
Journal of Network and Computer Applications 113 (2018) 64–74

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

On minimizing total energy consumption in the scheduling of virtual
machine reservations

Wenhong Tian a,b,*, Majun He a, Wenxia Guo a, Wenqiang Huang a, Xiaoyu Shi b,
Mingsheng Shang b, Adel Nadjaran Toosi c, Rajkumar Buyya c

a School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), China
b Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
c CLOUDS Lab., Dept. of Information and Computing Systems, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Energy efficiency
Cloud Data centers
Resource scheduling
Virtual machine reservation

A B S T R A C T

This paper considers the energy-efficient scheduling of virtual machine (VM) reservations in a Cloud Data cen-
ter. Concentrating on CPU-intensive applications, the objective is to schedule all reservations non-preemptively,
subjecting to constraints of physical machine (PM) capacities and running time interval spans, such that the
total energy consumption of all PMs is minimized (called MinTEC for abbreviation). The MinTEC problem is NP-
complete in general. The best known results for this problem is a 5-approximation algorithm for special instances
using First-Fit-Decreasing algorithm and 3-approximation algorithm for general offline parallel machine schedul-
ing with unit demand. By combining the features of optimality and workload in interval spans, we propose a
method to find the optimal solution with the minimum number of job migrations, and a 2-approximation algo-
rithm called LLIF for general cases. We then show how our algorithms are applied to minimize the total energy
consumption in a Cloud Data center. Our theoretical results are validated by intensive simulation using trace-
driven and synthetically generated data.

1. Introduction

Cloud computing has evolved from various recent advancements
in virtualization, Grid computing, Web computing, utility computing
and other related technologies. It offers three level of services, namely
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). In this paper, we concentrate on CPU-
intensive computing at IaaS level in Cloud Data centers. Cloud com-
puting providers (such as Amazon) offer virtual machine reservation
services with specified computing units. For reservation services, cus-
tomers request certain units of computing resources in advance to use
for a period of time in the future, so providers can have enough time to
do scheduling. The resources in this paper include:

1. Physical Machines (PMs): physical computing devices which can
host multiple virtual machines; each PM can be a composition of
CPU, memory, hard drives, network cards, and etc.

2. Virtual Machine (VMs): virtual computing platforms on PMs using
virtualization software; each VM has a number of virtual CPUs,

* Corresponding author. School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), China; Chongqing Institute of Green and
Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.

E-mail addresses: tianwenhong@cigit.ac.cn, tian_wenhong@uestc.edu.cn (W. Tian), adel.nadjaran@unimelb.edu.au (A.N. Toosi), rbuyya@unimelb.edu.au (R. Buyya).

memory, storage, network cards, and related components.

The architecture and process of VM reservation scheduler are pro-
vided in Fig. 1, referring to Amazon EC2 (Amazon EC2). As noted in
the diagram, the major processes of resource scheduling are:

1. User reservation requesting: the user initiates a reservation through
the Internet (such as a Cloud service provider’s Web portal);

2. Scheduling management: Scheduler Center makes decisions based
on the user’s identity (such as geographic location, etc.) and the
operational characteristics of the request (quantity and quality
requirements). The request is submitted to a data center, then the
data center management program submits it to the Scheduler Cen-
ter, finally the Scheduler Center allocates the request based on
scheduling algorithms;

3. Feedback: Scheduling algorithms provide available resources to the
user;

4. Executing scheduling: Scheduling results (such as deploying steps)
are sent to the next stage;

https://doi.org/10.1016/j.jnca.2018.03.033
Received 16 December 2017; Received in revised form 27 March 2018; Accepted 29 March 2018
Available online 7 April 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2018.03.033
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.03.033&domain=pdf
mailto:tianwenhong@cigit.ac.cn,
mailto:tian_wenhong@uestc.edu.cn
mailto:adel.nadjaran@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jnca.2018.03.033

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Fig. 1. Referred architecture of VM reservation in a Cloud data center.

5. Updating and optimization: The scheduler updates resource infor-
mation, optimizes resources in the data center according to the opti-
mizing objective functions.

In the reservation services, customers are billed in a way propor-
tional to the total amount of computing time as well as energy of the
computing resources. The scheduler executes periodically for a fixed
period of time, for instance, every 1 h, depending on workloads in real-
istic scenarios. From the providers’ point of view, the total energy cost
of computing resources is closely related to the total powered-on time
of all computing resources. Since Cloud data centers consume very large
amounts of energy, the energy cost (electricity price) is increasing reg-
ularly. So they like to minimize total power-on time to save energy
costs. How to model this problem and solve it efficiently is not well
studied in the literature. In practice, some simple algorithms (such as
Round Robin and First-Fit) are used by EC2 (Amazon EC2) and VMWare
(VMWare). To measure the performance (such as energy-efficiency) of
different approximate algorithms, the approximation ratio, defined as
the ratio of the result obtained by proposed algorithm over the optimal
result, is widely used. Winkler et al. (Winkler and Zhang, 2003), Flam-
mini et al. (2010) and Khandekar et al. (2010) are closely related to
our research and are earlier papers that discuss this issue under general
parallel machine scheduling context, and Kovalyov et al. (2007) pro-
vide a comprehensive review for the fixed interval scheduling problem.
The problem of VM reservations can be stated as follows. There are n
deterministic reservations submitted to the scheduler in advance to be
scheduled offline on multiple physical machines (PMs) with bounded
capacities. Each VM reservation (job) is associated with a start-time,
an end-time, and a capacity demand. The objective is to schedule all
reservations non-preemptively, subjecting to constraints of PM capac-
ities and running time interval spans, such that the total energy con-
sumption of all PMs is minimized (called MinTEC for abbreviation).

The MinTEC problem is NP-hard in a general case (Winkler and
Zhang, 2003). Winkler et al. (Winkler and Zhang, 2003) consider the
problem in optical networks and show that the problem is NP-hard
already for g = 2, where g is the total capacity of a machine in terms of
CPU. In this study, we assume that the total CPU capacity of a PM, g,
is measured in abstract units such as EC2 Compute Unit (ECU)1. Flam-
mini et al. (2010) consider the same scheduling problem in optical net-
work where jobs are given as interval spans with unit demand (one unit
from total capacity), for this version of the problem a 4-approximation

1 The EC2 Compute Unit (ECU) provides the relative measure of the integer process-
ing power of an Amazon EC2 instance and provides the equivalent CPU capacity of a
1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.

algorithm called FFD (First Fit Decreasing) for general inputs and bet-
ter bounds for some subclasses of inputs are provided. The FFD algo-
rithm basically sorts all jobs’ process time in non-increasing order and
allocates the job in that order to the first machine which can host.
Khandekar et al. (2010) propose a 5-approximation algorithm for this
scheduling problem by separating all jobs into wide and narrow types
by their demands when 𝛼 = 0.25, which is the demand parameter of
narrow jobs occupying the portion of the total capacity of a machine.
Tian et al. (Tian and Yeo, 2015) propose a 3-approximation algorithm
called MFFDE for general offline parallel machine scheduling with unit
demand and the MFFDE algorithm applies FFD with earliest start-time
first. In this work, we aim to propose better methods for the optimal
energy-efficient scheduling with concentration on VM reservations. The
jobs and VM requests are used interchangeably in this paper.

The major contributions of this paper include:

1. Proposing an approach to minimize total energy consumption of vir-
tual machine reservations by minimizing total energy consumption
(MinTEC) of all PMs.

2. Deducing a theoretical lower bound for the MinTEC problem with
limited number of VM migrations.

3. Proposing a 2-approximation algorithm called LLIF, which is better
than the best-known 3-approximation algorithm.

4. Validating theoretical results by intensive simulation of trace-driven
and synthetically generated data.

The rest of the paper is organized as follows. Formal problem statement
is provided in Section 2. Section 3 presents our proposed algorithm
LLIF with theoretical analysis. Section 4 considers how our results are
applied to the energy efficiency of VM reservations. Performance eval-
uation is conducted in Section 5. Related work is discussed in Section
6. Finally we conclude in section 7.

2. Problem formulation

2.1. Preliminaries

For energy-efficient scheduling, the objective is to meet all reserva-
tion requirements with the minimum total energy consumption based
on the following assumptions and definitions.

1. All data is given to the scheduler since we consider offline schedul-
ing unless otherwise specified, the time is discrete in slotted window
format. We partition the total time period [0, T] into slots of equal
length (l0) in discrete time, thus the total number of slots is k = T/l0
(always making it a positive integer). The start-time of the system
is set as s0 = 0. Then the interval of a reservation request i can be
represented in slot format as a tuple with the following parameters:
[StartTime, EndTime, RequestedCapacity] = [si, ei, di]. With both
start-time si and end-time ei are non-negative integers.

2. For all jobs, there are no precedence constraints other than those
implied by the start-time and end-time. Preemption is not consid-
ered.

Definition 1. The Interval Length: given a time interval Ii = [si, ti]
where si and ti are the start slot and end slot, the length of Ii is
|Ii| = ti − si. The length of a set of intervals I = ⋃k

i=1 Ii, is defined as
len(I) = |I| = ∑k

i=1 |Ii|, i.e., the length of a set of interval is the sum of
the length of each individual interval.

Definition 2. The Interval Span: the span of a set of intervals, span(I),
is defined as the length of the union of all intervals considered.

Example#1. if I = {[1, 4], [2, 4], [5, 6]}, then span(I) = ∣[1, 4]∣ + ∣[5,
6]∣ = (4-1) + (6-5) = 4, and len(I) = ∣[1, 4]∣ + ∣[2, 4]∣ + ∣[5, 6]∣ = 6.
Note that span(I) ≤ len(I) and equality holds if and only if I is a set of
non-overlapping intervals.

65

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Table 1
8 types of virtual machines (VMs) in Amazon EC2.

MEM (GB) CPU (units) Storage (GB) VM Type

1.875 1 (1 cores × 1 units) 211.25 1-1 (1)
7.5 4 (2 cores × 2 units) 845 1-2 (2)
15.0 8 (4 cores × 2 units) 1690 1-3 (3)
17.1 6.5 (2 cores × 3.25 units) 422.5 2-1 (4)
34.2 13 (4 cores × 3.25 units) 845 2-2 (5)
68.4 26 (8 cores × 3.25 units) 1690 2-3 (6)
1.7 5 (2 cores × 2.5 units) 422.5 3-1 (7)
6.8 20 (8 cores × 2.5 units) 1690 3-2 (8)

Definition 3. The Total Power-on Time: For any instance I and capac-
ity parameter g ≥ 1, let OPT(I) denote the minimum total power-on
time of all PMs. For VM reservations, the power-on time here means
the power-on time of all PMs, only including busy time, and the idle
time is not counted. The PM will be turned off or put into sleep mode
so that the energy consumption during idle time can be ignored.

Example#2. Note that the total power-on time of a machine is the
sum of all intervals during which the machine is powered on. As in
Example#1, a machine is busy (powered-on) during intervals [1, 4] and
[5, 6], based on our definition of interval span for each job, the total
power-on time of this machine is (4-1) + (6-5) = 4 time units (or slots).
The interval [4, 5] (idle period) is not counted into the total power-on
time of the machine.

Definition 4. The Workload: for any job j, denote its process time
as pi = ei − si, its workload is denoted by w(j), which is its capacity
demand dj multiplies its process time pj, i.e, w(j) = djpj. Then the total
workload of all jobs J is W(J) = ∑n

j=1 w(j).

Definition 5. The Approximation Ratio: an offline deterministic algo-
rithm is said to be C-approximation for the objective of minimizing the
total energy consumption if its total energy consumption is at most C
times that of an optimum solution.

Definition 6. Strongly divisible capacity of jobs and machines: the
capacity of all jobs form a divisible sequence, i.e., the sequence of dis-
tinct capacities d1 ≥ d2 ≥ … ≥ di ≥ di+1 ≥ … taken on by jobs (the
number of jobs of each capacity is arbitrary) is such that for all i > 1,
di+1 exactly divides di. Let us say that a list L of items has divisible item
capacity if the capacities of the items in L form a divisible sequence.
Also, if L is the list of items and g is the total capacity of a machine, we
say that the pair (L, g) is weakly divisible if L has divisible item capac-
ities and strongly divisible if in addition the largest item capacity d1 in
L exactly divides the capacity g (Coffman et al., 1987).

Example#3. If the total capacity of a PM is g = 8, and the requested
capacity of each VM is one of {1, 2, 4, 8}, then the sequence forms
a strongly divisible capacity. Obviously, if all jobs have unit demand
(eg. request only 1 CPU from the total capacity of 8 CPUs in a PM),
then the sequence of requested capacities also forms a strongly divisible
capacity.

In the following sections, unless otherwise specified, the strongly
divisible capacity case is considered. Actually, in strongly divisible
capacity configuration the CPU capacity of a VM represents the total
capacity of (CPU, memory, storage) in a PM. For Example, VM type 1-1
(1) shown in Table 1 has memory of 1.875 GB, CPU of 1 unit, storage of
211.25 GB, and type-1 PM as shown in Table 2 has memory of 30 GB,
CPU of 16 units, storage of 3380 GB. Therefore, VM type 1-1 (1) has
CPU 1/16, memory 1/16 (=1.875/30), storage 1/16 (=211.25/3380) of
the total CPU, memory and storage capacity of type-1 PM, respectively.
In this strongly divisible capacity case we can use the CPU capacity of
a VM to represent the total capacity of a VM, especially the energy con-
sumption model in Equ (5)–(11) is proportional to the CPU utilization.

Table 2
3 types of PMs for strongly divisible capacity configuration.

PM CPU (units) MEM (GB) Storage (GB)

1 16 (4 cores × 4 units) 30 3380
2 52 (16 cores × 3.25 units) 136.8 3380
3 40 (16 cores × 2.5 units) 14 3380

Note that the assumption of strongly divisible capacity is a valid
assumption and is used by commercial cloud service providers such as
Amazon where the CPU capacity of different VM instances are often
evenly divisible (see Tables 1 and 2).

2.2. Problem statement

The problem has the following formulation: the input is a set of n
jobs (VM requests) J = j1, …, jn. Each job ji is associated with an inter-
val [si, ei] in which it should be processed, where si is the start-time and
ei the end-time, both in discrete time. Set pi = ei − si as the process time
of job ji. For the sake of simplicity, we concentrate on CPU-intensive
applications and consider CPU-related energy-consumption only. The
capacity parameter g ≥ 1 is the maximal CPU capacity a single PM
provides. Each job requests a capacity di, which is a natural number
between 1 and g. The power-on time of PMi is denoted by its work-
ing time interval length bi. The optimizing objective is to assign the
jobs to PMs such that the total energy consumption of all PMs is min-
imized. Note that the number (m ≥ 1) of PMs to be used is part of the
output of the algorithm and takes integer value. This problem is called
MinTEC problem for abbreviation. The following Observation 1 is given
in (Khandekar et al., 2010):

Observation 1. For any instance J and capacity parameter g ≥ 1, the
following bounds hold:

The capacity bound: OPT(J) ≥ W(J)
g

The span bound: OPT(J) ≥ span(J).
The capacity bound holds since g is the maximum capacity that can
be achieved in any solution. The span bound holds since only one
machine is enough when g = ∞.

Observation 2. The upper bound for the optimal total power-on time
is: OPT(J) ≤ len(J). The equality holds when g = 1, or all intervals are
not overlapped when g ≥ 1.

Suppose for any scheduler S, the PMs are numbered as PM1, PM2,
…. We denote by Ji the set of jobs assigned to PMi with the scheduler
S. The total busy period of PMi is the length of its busy intervals, i.e.,
bi = span (Ji) for all i ≥ 1 where span (Ji) is the span of the set of job
intervals scheduled on PMi.

Formally, assuming there are m PMs in a Cloud Data center, Ei is the
energy consumption of PMi during test, the problem (MinTEC) can be
restated as an optimization problem:

minimize
m∑

i=1
Ei (1)

subject to (a) ∀ slot s,
∑

VMj∈PMi

dj ≤ g

(b) ∀ji,0 ≤ si < ei

where (a) means that the sum of the capacity of all VMs (VMj) on a PM
(PMi) cannot be more than the available capacity a PM can offer; (b)
means that each request has a fixed start-time si and end-time ei, i.e.,
the processing interval is fixed.

Theorem 1. The lower bound of the total power-on time for MinTEC
problem is the sum of the minimum number of machines used in each

66

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Fig. 2. Referred architecture of VM reservation in Cloud Data centers.

slot, i.e., the lower bound is to allocate exactly minimum number of
machines needed to each time slot.

Proof. The main problem MinTEC aiming to address is offline schedul-
ing, for a given set of jobs J, we can find the minimum number of
machines needed for each time slot, denoted as l1, l2, …lk for total
k time slots under consideration, where li is the minimum number of
machines needed for time slot i. By the definition of the interval span
and power-on time of each machine, OPT(I) = ∑k

i=1 ⌈ Li
g ⌉ =

∑k
i=1 li, here

Li is the sum of load for time slot i. The total power-on time of all
machines is the sum of minimum number of machines in all time slots
in this way, i.e., the lower bound is the sum of the minimum number of
machines used in each slot. This is the minimum total power-on time of
all machines. This completes the proof.

Remark#1. The theoretical lower bound given in Theorem 1 is not
easy to achieve if each request has to be processed on a single PM with-
out migration. Finding a subset of jobs for each machine to minimize
total power-on time is known to be NP-complete (Lee and Zomaya,
2012).

Example #4. As shown in Fig. 2, considering there are 4 job requests
and g = 3, Jobs J1, J2, J3, J4 have start-time, end-time and capacity
demand [0, 3, 1], [0, 2, 1], [1, 3, 1], [0, 3, 1] respectively. The mini-
mum number of PMs needed is 1, 2, 1 respectively in three time slots
and total power-on time is 4 by theoretical lower bound. Without job
migration, one solution is to allocate J1, J2 and J4 to one PM and J3 to
another PM; or allocate J1, J3, J4 to one PM and allocate J2 to another
PM; in either case, the actual total number of PMs needed is 2 and the
total power-on time is 5. With job migration, one can allocate J1, J2
and J4 to one PM (m1) during interval [0, 3], allocate J3 to another PM
(m2) during interval [1, 2] and migrate J3 to m1 during interval [2,3];
in this way, the total power-on time is 4, equals to the lower bound.

To see the hardness of the MinTEC problem, its NP-completeness is
proved as follows:

Theorem 2. MinTEC problem is a NP-complete problem in the general
case.

Proof. For completeness, we sketch the proof as follows by reduction
a known NP-complete problem to MinTEC problem. We know that K-
PARTITION problem is NP-complete (Nunez et al., 2012): for a given
arrangement S of positive numbers and an integer K, partition S into
K ranges so as the sums of all the ranges are close to each other. K-
PARTITION problem can be reduced to our MinTEC problem as follows.
For a set of jobs J, each has capacity demand di (set as positive number),
partitioning J by their capacities into K ranges, is the same to allocate

K ranges of jobs with capacity constraint g (i.e. the sum of each range is
at most g). On the other hand, if there is a solution to K-PARTITION for
a given set of intervals, there exists a schedule to MinTEC problem for
the given set of intervals. Since K-PARTITION is NP-hard in the strong
sense, our problem is also NP-hard. In this way, we have found that the
MinTEC problem is NP-complete problem.

As proved in (Khandekar et al., 2010), it is NP-hard to approximate
our problem already in the special case where all jobs have the same
(unit) processing time and can be scheduled in one fixed time interval,
by a simple reduction from the subset sum problem.

Remark#2. This can also be proved by reducing a well-know NP com-
plete problem, the set partitioning problem to our (MinTEC) problem in
polynomial time (see for Example (Lee and Zomaya, 2012) for a Proof).

Theorem 3. MinTEC problem obtains optimum result if job migration
is allowed.

Proof. From Theorem 1, we know that there is a theoretical lower
bound for MinTEC problem. The MinTEC as proved in Theorem 2,
is NP-complete in general case without job migration. However with
job migration, a job can be migrated from one PM to another PM to
be continuously proceeded, it is possible to obtain the lower bound.
The method is introduced in Algorithm 2.1 OPT-Min-Migration. Algo-
rithm 2.1 firstly sorts all jobs in non-decreasing order of jobs’ start-
time (line 1) and represents load of each slot by the minimum num-
ber of machines needed (line 3–4); then it finds the longest continuous
interval [z1, z2] with the same load and separates jobs into two groups
(line 5–9); it allocates jobs in each group by First Fit Decreasing (FFD);
and migrates the job to an existing PM when the minimum number
of machines will be more than the slot load (line 12–15); it updates
load of each PM and repeats the major steps until all jobs are allocated
(line 17–21). Basically, if a new allocation passes through an interval
that already has the minimum number of machines used (by the lower
bound calculation), then during this interval, the new allocation will be
migrated to an existing machine that still can host in that interval, so
that no more than the minimum number of machines is needed for any
slot (or interval). Because the minimum number of machines needed
in each slot can be found exactly and the number of migrations (i.e.,
the minimum number of migrations) can be found by Algorithm 2.1. In
this way, the algorithm obtains the theoretical lower bound (denoted
as OPT in this paper) with the cost of the minimum number of total
migrations. This completes the proof.

The OPT-Min-Migration finds the lower bound with the cost of min-
imum number of job migrations. Without job migration, only approx-
imation is possible. In the following, a 2-approximation algorithm is
proposed.

3. The longest loaded interval first algorithm

In this section, a 2-approximation algorithm called Longest Loaded
Interval First (LLIF) is introduced. The LLIF algorithm schedules the
requests from the longest loaded slots first. The LLIF algorithm is
described in Algorithm 3.1:

LLIF algorithm is similar to Algorithm 2.1 except that there is no job
migration in LLIF algorithm. LLIF firstly finds the longest continuous
interval with the same load, denoted as [z1, z2], and separates jobs
in [z1, z2] as end-time first and start-time first groups, considers the
longest job firstly in the same group; then it decides if the theoretical
maximum load (number of PMs) is reached in [z1, z2], if not, it allocates
the job to the first available PM or opens a new PM when needs, else
the allocation is migrated to an existing PM which still can host in [z1,
z2]. LLIF updates the load of each PM and continues this process until
all jobs are allocated.

67

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Observation 3. The case that di = 1 as shown in (Flammini et al.,
2010), called Unit Demand Case, is a special case of 1 ≤ di ≤ g (let us
call it General Demand Case). As for minimizing total power-on time,
Unit Demand Case represents the worst case scenario for LLIF.

Proof. The proof is sketched here for better understanding. Consider
the General Demand Case, i.e.,1 ≤ di ≤ g. The adversary generates the
following case: there are g2 jobs in g groups, each group of jobs have
the same start-time at si = 0, demand di (for 1 ≤ i ≤ h, and

∑h
i=1 di = g),

each has end-time at ei =
T

kg−j where T is the time length of considera-
tion, k is natural number, and if (i mod g) ≠ 0, then set j = (i mod g);
else j = g. In this case, for the optimal solution, one can allocate all the
longest requests to a machine (M1) for a power-on time of dgT, then
allocates all the second longest requests to another machine (M2) for a
power-on time of dg−1T

k , …, and finally allocates all the shortest requests
to machine (Mg) with a power-on time of d1T

kg−1 . The total power-on time
of optimal solution therefore is:

OPT(I) =
g∑

i=1

diT
kg−i = T

g∑
i=1

di
kg−i (2)

We consider the worst case (the upper bound). For any offline algo-
rithm, let us call ALGX, the upper bound is to make ALGX

OPT the largest
while keeping other conditions unchanged. Obviously, if OPT has the
smallest value, equation (2) will have the largest value. When k, g and
T is given, equation (2) will have smallest value if di has the smallest
value, i.e., di = 1. This means that Unit Demand Case represents the
worst-case scenario and the Proof is completed.

In the following section, the worst case (unit demand case) is con-
sidered.

Theorem 4. The approximation ratio of our proposed LLIF algorithm
for MinTEC problem has an upper bound 2.

Proof. Let us assume that all the jobs in subset Ji are assigned to
machine Mi. For such a set, the total power-on time of the assignment
is exactly its span. We just consider the upper bound for the worst case.

Ideally LLIF(J) equals to the optimal solution by the definition of
interval span since it behaves as Theorem 1 suggests, allocating the
minimum number of machines to each time slot. But in some cases,
this is not generally true. We further construct an adversary2 for LLIF
algorithm and provide Proof in the following: The adversary as shown
in Fig. 3, submits (kg+1) jobs forming a clique (this is the case that all
job intervals intersect each other, see (Flammini et al., 2010; Khandekar
et al., 2010) for a formal definition), k is a positive integer, all started
and ended at different time with different span lengths, and sorted in
non-decreasing order of their start-time (similarly, span lengths in this
case). The total power-on time of the optimal solution is determined by
the span length of the longest job with span T1, (g+1)-th job with span
Tg+1, (2g+1)-th job,…, and the shortest job (assuming that the shortest
job has the longest loaded interval comparing to all jobs in this case),
this is to consider allocation from the top to the bottom. LLIF treats
the longest loaded interval first, its total power-on time is determined
by the (kg-g+1)-th job, (kg-2g+1)-th job,…, the 2-nd longest job with
span T2, and the longest job with span T1 (one job left for a single
machine), this is to allocate from the bottom to the top. In this case

LLIF(I)
OPT(I) =

T1 + T2 + Tg+2 +…
T1 + Tg+1 + T2g+1 +…

=
1 + T2

T1
+ TM

T1

1 + Tg+1+T2g+1+TO
T1

(3)

2 According to the knowledge of the algorithm, the adversary generates the worst pos-
sible input for the algorithm.

Fig. 3. The upper bound for LLIF algorithm.

where TM , TO are the remaining time span for other jobs in
LLIF and OPT, respectively. Equation (3) will have upper bound
2 when T1 = T2 and other span lengths are negligible compar-
ing to T1; for other cases, LLIF(I) equals to OPT(I). One can
also easily check that LLIF(I) = OPT(I) for clique, proper inter-
vals and other special cases discussed in (Flammini et al., 2010;
Khandekar et al., 2010). This completes the Proof.Our extensive
simulation results validate THOREM 4 in performance evaluation
section.

4. Applications to energy efficiency of virtual machine
reservations

In this section, we introduce how our results are applied to VM
reservations in a Cloud Data center. We consider that virtual machine
reservation for CPU-intensive applications in Cloud Data centers where
CPU in PMs are major resources (Beloglazov et al., 2012; Khandekar
et al., 2010). Each VM has a start-time si, end-time ei, CPU capacity
demand di. The CPU capacity demand (di) of a VM is a natural number
between 1 and the total CPU capacity (g) of a PM. These features are
also reflected in Amazon EC2. Our objective here is to minimize total
energy consumption of all PMs. This is exactly the same as the MinTEC
problem. So we can apply the results of the MinTEC problem to the
energy-efficiency of VM reservations. The metrics for energy consump-
tion will be presented in the following.

4.1. Metrics for energy-efficiency scheduling

4.1.1. The power consumption model of a server
There are many research works in the literature indicating that the

overall system load is typically proportional to CPU utilization (see
Beloglazov et al. (2011), Matthew et al. (Mathew et al., 2012)). This
is especially true for CPU-intensive computing where CPU utilization
dominates. The following linear power model of a server is widely used
in literature (see for Example (Beloglazov et al., 2011; Mathew et al.,
2012) and references therein).

P(U) = kPmax + (1 − k)PmaxU

= Pmin + (Pmax − Pmin)U (4)

where Pmax is the maximum power consumed when the server is fully
utilized, Pmin is the power consumption when the server is idle; k is the
fraction of power consumed by the idle server (studies show that on
average it is about 0.7); and U is the CPU utilization. In a real envi-
ronment, the utilization of the CPU may change over time due to the
workload variability. Thus, the CPU utilization is a function of time and

68

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Algorithm 2.1 OPT-Min-Migration.

is represented as Ui(t). Therefore, the total energy consumption (Ei) by
a physical machine can be defined as an integral of the power consump-
tion function during [t0, t1]:

Ei = ∫
t1

t0
P(Ui(t))dt (5)

When the average utilization is adopted, we have Ui(t) = Ui, then

Ei = P(Ui)(t1 − t0) = P(Ui)Ti

= PminTi + (Pmax − Pmin)UiTi (6)

where Ti is the power-on time of machine PMi, the first term
PminTi, is the energy consumed by power-on time of PMi, denoted as
PminTi = Eion

; the second term, (Pmax − Pmin)UiTi is the energy increase
by hosting VMs on it. Assuming that a VMj increases the total utiliza-
tion of PMi from U to U′ and set U′ − U = uij, and VMj works in full
utilization in the worst case. Defining Eij as the energy increase after
running VMj on PMi from time t0 to t1, we obtain that:

Eij = (Pmin + (Pmax − Pmin)U′ − (Pmin + (Pmax − Pmin)U))(t1 − t0)

= (Pmax − Pmin)(U′ − U)(t1 − t0)

= (Pmax − Pmin)uij(t1 − t0) (7)

For VM reservations, we can further obtain that the total energy con-
sumption of PMi, the sum of its idle energy consumption (Eion

) and the
total energy increase by hosting all VMs allocated to it.

Ei = Eion
+

k∑
j=1

Eij

= PminTi + (Pmax − Pmin)
k∑

j=1
uijtij (8)

where uij is the utilization increase of PMi with the allocation of VMj,
and tij is the time length (duration) of VMj running on PMi.

4.1.2. The total energy consumption of a Cloud Data center (CDC)
The total energy consumption of a Cloud Data center (CDC) is com-

puted as

ECDC =
n∑

i=1
Ei (9)

69

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Algorithm 3.1 Longest Loaded Interval First (LLIF).

It is the sum of energy consumed by all PMs in a CDC. Note that the
energy consumption of all VMs on all PMs is included. The objective
of our research is to minimize total energy consumption by considering
time and capacity constraints. The following theorem establishes the
relationship between total energy consumption, the total power-on time
and the total workload of all PMs in a CDC.

Theorem 5. For a given set of VM reservations, the total energy con-
sumption of all PMs is determined by the total power-on time and the
workload of all PMs.

Proof. Set 𝛼 = Pmin, 𝛽 = (Pmax − Pmin), we have

Ei = Eion
+

k∑
i=1

Eij (From (6 − 7)) (10)

ECDC =
m∑

i=1
Ei

=
m∑

i=1
(𝛼Ti + 𝛽UiTi) (From(7), (8))

= 𝛼

m∑
i=1

Ti + 𝛽

n∑
i=1

∑
VMj∈PMi

uijtij

= 𝛼T + 𝛽L (11)

where T = ∑m
i=1 Ti is the total busy (power-on) time of all PMs, L is

total workload of all VMs (which is fixed once the set of VM requests is
given). From equation (11), we can see that the total energy consump-
tion of all PMs is determined by the total power-on time of all PMs and
the total workload caused by hosting VMs on all PMs. This completes
the Proof.

From Theorem 1-5, we also can induce the following observations,
which are applicable to energy efficiency of VM reservations.

Observation 4. Applying Algorithm 2.1, OPT-MIN-Migration, we can
have the minimum total energy consumption (i.e., the optimum result)
for a given set of VM reservations in a Cloud Data center.

Observation 5. Applying LLIF algorithm for VM reservations, the
approximation ratio has upper bound 2 regarding the total energy con-
sumption comparing with the optimum solution.

Notice that the upper bound 2 is obtained for the worst case. As for
average cases, we did intensive tests under different scenarios and find
that LLIF algorithm is near optimal.

Observation 6. For one-sided clique case where all jobs have the same
start-time or end-time as discussed in (Flammini et al., 2010; Khandekar
et al., 2010), our proposed Algorithm LLIF obtains optimal results.

Proof. For one-sided clique case, where all jobs have same start-time
or end-time. Since LLIF considers the longest loaded interval first, in this
case it is to allocate the longest group of jobs to the first PM, and the
second longest group jobs to the second PM, and so on. This is exactly
the same as the optimum solution does. This completes the proof.

5. Performance evaluation

5.1. Settings

Table 1 shows eight types of VMs from Amazon EC2 online infor-
mation, where one CPU unit equals to 1 Ghz CPU of Intel 2007 proces-
sors, MEM is abbreviation for memory. Amazon EC2 does not provide
information on its hardware configuration. However, we can therefore
form three types of different PMs based on compute units. In a real
Cloud Data center, for Example, a PM with 2 × 68.4 GB memory, 16
cores × 3.25 units, 2 × 1690 GB storage can be provided. The config-
uration of VMs and PMs are shown in Tables 1 and 2. Table 3 also
provides different Pmin and Pmax for different type of PMs, which are
obtained from real power tests. For comparison, we assume that all
VMs occupy all their requested capacity (the worst case). In this case,

70

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Table 3
3 types of PMs With Energy Consumption Metrics.

PM CPU (units) MEM (GB) Storage (GB) Pmin Pmax

1 16 30 3380 210 300
2 52 136 3380 420 600
3 40 14 3380 350 500

eight types of VMs are considered as shown in Table 1.

5.2. Algorithms

We considered four algorithms in this paper:

• First-Fit Decreasing (FFD): This algorithm introduced in (Beloglazov
et al., 2012), firstly sorts all requests in non-increasing order of their
process time and then allocates the request to the first available PM.
It has computational complexity of O (nlogn) where n is the total
number of requests.

• Earliest Start-Time First (EST): This algorithm firstly sorts all
requests in non-increasing order of their start-time and then allo-
cates the request to the first available PM. It has computational
complexity of O (nlogn) where n is the total number of requests.

• Longest Load Interval First (LLIF): This is our proposed algorithm
in Section 4, the major idea is to repeatedly consider a group of
the longest load interval span first in all slots. It has computational
complexity of O (nlogn) where n is the total number of requests.

• Optimal solution (OPT): This represents the theoretical lower bound,
obtained by Algorithm 2.1. The computational complexity of finding
this theoretical lower bound is O(k) where k is the total number of
slots considered, and can be ignored.

5.3. Simulation by synthetically generated data

A Java discrete simulator is used for performance evaluation (see
(Tian et al., 2015) for the detailed introduction of the tool). All requests
follow Poisson arrival process and have exponential service time, the
mean inter-arrival period is set as 5 slots, the maximum duration of
requests is set as 50, 100, 200, 400, 800 slots respectively. Each slot is
5 min. For Example, if the requested duration (service time) of a VM
is 20 slots, actually its duration is 20 × 5 = 100 min. For each set of
inputs (requests), simulations are run 10 times and all the results shown
in this paper are the average of the 10 runs. The total number of VMs

Fig. 4. The comparison of total energy consumption when varying maximum duration of
VM requests.

Fig. 5. The total power-on time (minutes) of all PMs.

is 1000 in all simulation.
Fig. 4 provides the comparison of total energy consumption when

varying maximum duration of VM requests. In this comparison, the
maximum duration of VM requests is varying from 50 to 800 slots. It
can be seen that EST ≥ FFD > LLIF > OPT regarding total energy con-
sumption in all cases. As we expected, LLIF in our experiments performs
better than the theoretical worst case analysis of 2-approximation while
it achieves results close to OPT. This validates our theoretical analysis
which implies that LLIF incurs at most twice of the optimal in the worst
case.

Fig. 5 shows the comparison of total power-on time when varying
maximum duration from 50 to 800 slots of VM requests. It can be seen
that EST ≥ FFD > LLIF > OPT regarding total energy consumption in
all cases. Again results of LLIF are less than two times of results of
optimal (OPT) solution.

Since the total energy consumption is strongly related to the total
power-on time of all PMs, the similarity between Figs. 4 and 5 are
observed. Fig. 6 also shows the comparison of the total running time
of three algorithms EST, FFD and LLIF when the maximum duration
of VMs is varying from 50 to 800. It can be observed that the total
simulation running time of LLIF is slightly larger than both EST and
FFD, while EST and FFD have running time close to each other. This
is because LLIF spends more time on finding the longest load inter-
val recursively as described in Algorithm 3.1. Also finding (theoretical)
OPT results costs linear time with the total loads on all slots and can
be computed in much shorter time than EST, FFD and LLIF. Note that
the number of VM migrations in OPT is 2, 4, 6, 15, 27 when maximum
duration varies from 50 to 800, respectively.

5.4. Replaying with real traces

To be realistic, we utilized the log data of Parallel Workloads
Archive (PWA) (Parallel Workloads Archive, 2013). Because of lack of
real data sets, the PWA data after conversion (stated in the text) can be
representative of MinTEC model where jobs are represented in tuples
[start-time, end-time, demand capacity]. The log contains months of
records collected by a large Linux cluster. Each row of data in the log
file contains 18 elements; we only need the requestID, start time, dura-
tion, and the number of processors in our simulation since these features
are consistent with our problem model. To enable those data to be fit
with our simulation, we convert the units from seconds in PWA log file
into minutes, because we set a minute as a time slot length. Another
conversion is that the different number of processors in PWA log file
are corresponding to 8 types of VM requests. To simplify the simulation,

71

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Fig. 6. The comparison of the total running time (in micro seconds) when varying the
maximum duration of VMs.

Fig. 7. The comparison of total energy consumption (in KWh) when varying the number
of VMs.

three types of heterogeneous PMs and eight types of VMs are considered
(can be dynamically configured and extended). We perform the simula-
tion with enough PMs so that all VM requests can be allocated without
rejection. Fig. 7 and Fig. 8 show the comparison of the total energy con-
sumption (in Kilo Watts hours, KWh for abbreviation) and total power-
on time (in minutes) respectively when varying the number of VMs
using PWA (Parallel Workloads Archive, 2013) data. In this compari-
son, the total number of VMs is varying from 1000 to 7000 while other
settings are the same. The minimum and maximum number of proces-
sors in the requests is 1 and 20, respectively. The average number of
processors is 12. It can be seen that EST ≥ FFD > LLIF > OPT regarding
total energy consumption in all cases. And results of LLIF are less than
two times of results of optimal (OPT) solution. Similar results as those
by synthetically generating data for four algorithms are observed.

Fig. 9 shows the comparison of the total running time of three algo-
rithms EST, FFD and LLIF when the total number of VMs is varying
from 1000 to 7000. It can be observed that the total simulation running
time of LLIF is slightly larger than both EST and FFD, while EST and
FFD have running time close to each other. This is because LLIF spends
more time on finding the longest load interval recursively as described
in Algorithm 3.1. Finding (theoretical) OPT results costs linear time
with the total loads on all slots and is negligible. Note that the number
of VM migrations in OPT is 12, 23, 34, 87, 158 when the number of

Fig. 8. The comparison of total power-on time (in minutes) when varying the number of
VMs.

Fig. 9. The comparison of the total running time (in micro seconds) when varying the
number of VMs.

total VMs varies from 1000 to 7000, respectively.
In the simulation and trace-driven tests by the same configurations,

we found that results of MFFDE are about 2%–10% more energy-saving
than FFD on the average and LLIF is about 5%–15% more energy-saving
than FFD on the average, this means LLIF is a few percentages more
energy-saving than MFFDE.

6. Related work

For the background and general introduction of cloud computing
and energy-efficient scheduling, Beloglazov et al. (2011) propose a tax-
onomy and survey of energy-efficient data centers and Cloud comput-
ing, especially the models for power consumption and energy con-
sumption can be applied. Liu et al. (2009) present the GreenCloud
architecture, which aims to reduce data center power consumption
while guaranteeing the performance from users’ perspective. Rings et
al. (2009) consider the opportunities for integrating Grid and Cloud
computing with the next generation networks and suggest related stan-
dards. Rimal et al. (2011) discuss architectural requirements for Cloud
computing systems from an enterprise approach. Nunez et al. (2012)
introduce a simulator for Cloud infrastructure. Srikantaiah et al. (Rimal
et al., 2011) study the inter-relationships between energy consump-
tion, resource utilization, and performance of consolidated workloads.

72

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Lee et al. (Lee and Zomaya, 2012) introduce two online heuristic algo-
rithms for energy-efficient utilization of resources in Cloud computing
systems by consolidating active tasks. Feller et al. (2012) propose a
novel fully decentralized dynamic VM consolidation schema based on
an unstructured peer-to-peer (P2P) network of PMs. Guazzone et al.
(2011) consider a two-level control model to automatically allocate
resources to reduce the energy consumption of web-service applica-
tions. You et al. (2011) investigate QoS-aware service redeployment
problem (SRP) with objective to minimize the redeployment cost and
propose a novel heuristic algorithm. Saovapakhiran et al. (Saovapakhi-
ran and Devetsikiotis, 2011) design an algorithm for admission control
and resource allocation in order to deal with unreliably excessive com-
puting resources. Manvi et al. (Manvi and Shyam, 2014) bring out an
exhaustive survey of resource scheduling techniques for IaaS in cloud
computing and also put forth the open challenges for further research.
Sharma et al. (2016) present a thorough review of existing techniques
for reliability and energy efficiency and their trade-off in cloud comput-
ing. In (Zhang et al., 2016), Zhang et al. survey more than 150 articles
in the latest years and review the state art of the algorithms to realize
these objectives. Baker et al. (2015) present a network-based routing
algorithm to find the most energy efficient path to the cloud data cen-
tre for processing and storing big data. Baker et al. (2017) develop a
novel multi-cloud IoT service composition algorithm called (E2C2) that
aims at creating an energy-aware composition plan by searching for and
integrating the least possible number of IoT services, in order to fulfil
user requirements.

For online energy-efficient scheduling, Kim et al. (2011) model a
real-time service as a real-time VM request, and use dynamic voltage
frequency scaling schemes for provisioning VMs in Cloud Data centers.
Tian et al. (2013) propose an online scheduling algorithm for the prob-
lem of immediate (on-spot) requests.

As for offline energy-efficient scheduling, Beloglazov et al. (2012)
consider the off-line VM allocation based on modified best-fit bin pack-
ing heuristics without considering VM life cycles where the problem
formulation is different from our proposed one. Winkler et al. (Winkler
and Zhang, 2003), Flammini et al. (2010) and Khandekar et al. (2010)
are closely related to our research and are earlier papers to discuss this
issue under general parallel machine scheduling context, and Kovalyov
et al. (2007) provide a comprehensive review for fixed interval schedul-
ing problem. The MinTEC problem is NP-hard in general case (Winkler
and Zhang, 2003). Winkler et al. (Winkler and Zhang, 2003) show that
the problem is NP-hard already for g = 2, where g is the total capacity of
a machine in term of CPU. Flammini et al. (2010) consider the MinTEC
scheduling problem where jobs are given as interval spans with unit
demand, for this version of the problem a 4-approximation algorithm
for general inputs and better bounds for some subclasses of inputs are
provided. Khandekar et al. (2010) propose a 5-approximation algorithm
for this scheduling problem by separating all jobs into wide and narrow
types by their demands when 𝛼 = 0.25, which is the demand parameter
of narrow jobs occupying the portion of the total capacity of a machine.
A 3-approximation algorithm is introduced in (Tian and Yeo, 2015)
for general offline parallel machine scheduling. Orgerie et al. (Orgerie,
2012) discuss energy-efficient reservation framework for distributed
systems with consideration of switching off unused resources for energy
saving purposes and prediction algorithms employed to avoid useless
off-on cycles.

Through extensive analysis of open literature and references therein,
we found that there is still lack of research on VM reservations consid-
ering both capacity and interval span constraints. Specifically, there is
a need to consider the allocation of VMs with full life cycle constraints,
which is often neglected (Khandekar et al., 2010; Liu et al., 2009). Since
reservation services in Infrastructure as a Service (IaaS) is one of the
key services widely provided by many operators, it is very important to
develop energy-efficient resource scheduling (Amazon EC2).

7. Conclusions and future work

In this paper, an energy-efficient scheduling method for virtual
machine reservations is proposed. We proposed an optimal solution
with the minimum number of job migrations. Then we improved the
best-known bound 3-approximation to 2-approximation by introducing
LLIF algorithm. Most of our results are applicable to a single Cloud Data
center as shown in Fig. 1. As for federated systems, our results are read-
ily applicable by considering all machines in federated data centers.
There are a few more open research issues for the problem:

• Finding better near-optimal solution and providing theoretical
proofs for the approximation algorithms. Although the problem is
NP-complete in general, we conjecture there is near-optimal solu-
tion for it. As for approximation algorithms, the theoretical approx-
imation ratio comparing to optimal solution can be provided.

• Considering VM migration further and the energy consumption dur-
ing migration transitions periods. Applying limited number of VM
migrations, it is possible to reduce total energy consumption. How-
ever, frequently migrating VMs can also cause network vibration so
that only limited number of VM migrations should be taken. For
offline scheduling, it is also possible to take a limited number of
migrations when allocation so that the total energy consumption
can be reduced. We will investigate this further and consider energy
consumption during migration.

• Combing energy-efficiency and load-balancing together. Just con-
sidering energy-efficiency may not be enough for real application
because it may cause problems such as unbalance load for each PM.
So we will combine load-balancing and energy efficiency together
to provide an integrated solution.

We are conducting research to further improve energy efficiency by
considering these issues.

Acknowledgments

This research is sponsored by the National Natural Science Foun-
dation of China (NSFC) (Grand Number: 61672136, 61650110513,
61602434), Science and Technology Plan of Sichuan Province
(2016GZ0322), Xi Bu Zhi Guang Plan of Chinese Academy of Science
(R51A150Z10). The problem statement as presented in Section 2.2 is
also discussed in our earlier paper (Tian and Yeo, 2015) although solu-
tions provided in this paper are new.

References

Amazon EC2, http://aws.amazon.com/ec2/.
Baker, T., Al-Dawsari, B., Tawfik, H., Reid, D., Ngoko, Y., December 2015. GreeDi: an

energy efficient routing algorithm for big data on cloud. Ad Hoc Netw. 35, 83–96.
Baker, Thar, Asim, Muhammad, Tawfik, Hissam, Aldawsari, Bandar, Buyya, Rajkumar,

July 2017. An energy-aware service composition algorithm for multiple cloud-based
IoT applications. J. Netw. Comput. Appl. 89 (1), 96–108.

Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.Y., 2011. In: Zelkowitz, M. (Ed.), A
Taxonomy and Survey of Energy-efficient Data Centers and Cloud Computing
Systems, Advances in Computers, vol. 82. Elsevier, Amsterdam, The Netherlands,
pp. 47–111.

Beloglazov, A., Abawajy, J., Buyya, R., 2012. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future
Generat. Comput. Syst. 28 (5), 755–768.

Coffman Jr., E.G., Garey, M.R., Johnson, D.S., 1987. Bin-packing with divisible item
sizes. J. Complex 3 (1987), 406–428.

Feller, E., Morin, C., Esnault, A., August 2012. A Case for Fully Decentralized Dynamic
VM Consolidation in Clouds Research Report n8032.

Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T., Zaks, S.,
2010. Minimizing total power-on time in parallel scheduling with application to
optical networks. Theor. Comput. Sci. 411 (40–42), 3553–3562.

Guazzone, M., Anglano, C., Canonico, M., 2011. Energy-efficient resource management
for cloud computing infrastructures. In: Proceedings of 3rd IEEE International
Conference on Cloud Computing Technology and Science, CloudCom. Nov. 29
2011-Dec. 1 2011, Athens, pp. 424–431.

Khandekar, R., Schieber, B., Shachnai, H., Tamir, T., 2010. Minimizing power-on time in
multiple machine real-time scheduling. In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010), pp. 169–180.

73

http://aws.amazon.com/ec2/
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref2
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref3
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref4
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref5
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref6
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref8
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref9
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref11
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref13

W. Tian et al. Journal of Network and Computer Applications 113 (2018) 64–74

Kim, K., Beloglazov, A., Buyya, R., 2011. Power-aware provisioning of virtual machines
for real-time Cloud services. Concurrency Comput. Pract. Exp. 23 (13), 1491–1505.

Kovalyov, M.Y., Ng, C.T., Cheng, E., 2007. Fixed interval scheduling: models,
applications, computational complexity and algorithms. Eur. J. Oper. Res. 178 (2),
331–342.

Lee, Y.C., Zomaya, A.Y., 2012. Energy efficient utilization of resources in cloud
computing systems. J. Supercomput. 60 (2), 268–280.

Liu, L., Wang, H., Liu, X., Jin, X., He, W.B., Wang, Q.B., Chen, Y., 2009. Greencloud: a
new architecture for green data center. In: Proceedings of 6th International
Conference Industry Session on Autonomic Computing and Communications
Industry Session, ICAC-INDST’09. ACM, New York, NY, USA, pp. 29–38.

Manvi, S.S., Shyam, G.K., May 2014. Resource management for Infrastructure as a
Service (IaaS) in cloud computing: a survey. J. Netw. Comput. Appl. 41, 424–440.

Mathew, V., Sitaraman, R.K., Shenoy, P., 2012. Energy-aware load balancing in content
delivery networks. In: Proceedings of INFOCOM 2012, 25-30 March, pp. 954–962
Orlando, FL.

Nunez, A., Vzquez-Poletti, J.L., Caminero, A.C., Casta, G.G., Carretero, J., Llorente, I.M.,
Carretero, J., Llorente, I.M., 2012. iCanCloud: a flexible and scalable cloud
infrastructure simulator. J. Grid Comput. 10, 185–209.

Orgerie, A.C., Feb 20, 2012. An Energy-efficient Reservation Framework for Large-scale
Distributed Systems PhD Thesis.

Parallel Workloads Archive, www.cs.huji.ac.il/labs/parallel/workload, Last Access, April
2013.

Rimal, B.P., Jukan, A., Katsaros, D., Goeleven, Y., March 2011. Architectural
requirements for cloud computing systems: an enterprise cloud approach. J. Grid
Comput. 9 (1), 3–26.

Rings, T., Caryer, G., Gallop, J., Grabowski, J., Kovacikova, T., Schulz, S., Stokes-Rees,
I., 2009. Grid and cloud computing: opportunities for integration with the next
generation network. J. Grid Comput. 7, 375–393.

Saovapakhiran, B., Devetsikiotis, M., 2011. Enhancing computing power by exploiting
underutilized resources in the community cloud. In: Proceedings of IEEE
International Conference on Communications (ICC 2011), pp. 1–6, 5-9 June Kyoto.

Sharma, Y., Javadi, B., Si, W., Sun, D., October 2016. Reliability and energy efficiency in
cloud computing systems: survey and taxonomy. J. Netw. Comput. Appl. 74, 66–85.

Tian, W.H., Yeo, C.S., 2015. Minimizing total busy-time in offline parallel scheduling
with application to energy efficiency in cloud computing. Concurrency Comput.
Pract. Exp. 27 (9), 2470–2488.

Tian, W.H., Xiong, Q., Cao, J., December 2013. An online parallel scheduling method
with application to energy-efficiency in cloud computing. J. Supercomput. 66 (3),
1773–1790.

Tian, W.H., Zhao, Y., Xu, M.X., Zhong, Y.L., Sun, X.S., January 2015. A toolkit for
modeling and simulation of real-time virtual machine allocation in a cloud data
center. IEEE Trans. Automat. Sci. Eng. (Online, July 2013) 12 (1), 153–161.

VMWare, http://www.vmware.com/.
Winkler, P., Zhang, L., 2003. Wavelength assignment and generalized interval graph

coloring. In: SODA, pp. 830–831.
You, K., Qian, Z., Guo, S., Lu, S., Chen, D., 2011. QoS-aware service redeployment in

cloud. In: Proceedings of in Proceedings of IEEE International Conference on
Communications, ICC 2011, pp. 1–5, 5-9 June Kyoto.

Zhang, Jiangtao, Huang, Hejiao, Wang, Xuan, April 2016. Resource provision algorithms
in cloud computing: a survey. J. Netw. Comput. Appl. 64, 23–42.

Pr. Wenhong Tian has a PhD from Computer Science
Department of North Carolina State University. He is a pro-
fessor at University of Electronic Science and Technology
of China. His research interests include dynamic resource
scheduling algorithms and management in Cloud Data cen-
ters and BigData processing plaftorms, dynamic modeling
and performance analysis of communication networks. He
published about 50 journal and conference papers, and 3
English books in related areas. He is a member of ACM, IEEE
and CCF.

Mr. Majun He is a master student at University of Elec-
tronic Science and Technology of China. His research inter-
ests include approximation algorithm for NP-hard problems,
and scheduling algorithms for BigData processing platforms
such as Spark.

Ms. Wenxia Guo is a PhD candidate at University of Elec-
tronic Science and Technology of China. Her research inter-
ests include approximation algorithm for NP-hard problems,
and scheduling algorithms for resource allocation in Cloud
Computing and BigData processing.

Mr. Wenqiang Huang is a master student at University of
Electronic Science and Technology of China. His research
interests include approximation algorithm for NP-hard prob-
lems, and scheduling algorithms for resource allocation in
Cloud Computing and deep learning platforms such as Ten-
sorflows.

Dr. Xiaoyu Shi is an associate researcher at Chongqing
Institute of Green and Intelligent Technology, Chinese
Academy of Sciences, Chongqing, China. His research inter-
ests include scheduling algorithms for energy efficiency in
Cloud Computing and deep learning platforms.

Dr. Mingsheng Shang is a researcher at Chongqing Insti-
tute of Green and Intelligent Technology, Chinese Academy
of Sciences, Chongqing, China. His research interests include
recommendation systems, Bigdata processing and deep
learning.

Dr. Adel Nadjaran Toosi is a Research Fellow/Lecturer at
the dept. of Computing and Information Systems of the Uni-
versity of Melbourne, Australia. He received his PhD degree
in 2014 from the dept. of Computing and Information Sys-
tems of the University of Melbourne. His research interests
include Distributed Systems, Cloud Computing, Cloud Fed-
eration and Inter-Cloud. His main focus is on pricing strate-
gies, market and financial solutions for Cloud computing.
Currently, he is working on economic aspects of the Inter-
Cloud project, a framework for federated Cloud Computing.

Prof. Rajkumar Buyya is Professor of Computer Science
and Software Engineering, Future Fellow of the Australian
Research Council, and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He has authored over 450
publications and four text books. He is one of the highly
cited authors in computer science and software engineer-
ing worldwide (h-index = 87, g-index = 176, 37500+ cita-
tions). Microsoft Academic Search Index ranked Pr. Buyya
as the world’s top author in distributed and parallel com-
puting between 2007 and 2012.

74

http://refhub.elsevier.com/S1084-8045(18)30126-7/sref14
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref17
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref18
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref20
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref21
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref22
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref24
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref25
www.cs.huji.ac.il/labs/parallel/workload
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref27
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref28
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref29
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref30
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref32
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref33
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref34
http://www.vmware.com/
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref36
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref37
http://refhub.elsevier.com/S1084-8045(18)30126-7/sref39

	On minimizing total energy consumption in the scheduling of virtual machine reservations
	1. Introduction
	2. Problem formulation
	2.1. Preliminaries
	2.2. Problem statement

	3. The longest loaded interval first algorithm
	4. Applications to energy efficiency of virtual machine reservations
	4.1. Metrics for energy-efficiency scheduling
	4.1.1. The power consumption model of a server
	4.1.2. The total energy consumption of a Cloud Data center (CDC)

	5. Performance evaluation
	5.1. Settings
	5.2. Algorithms
	5.3. Simulation by synthetically generated data
	5.4. Replaying with real traces

	6. Related work
	7. Conclusions and future work
	Acknowledgments
	References

