet. On the

receiver VM’s side, if the packet is available, there is no

communication delay for the receiver VM; if the packet

is not available, the receiver has options either to process

other tasks or to be blocked until the message arrives. This

communication model allows the simulation of the non-

blocking message passing paradigm (such as MPI Isend()
and MPI Irecv()), which is a common practice in parallel

applications.

For scheduling multi-tier applications, the currently im-

plemented algorithm requires little modification since the

nature of these applications is quite different from scientific

applications. Multi-tier applications are more event based.

Therefore, when a packet is received (Line 21), based on

the packet ‘type’, the processing and data sent will vary.

Therefore, in Figure 2 NetworkCloudlets has a circular array

with three stages. NetworkCloudSim allows its users to

configure and implement this event based logic according

to their requirements.

VI. DATACENTER NETWORK

In this section, we describe a typical example of commu-

nication between different entities within NetworkCloudSim.

It is presented using a sequence diagram in Figure 4. Using

this example, one can model even more complex networks.

Each VM sends packets from its send packet queue to

its host for further processing. The NetworkHost server

decides whether the packet is to be forwarded to a local

VM or not. If the packet is to be forwarded to a local

VM, it is inserted in the received packet list. Otherwise, the

host creates a network packet and forwards it to the switch

(generally called Edge Switch) NetworkHost is connected.

The edge switch (Switch1) further decides whether the

packet belong to a VM in its domain or to another switch.

NetworkCloudSim provides a facility to users to design

their own routing algorithms, and configure network and

switching latencies. They can add routing/switiching delays

by sending an event to ‘switch’ itself. Based on the decision,

the packet is either forwarded to other switches or to a

connected host with a delay which is calculated based on

available bandwidth and packet (data) size. The host further

forwards these packets to the VM. The packet from a host

to its local VM is forwarded without any communication

delay.

VII. PERFORMANCE EVALUATION

To validate and understand the behavior of Network-

CloudSim, we conduct two sets of experiments. Firstly, we

compare the simulated execution time from the Network-

CloudSim with the execution of a controlled MPI program

on a real infrastructure. In the second set of experiments,

we present a use case study to understand the behavior of

network components and the packet scheduling algorithms.

110

Algorithm 1 Cloudlet Scheduling and Execution on VM

Notations: current execution queue: queue containing currently

executing networkcloudlet on a VM; currstage: current stage in

which a networkcloudlet is; totalNumStages: total number of

stages networkcloudlet execution has; waiting queue: queue having

networkcloudlet scheduled on VM but has not started execution;

NetworkDatacenterBroker: the entity which has submitted the

networkcloudlet for execution on VM; packet recv queue and

packet send queue: queues having packets which are received and to

be send by the VM

1: for Each NetworkCloudlet cl in current execution queue
do

2: if cl.currstage = ‘Execution′ then
3: Execute the networkcloudlet
4: send an event to notify completion of computation stage
5: cl.currnumstage++
6: update the current stage
7: end if
8: if cl.currstage = ‘Send′ then
9: make a flow packet

10: insert the packet into packet send queue
11: cl.currnumstage++
12: update the current stage
13: end if
14: if cl.currstage = ‘Recv′ then
15: check the packet in packet recv queue
16: cl.currnumstage++
17: update the current stage
18: end if
19: if cl.currstage = cl.totalNumStages then
20: cl.currstage = Finished
21: end if
22: if cl.currstage = ‘Finished′ then
23: update the total networkcloudlet execution time
24: remove the networkcloudlet from

current execution queue
25: insert another networkcloudlet from waiting queue to

current execution queue
26: notify the NetworkDatacenterBroker about the com-

pletion of networkcloudlet.
27: end if
28: end for

A. Comparison of Simulated and Real Execution Time

To validate the accuracy of simulation results of Network-

CloudSim, we compared the execution of a MPI application

on a real infrastructure with simulated execution in Net-

workCloudSim. For the experiments, we obtained traces of

a controlled MPI program on a small scale real infrastructure

using the mpilog tool using the methodology given by

Miguel-Alonso et al. [13]. In the the MPI application,

the main process generates several random numbers and

then send the data to all other processes. The topology

and configuration of the infrastructure are given in the

Figure 5. Each host has 2 Xen VMs, each one with 2

cores and 1.5GB RAM. All the hosts are connected by

a 100 megabits switch. Each process of the MPI applica-

tion is executed on individual VMs. For comparison, the

Figure 5: Experimental Datacenter Infrastructure

same configurations are used for NetworkCloudSim. For

evaluation, two experimental scenarios are considered: a)

varying number of communicating processes with 1000000

MPI INT elements transferred from one process to another,

and b) varying the amount of data transferred from the main

process to other 7 processes. Figure 6(a) and 6(b) show

the experimental results. The results from real execution is

shown as “Measured” while from NetworkCloudSim simu-

lation as “Simulated”. The execution time of the application

includes the computation and communication time. When

we change the number of communicating processes or data

transferred, the communication time increases as bandwidth

is shared. This led to an increase in the total execution

time. Figure 6(a) and 6(b) clearly show such behavior for

the measured results which are closely followed by the

simulation ones. The difference between both the results is

very low, particularly when the amount of data is changed

with eight communicating processes. As the number of

process increases the simulation results match very closely

to the measured ones. Therefore, we can conclude that

NetworkCloudSim is effective in modelling the execution

of parallel applications.

B. Evaluation of Task Assignment and Scheduling Policies

We have conducted a case study to further study the

scheduling and resource allocation policies designed for

NetworkCloudSim. For this set of experiments, we have

considered a mixture of applications (parallel and parameter

sweep applications) submitted to the data center. The arrival

rate of applications is 200/second. Again, a very small

scale data center with the configuration used previously is

modeled. We compared firstly the effect of the resource

allocation to each task of the application and secondly the

effect of scheduling each task on the allocated VM. For the

first set of results, we compared two scheduling policies:

1) Random-NonOverlap: In this scheduling policy, a

VM executes the networkcloudlets in the first come

first basis and therefore, other networkcloudlets are not

111

���

�

���
��

��
��
��
	

��
�

�

���

�

���� ����� ������ �������

��
��
��
�	

�

������	��������������
����
�
��	
��� �����	��

(a) Effect of Data Sent

���

�

���

��

��
��
��
	

��
�

�

���

�

� � � �

��
��
��
�	

�
�

����� 	� ��	������������	����	������
��	
��� �����	��

(b) Effect of Communicating Processes

Figure 6: Measured and Simulated Execution Times of the

MPI application

executed unless the currently executing one is finished.

2) Random-Overlap: In this scheduling policy, VM

starts executing the networkcloudlets in the front of

waiting queue if the currently executing task is just

waiting for the data (packet) to arrive from other peer

tasks.

In the above policies, Random signifies that allocation of

a VM to a task is done randomly. Figure 7(a) presents

the first set of results where X-axis represent the ratio of

the two types of applications (a%b%, i.e., a% of parallel

applications and b% of parameter sweep applications). We

can observe from the figure that the average response

time (execution time+waiting time) of networkcloudlets for

Random-Overlap is quite low in comparison to Random-

NonOverlap. This is because of communication delays in re-

ceiving data by the VM which causes large average response

time in case of Random-NonOverlap. Another thing we can

observe from Figure 7(a) is the impact of different mixtures

of applications. With the increase in ratio of applications

having communicating tasks, the average response time due

to the Random-NonOverlap policy is increasing while it

is decreasing in case of the Random-overlap scheduling

policy. The reason for such a behavior in the case of the

Random-NonOverlap scheduling policy is the increase of

the communication delay with the increased proportion of

applications having communicating tasks. In case of the

Random-Overlap scheduling policy, this delay increase is

neutralized by the overlapping of computation of one task

and communication of another task.

In the second set of results, we compare the impact of

resource allocation policy to understand how scheduling

of communication tasks in different locations of datacenter

impacts the response time. Figure 7(b) presents the results

comparing two allocation policies Random-Overlap and

RoundRobin-Overlap. In case of the RoundRobin-Overlap

resource allocation and scheduling policy, tasks are assigned

to VMs in a Round robin manner while for the other

policy, tasks are randomly assigned to VMs. It can be

noticed from Figure 7(b) that initially when the proportion

of communicating tasks is low, both the policies behave

very closely. But as the number of communicating tasks

increases, the average response time for Random-Overlap

policy becomes higher than RoundRobin-Overlap policy.

The reason for this is the shared network where different

packets compete for the available bandwidth to reach their

destination. Clearly, this can lead to higher communication

delays and thus, high response time. In summary, we can

conclude from the above observations that the modelling of

network is an essential part of the Cloud simulations.

VIII. CONCLUSIONS

Use of simulation frameworks such as CloudSim is be-

coming increasingly popular in the Cloud computing com-

munity due to their support for flexible, scalable, efficient,

and repeatable evaluation of provisioning policies for dif-

ferent applications. These frameworks allow fast evaluation

of scheduling and resource allocation mechanisms within

Cloud data centers which are sometimes not easy to access.

Thus, considering the needs of today’s Cloud researchers,

we present a simulation framework which supports the

modelling of essential data center resources such as network

and computational resources, and wide variety of application

models such as parallel application, workflow and parametric

sweep. Even a multi-tier web application can be modelled

with little modifications. Our simulation framework is built

on top of a widely used simulator, i.e., CloudSim.

We presented the main components of the Network-

CloudSim with their functionality and how different network

topologies and different parallel applications can be mod-

elled. The evaluation results show that NetworkCloudSim is

capable of simulating Cloud data center network and appli-

cations with communicating tasks such as MPI with a high

degree of accuracy. The further evaluation of task assignment

112

�

��

��

��

��

��

 �
�!
	

��
��
�
�

�"
��
	�
��
��
�

�

�

�

�

�

������ ������ ������ ������ ������

�
��
��
��
�

��
��
�

��������	���!!������	
�
�	���������	 �	����!�������	

(a) Effect of Scheduling Processes (Cloudlet)

���

���

�

���

���

���

���

��
��
�
��
!	

�
��
��

��

��
��
�"
��
	�
��
��
�

�

���

���

������ ������ ������ ������ ������

�
��
�

��������	���!!������	
�
������"��������	 �	���������	

(b) Effect of Application Allocation

Figure 7: Case Study Results

and scheduling policies shows how NetworkCloudSim can

help in building advance scheduling and resource allocation

mechanisms for Clouds. We also showed that by observing

the impact of shared network on the performance of data

centers researchers can optimize the data center usage. This

can in turn help in the development of more power efficient

resource management schemes rapidly before committing

time and resources in building complex software and net-

work systems that operate within Cloud data centers.

Even though flow network model is sufficient for most

network calculations still it is not very accurate when

compared to packet level model. In future, we will integrate

packet level network model in CloudSim so that users can

simulate those Cloud applications which require precise

network configurations.

ACKNOWLEDGMENTS

The authors would like to thank Anton Beloglazov,

Rodrigo Calheiros, Ruppa Thulasiram and Parimala Thu-

lasiraman for their guidance during the development of

NetworkCloudSim reported in this paper.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616,
2009.

[2] J. Napper and P. Bientinesi, “Can cloud computing reach
the top500?” in Proceedings of the Combined Workshops
on UnConventional High Performance Computing Workshop
plus Memory Access Workshop, Ischia, Italy, 2009.

[3] J. Varia, Cloud Computing: Principles and Paradigms. Wiley
Press, 2011, ch. 18: Best Practices in Architecting Cloud
Applications in the AWS Cloud, pp. 459–490.

[4] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience,
vol. 41, no. 1, pp. 23–50, 2011.

[5] D. Kliazovich, P. Bouvry, and S. Khan, “Greencloud: a
packet-level simulator of energy-aware cloud computing data
centers,” The Journal of Supercomputing, 2010. [Online].
Available: http://dx.doi.org/10.1007/s11227-010-0504-1

[6] H. Casanova, “Simgrid: A toolkit for the simulation of
application scheduling,” in Proceedings of First IEEE/ACM
International Symposium on Cluster Computing and the Grid,
Brisbane, Qld. , Australia, 2001.

[7] R. Buyya and M. Murshed, “Gridsim: A toolkit for the
modeling and simulation of distributed resource management
and scheduling for grid computing,” Concurrency and Com-
putation: Practice and Experience, vol. 14, no. 13-15, pp.
1175–1220, 2002.

[8] S. Lim, B. Sharma, G. Nam, E. Kim, and C. Das, “MDCSim:
A multi-tier data center simulation, platform,” in Proceedings
of IEEE International Conference on Cluster Computing, New
Orleans, Louisiana, USA, 2009.

[9] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration
of virtual machine based on full system trace and replay,”
in Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing, Munich, Germany,
2009.

[10] J. Broberg and R. Buyya, Grid Computing: Infrastructure,
Service, and Applications. CRC, 2009, ch. Flow Networking
in Grid Simulations.

[11] H. Casanova, “Network modeling issues for grid application
scheduling,” International Journal of Foundations of Com-
puter Science, vol. 16, no. 2, pp. 145–162, 2005.

[12] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable
and flexible data center network,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 51–62, 2009.

[13] J. Miguel-Alonso, J. Navaridas, and F. Ridruejo, “Intercon-
nection network simulation using traces of mpi applications,”
International Journal of Parallel Programming, vol. 37, no. 2,
pp. 153–174, 2009.

113

