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Abstract—The Internet of Things (IoT) driven latency-critical
applications are deployed on lightweight Micro-Clouds at the
network’s edge. Renting physical space from geographically
distributed colocation datacenters connected via a Wide Area
Network (WAN) is a cost-effective way of deploying Micro-
Clouds, despite WANs’ dynamic communication latency from
traffic congestion. However, this deployment approach can limit
Micro-Clouds to operate within a soft power budget, as colocation
datacenter providers utilize it to add more servers and lower
capital costs through oversubscribing power infrastructure. As a
result, Micro-Clouds use extreme energy reduction measures like
power capping and task throttling to address power overdraw
events, where power consumption exceeds soft power budget
limits, which reduces the performance of latency-critical applica-
tions. We propose a solution where a dynamic power budget can
be achieved by adding renewable energy sources to the existing
soft power budget without upgrading power delivery systems.
To take advantage of this, we propose a dynamic, decentralized
task-scheduling algorithm called DEMOTS. DEMOTS effectively
utilizes the available dynamic power budget in a WAN with
varying degrees of network traffic congestion, thereby avoiding
the need for extreme energy reduction measures. We implement
DEMOTS on a simulation test-bed. Compared to state-of-the-art
baseline using MCOP for decentralized task-scheduling in Micro-
Clouds, DEMOTS reduces Power Overdraw Impact up to 19%,
Task Latency Increase Impact up to 47%, and Task Schedule
Time Impact up to 49%.

Index Terms—Decentralized Resource Management, Micro-
Clouds, Task Scheduling, Energy Efficient Computing

I. INTRODUCTION

Motivation: The growing use of latency-critical applica-
tions in Micro-Clouds, driven by the Internet of Things (IoT),
is expected to result in substantial energy demand. Micro-
Clouds decentralize traditional hyper-scale clouds by dispers-
ing computational capacity over a large number of lightweight
data centers deployed at the network’s edge [1], [2]. This
approach exploits lower communication latency, making them
ideal for IoT applications. Compared to traditional hyper-
scale clouds, Micro-Clouds have a smaller energy footprint,
resulting in smaller power ratings (less than three orders of
magnitude than a traditional hyper-scale cloud [1]). However,

due to the predicted fast growth rate, Micro-Clouds are ex-
pected to consume a similar amount of energy as traditional
hyper-scale clouds by 2028 [3], [4].

Due to their lightweight nature, Micro-Clouds offer flexi-
bility in cost-effective deployments. In this regard, deploying
Micro-Clouds as tenants in multi-tenant colocation datacenters
(hereby used as colocation datacenters) is widely adopted.
For example, the datacenter operator Vapor IO plans to build
thousands of edge colocation datacenters, which are a type of
colocation datacenters hosting latency-critical IoT workloads
[5]. In a colocation datacenter, the datacenter operator manages
the datacenter facility and physical power/cooling infrastruc-
tures, and leases them to service providers (i.e. tenants) as
a shared space. The service providers deploy Micro-Clouds
on the leased resources. In this approach they only have
to manage physical servers, thereby significantly reducing
maintenance costs [5].

Keeping up with the rapid growth of Micro-Clouds is
expensive for datacenter operators due to significant costs in
building new datacenters [6]. Because of that, datacenter oper-
ators exploit utilizing existing resources. Typically, additional
physical space is already available in datacenters. Therefore,
the datacenter operators focus on employing server-level re-
covery mechanisms to oversubscribe its power infrastructure
by provisioning additional servers. This technique is known
as power oversubscription and it is a common approach used
by data centers [5], [6].

In colocation datacenters, the datacenter operator can-
not employ power oversubscription via server-level recov-
ery mechanisms. This is because the colocation datacenter
provider does not have control over the servers that are
managed by tenants. To overcome this challenge, the data-
center operator implements a reduced soft power budget in
the tenant’s subscribed power. The difference between the soft
power budget and the subscribed power capacity is then used
to provision additional servers [5]. For example, in the case
of a Micro-Cloud deployment as a tenant in a colocation
datacenter, the Micro-Cloud operates under a reduced soft
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power budget, such as 90% of the originally subscribed power.
The remaining 10% of the power capacity contributes to the
provision of additional servers.

However, operating under a soft power budget can result
in Micro-Clouds having to resort to extreme power reduction
measures such as power capping and workload throttling.
Especially, when the rare power peaks exceed the available
power budget (i.e. power overdraw events) [7]. This can have
a detrimental impact on the performance of latency-critical
workloads. Therefore, balancing between the power oversub-
scription techniques and the optimal workload performance is
an ongoing challenge [6].

In this regard, our work aims to improve workload perfor-
mance by minimizing power overdraw events. As a result, the
need to employ extreme power recovery techniques is also
minimized. One way to achieve this is increasing the soft
power budget by combining additional energy. But drawing
this additional energy from the power grid is not feasible
because the power grids feeding energy to colocation data-
centers are already stressed [8]. On the other hand, coloca-
tion datacenters already procure onsite renewable energy [9].
Therefore, drawing additional energy from on-site renewable
sources is a viable option. The next challenge in this approach
is combining additional energy with the soft power budget
in a cost-effective manner. Such that expensive upgrades in
the tenant power delivery system are minimized. When we
consider an existing tenant in a colocation datacenter, this
tenant subscribes to a certain amount of power. This subscribed
power is delivered to the Micro-Cloud via a Power Delivery
Unit (PDU) with a sufficient power capacity. When soft power
budget is implemented, a portion of the PDU power capacity
is left unused (e.g., for soft power budget equivalent to 90%
of the subscribed power, a 10% in the PDU capacity is left un-
used). We identify that this underutilized PDU capacity can be
used to combine additional energy with the soft power budget,
thus avoiding expensive PDU upgrades. Therefore, we propose
the addition of renewable power to the soft power budget,
thereby creating a dynamic power budget for Micro-Clouds.
The dynamic power budget increases the soft power budget,
thereby minimising power overdraw events and the need for
extreme power reduction measures. This improves workload
performance under power oversubscription techniques being
applied. An example of this approach is illustrated in Figure 1.

Furthermore, the dynamic power budget can be imple-
mented across a geographically distributed network of Micro-
Clouds deployed with colocation datacenters. In such a sce-
nario, excess power in the dynamic power budget is highly
likely to be available in one or more Micro-Clouds at a given
time due to the intermittent nature of the renewable energy
across different time zones. This motivates us to avoid employ-
ing extreme power reduction measures entirely, by offloading
tasks to another Micro-Cloud with available power in its
dynamic power budget. Concretely, if a Micro-Cloud is about
to undergo a power overdraw event, its energy consumption
can be reduced below its power budget by offloading a portion
of its tasks to other Micro-Clouds that have available power in

their dynamic power budgets. The feasibility of this approach
is shown in Fig. 2 in which, the dynamic power budget is
compared across three time zones. We observe that when a
power overdrawn event occurs at one location, one or more
of the other locations have available power in their dynamic
power budget.

Fig. 1: Dynamic Power Budget

Fig. 2: Micro-Clouds with dynamic power budgets across
different time zones (Captured against Azure workload traces
[15] and solar energy via the PVGIS tool [16] over 5.5 hours
of workload execution)

Challenges and Gaps: When tasks are offloaded across
Micro-Clouds, it is carried out via dynamic task scheduling.
Dynamic task scheduling allows for real-time adaptation to
changes in the system, albeit at the cost of additional computa-
tional overhead, which can be minimized through lightweight
computation approaches. Moreover, it is crucial to perform
dynamic task scheduling in a decentralized manner. Other-
wise, substantial round-trip communication times can lead to
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TABLE I: A Comparison of Related Task Scheduling Algorithms

Work Geo-Distributed Dynamic Decentralized WAN traffic congestion-aware Task latency-criticality-aware
Yuan et al. [10] ✓ ✓ ✗ ✗ ✓
Sharma and Rao [11] ✓ ✓ ✗ ✗ ✗
Zhao et al. [3] ✓ ✓ ✗ ✗ ✗
Sajid et al. [12] ✓ ✓ ✓ ✗ ✗
Tarneberg et al. [4] ✓ ✗ ✗ ✗ ✗
Selimi et al. [13] ✓ ✓ ✓ ✗ ✗
Panadero et al. [14] ✓ ✓ ✓ ✗ ✗
DEMOTS (This paper) ✓ ✓ ✓ ✓ ✓

delayed scheduling decisions. A few studies such as Multi-
Criteria Optimal Placement (MCOP) [14] and lightweight
service placement heuristic [13] have explored decentralized
dynamic task scheduling in Micro-Cloud networks. They focus
on multi-criteria optimization, such as node availability and
the number of connections. But they do not consider the
potential bottlenecks in inter-Micro-Cloud communication.
Micro-Clouds are usually interconnected via Wide Area Net-
works (WAN). WAN can undergo severe traffic congestion,
in which its tail latency can be worsened up to 2.5x [17].
Since Micro-Clouds frequently communicate with each other
during decentralized task scheduling, dynamic WAN traffic
congestion becomes a severe bottleneck to it. Additionally,
these studies do not consider the energy optimization of Micro-
Clouds. Consequently, we address these bottlenecks taken into
account during scheduling decisions.

Our Work: We propose an approach to realize a dynamic
power budget in a Micro-Cloud, and a novel task schedul-
ing algorithm called DEMOTS: Decentralized Multi-criteria
Optimization Task Scheduling to harness dynamic power
budget across a network of Micro-Clouds. DEMOTS utilizes
a decentralized approach to schedule tasks while tolerating
dynamic WAN traffic congestion. DEMOTS outperforms state-
of-the-art scheduling algorithms by up to 19% gain in reducing
power overdraw impact, up to 47% gain in reducing task
latency increase impact, and up to 49% gain in reducing
task schedule time impact, across various tuning levels. In
summary, the key contributions of our work are:

• An approach to realize a dynamic power budget for
Micro-Clouds deployed in colocation datacenters

• A system model and performance metrics to measure the
impact of power overdraw events on Micro-Clouds, and
the impact of dynamic task scheduling on latency-critical
IoT tasks.

• A formal definition of decentralized task scheduling with
dynamic power budgets, and formulation of the multi-
objective problem

• A novel dynamic decentralized task scheduling algorithm
(DEMOTS) to solve the multi-objective problem by uti-
lizing the dynamic power budget under realistic WAN
traffic congestions.

• Extensive experiments and analysis of results comparing
with the state-of-the-art algorithms demonstrating the
superiority of DEMOTS.

The rest of the paper is organized as follows. In Section II we
discuss the related literature. Section III provides the system

model and its essential components. In Section IV we present
our proposed DEMOTS algorithm. Section V describes the
performance evaluation and experimental results. In Section
VI we conclude and share future directions.

II. RELATED WORK

Most existing approaches for dynamic task scheduling in
multi-cloud networks, which are distributed geographically,
focus on centralized renewable energy harnessing. Yuan et
al. [10] focus on scheduling delay-tolerant applications in
a centralized manner, while strictly meeting delay-bounded
constraints, and taking into account the spatial and temporal
variations of both grid and renewable energy. Sharma and Rao
[11] propose a centralized scheduler that aims to optimize the
percentage of renewable energy used. They identify a trade-
off between average task waiting time and the percentage of
renewable energy and suggest a method to improve the re-
newable energy percentage in geographically distributed multi-
clouds. Zhao et al. [3] present a more recent approach that uses
centralized deep reinforcement learning to utilize renewable
energy in geographically distributed multi-clouds. Similarly,
Tarneberg et al. [4] use a dynamic application placement
technique to achieve the optimal placement of applications
in mobile multi-cloud networks. However, this approach is
not purely decentralized, and it is not capable of performing
prioritized scheduling of specific criteria such as latency or
power.

In contrast with centralized approaches, some recent works
have explored decentralized approaches. Sajid et al. [12] use
blockchain technology to implement a decentralized schedul-
ing mechanism for energy management across geographically
distributed multi-clouds. The use of renewable energy is man-
aged through the blockchain network. Selimi et al. [13] employ
a lightweight service placement heuristic that schedules tasks
in community networks with dynamic network bandwidth and
node availability. However, it requires the decision of a cluster-
ing parameter for optimum performance, which can be difficult
in growing Micro-Clouds. To address this issue, Panadero et al.
[14] propose the Multi-criteria Optimum Placement (MCOP)
algorithm, which automatically handles the clustering issue.
However, none of the approaches described above takes into
account the impact on latency-critical tasks, as well as the
impact of realistic WAN traffic congestion levels during their
scheduling decisions.

Table I summarizes the related work compared to the pro-
posed approach. The majority of the reviewed approaches use
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Fig. 3: System Architecture

centralized scheduling, which becomes a bottleneck for geo-
graphically distributed Micro-Cloud networks due to increased
communication delays over WAN. Decentralized scheduling
approaches provide an advantage, but none of them considers
realistic WAN traffic congestion levels, energy optimizations,
and the impact of scheduling decisions on the reliability of
latency-critical IoT applications. The proposed approach aims
to address these identified gaps.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The proposed system architecture model, shown in Figure 3,
is a geographically distributed, decentralized, and homoge-
neous network of Micro-Clouds. The network latency between
Micro-Clouds can change due to WAN traffic congestion.
Each Micro-Cloud leases power infrastructure and physical
space from a colocation data center provider. The provider
employs the proposed approach to provide a dynamic power
budget for Micro-Clouds. Users submit latency-critical IoT
tasks dynamically to the closest Micro-Cloud. A decentralized
task scheduler in each Micro-Cloud dynamically schedules
tasks among the Micro-Clouds to avoid power overdraw
events. The following subsections describe different models
and performance metrics we use.

1) Workload Model: We use a location-aware, utilization-
based workload model where the workloads are submitted
dynamically to Micro-Clouds based on the local time and
following a daily trend. The set of tasks that were submitted
and executed by all the Micro-Clouds during the time period
t = 0 to t = TMAX are denoted by Ω,

Ω = {t1, ..., tM}

where M is the total number of tasks.

2) Power Consumption Model : Micro-Cloud power con-
sumption is primarily determined by the power consumption
of computing elements (i.e. power consumption of the Infor-
mation Technology (IT) systems), and power overhead not
used for computing (mostly used for cooling systems) [18].
Using the Power Usage Effectiveness (PUE) [19] metric, a
linear relationship can be derived between the IT power and
the overhead power [20].

Poverhead = (PUE− 1)× PIT (1)

where PIT is the IT power, Poverhead is the power overhead,
and PUE is a constant value. Due to this, we model power
consumption just considering PIT . For each Micro-Cloud PIT

is introduced as Pci(t) (dynamic IT power consumption of
ith Micro-Cloud) using a host power consumption model.
Our model is based on the CPU utilization level, as this
resource represents the main contribution to the host power
consumption [21].

Pci(t) =

hosts∈ithMicro-Cloud∑
j

Pwj(Uj(t)) (2)

where Pci(t) is the power consumption of the ith Micro-Cloud
and for the jth host in that Micro-Cloud, the Pwj is the power
consumption model, and Uj(t) is the CPU utilization at tth

time.
3) Dynamic Power Budget Model: To model the dynamic

power budget, we combine the soft power budget (Pspbi ) and
the intermittent renewable power provided by the colocation
datacenter provider (Prpi

(t)).

Pbi(t) = Pspbi + Prpi
(t) (3)

where Pbi(t) is the dynamic power budget of the ith Micro-
Cloud at the time t.
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4) Power Overdraw Model: We model the power overdraw
as the amount of the power consumption exceeding the Pbi(t)
at tth time.

Podi
(t) =

{
Pci(t)− Pbi(t) if Pci(t) > Pbi(t)

0 otherwise
(4)

where Podi
(t) is the power overdraw amount at the time t.

5) Performance Metrics: The following performance met-
rics are calculated for all Micro-Clouds in the network during
the time period t = 0 to t = TMAX .

• Power Overdraw Impact (POI ): Measures magnitude and
the time spent during power overdraw events.

POI =

N∑
i=1

∫ t=TMAX

t=0

Podi(t) dt (5)

• Task Schedule Time Impact (TSI ): Measures the amount
of time that tasks were blacked out during the dynamic
scheduling.

TSI =
∑
tk∈Ω

TSTtk
(6)

where TSTtk
is the time spent by the task tk during inter-

Micro-Clouds scheduling.
• Task Latency Increase Impact (LI ): Measures the in-

creased end-user communication latency and the amount
of time spent with that.

LI =
∑
tk∈Ω

∑
i∈N

Ltki
× Ttki

(7)

where Ltki
is the latency increase between the originating

Micro-Cloud of the task tk, and the ith Micro-Cloud. Ttki

is the time it spent in the ith Micro-Cloud.

B. Problem formulation

The overall objective of our problem is to minimize Power
Overdraw Impact (POI ), but in doing so, also try to minimize
both Task Schedule Time Impact (TSI ) and Task Latency
Increase Impact (LI ).

IV. DEMOTS - DECENTRALIZED MULTI-CRITERIA
OPTIMIZATION TASK SCHEDULING

We present our proposed DEMOTS approach, which is a
decentralized algorithm that dynamically schedules tasks and
adapts to traffic congestion levels in the inter-Micro-Cloud
network. It runs in each Micro-Cloud.

DEMOTS continuously monitor for potential power over-
draw events of the Micro-Cloud via the Power Overdraw
Model (Podi(t)) defined in eq. 4. It tries to offload a batch
of low-priority tasks to bring down the power consumption of
the Micro-Cloud. For each task in the batch, it broadcasts a
task offload request across the WAN and waits for responses
within a fixed window of time using a time-out. Based on
the responses received, the lexicographic method is used to
filter and select a destination Micro-Cloud for each task. The
selection is based on three optimization criteria designed to

Fig. 4: Calculating Power Reliability (Pri) of the ith candidate
Micro-Cloud

minimize Power Overdraw Impact (POI ), Task Schedule Time
Impact (TSI ), and Task Latency Increase Impact ( LI ). Finally,
the tasks are offloaded to the destination Micro-Clouds.

Overall, DEMOTS propose three novel optimization criteria
to minimize POI , TSI , LI , and a novel decentralized approach
to offload tasks over WAN with dynamic traffic congestion
levels.

A. Optimization Criteria

The following three optimization criteria are proposed for
selecting a destination Micro-Cloud to offload the task tk.

1) Minimize POI : Prioritizing Micro-Clouds with suffi-
ciently available Pbi(t) would minimise the POI . We propose
the Power Reliability (Pri) metric to measure the sufficiently
available Pbi(t).

Pri(t) = P ([Pbi(t)− Pci(t)] > PcMAX
i tk) (8)

Where PcMAX
i tk is the maximum amount of power that the

task tk would consume at the ith Micro-Cloud. We then
estimate Pci(t) with its rolling average value, denoted as
Pcavgi .

Pri(t) = P ([Pbi(t)− Pcavgi ] > PcMAX
i tk)

Pri(t) = P (Pbi(t) > (PcMAX
i tk + Pcavgi))

Define k = PcMAX
i tk + Pcavgi . Then,

Pri = P (Pbi(t) > k)

where k is a positive constant. This simplifies Pri to the
cumulative sum of the probability density function (PDF)
of the Micro-Cloud’s Pbi(t) as illustrated in Fig. 4. We
estimate this PDF using historical data for each Micro-Cloud
to calculate the Pri. Thus, the first optimization criterion is
to select the candidate Micro-Cloud maximizing Pri.

Criterion 1 : argmax
i

(Pri) (9)
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TABLE II: Description of Symbols

Symbol Description
Notation Description
N Number of Micro-Clouds in the inter Micro-Clouds net-

work.
TMAX Time duration.
Ω Set of tasks that were executed during TMAX .
Hyper
Parameter

Description

γ Sensitivity of the dynamic task schedule initiation. A
higher value leads to aggressive task offloading.

θ Batch size of the low-priority tasks. A higher value
initiates a larger number of task offload requests.

2) Minimize TSI : Prioritizing Micro-Clouds with sufficient
processing capability would ensure immediate task deploy-
ment, thus optimizing the TSI . We propose the Redundant
Processing Capacity metric of the ith candidate Micro-Cloud
(Rpci ) to measure sufficient processing capability.

Rpci =
CPE

i
(t)−TPEtk

TPEtk

(10)

In which,
• CPE

i
(t)= Available processing elements count in the ith

candidate Micro-Cloud at time t
• TPEtk

= Minimum required processing elements for task
tk

Thus, the second optimization criterion is to select the
candidate Micro-Cloud maximizing Rpci .

Criterion 2 : argmax
i

(Rpci) (11)

3) Minimize LI : Prioritizing Micro-Clouds having the min-
imum increase in end-user communication latency would
optimize the LI . Thus, the third optimization criterion is to
select the candidate Micro-Cloud minimizing the increase in
end-user communication latency (Lincreasei ).

Criterion 3 : argmin
i

(Lincreasei) (12)

B. Decentralized Tasks Offloading over WAN

DEMOTS tasks offloading has three stages; Initiate:
Broadcasts task offload requests of low-priority tasks,
Respond: Responds to the task offload requests, and
Dispatch: Selects the destination Micro-Cloud using three
optimization criteria and offloads the task.

• Initiate: A Micro-Cloud periodically calculates its
available power percentage relative to the Dynamic Power
Budget (Pbi(t)). If the available power percentage is
below the threshold set by the tuning parameter γ ∈
{0, 1}, the Micro-Cloud selects a batch of low-priority
tasks, where the batch size is set by the tuning parameter
θ ∈ {0, 1}. Since the scheduler does not have information
about the priority level of the tasks, resource usage is
used as an estimator of the priority, where high resource

usage means high priority. For each task in the batch, the
Micro-Cloud broadcasts a task offload request over the
WAN, and a timeout is set to wait for responses. Due
to WAN traffic congestion, obtaining responses from all
available Micro-Clouds within a reasonable time cannot
be guaranteed, thereby the timeout ensures a reasonable
reaction time to power overdraw events. Upon meeting
the time-out, a Dispatch stage is scheduled for each
task offload request. This process is outlined in Algorithm
1.

Algorithm 1: Initiate

while each-refresh-interval do
Pratio(t)← Pbi(t)−Pci(t)

Pbi(t)
;

if Pratio(t) ≤ γ then
Tlp(t) ←getLowPriorityTasks(θ);
while tk ←Tlp(t) do

broadcast(tk);
scheduleDispatch(tk);

end
end

end

• Respond: Upon receiving a task offload request from
another Micro-Cloud, a Micro-Cloud responds with the
necessary information that is needed to compute three
optimization criteria for the offloading task. This process
is outlined in Algorithm 2, in which the processing
capacity metric CPEi

(t) is calculated by the sub-routine
getPCM , and Power Reliability (Pri) is calculated by
the sub-routine getPR.

Algorithm 2: Respond
Data: Rqtk : Offload request for tk
Result: Response
Lincreasei ← getLatency(Rqtk);
CPEi

← getPCM(Rqtk);
Pri ← getPR(Rqtk);
replyBack(Lincreasei , CPEi

, Pri);

• Dispatch: When the time-out is reached for a task
offload request, the destination Micro-Cloud is chosen by
evaluating three criteria using the lexicographic method.
The most significant criterion is Criterion 1, which en-
sures that Dynamic Power Budget (Pbi(t)) is available.
A subset of responses is filtered based on this criterion.
Then, this subset is further filtered based on Criteria 2
and 3 to isolate a single response, which is selected as
the destination Micro-Cloud. The task is then offloaded
to this destination Micro-Cloud.

V. PERFORMANCE EVALUATION

In this section, we describe our experimental setup and
demonstrate the effectiveness of DEMOTS algorithm by ana-
lyzing the results and comparing them with baselines.
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Fig. 5: Performance Metrics Comparison For θ = 0.3

Fig. 6: Total Number Of Task Reschedules Against θ

Fig. 7: Power Overdrawn Impact Performance Against θ

A. Experimental Setup

We evaluate our proposed solution in a simulated envi-
ronment using the CloudSim toolkit [22]. We use real-world
workload traces for generating application workload. We also
configure other relevant parameters from real-world traces and
models such as network latency data, power models, and solar
energy traces.

We extend the Datacenter class of CloudSim toolkit to
implement a power budget-aware Micro-Cloud component and
further extend the Host class to implement power-aware hosts.
Each host utilizes an extended PowerModel class to model
the physical server that we use. We implement new Power
Source classes and embed them into the extended Datacenter
class to manage renewable energy through solar energy traces.
The utilization of each VM and its associated workload is
implemented using the extended Vm and Cloudlet classes of

the CloudSim toolkit. To manage resource utilization data in
the workload trace, we employ an extended Cloudlet Scheduler
class. The inter-Micro-Cloud network is managed using the
default implementation of the Network Topology class in
the CloudSim toolkit, and network latency data is handled
accordingly.

Micro-Cloud Design: We design a Micro-Cloud as a tenant
residing in a colocation datacenter which occupies a full
dedicated server rack [5]. We select the rack size as 42U,
based on modern mixed-energy Micro-Clouds designs [23].
We consider a rack that has 21 Fujitsu RX300 S6 XeonE5620
servers, each occupying 2U. We use a power model developed
specifically for the selected server type [24]. The peak power
consumption of this server rack is 3.9 kW.

Dynamic Power Budget Implementation: We implement
our proposed dynamic power budget approach for the Micro-
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Cloud. We set the soft power budget imposed by the datacenter
operator at 90% of the Micro-Cloud’s subscribed power (which
is 3.9 kW, the peak power consumption in our Micro-Cloud
design). Therefore, we provision a solar panel providing 265W
peak power [23], to accommodate the remaining 10% of that.
The solar energy is simulated using the real traces obtained
from the European Commission’s Photovoltaic Geographic
Information System (PVGIS) [16], per each geographical
location..

Dynamic Workload Submission: We utilize the Microsoft
Azure public VM workload traces from the year 2019 [15]. It
represents one of the most recent publicly available production
VM workload traces [25], and exhibits a dynamic workload
submission trend. We shift that trend based on the local time
zone, such that the workload submission trend is location-
aware.

Experiment Scenario: We employ a geographically dis-
tributed Micro-Clouds network. Each of the Micro-Cloud in
the network is deployed in a colocation datacenter as a tenant.
The colocation datacenters are located in dispersed geograph-
ical locations, such that they are in different time zones from
each other. The geographical locations are configured based
on AWS datacenter regions. While AWS regions are hyper-
scale clouds, we assume our Micro-Clouds exist in similar
locations inside colocated facilities to reflect the realistic
scenarios, such as the presence of Micro-Clouds across time
zones and geographically closer to application users. We use
nine different AWS regions connected over a WAN, and the
real average inter-region communication latency values [26].
In order to simulate the effects of WAN traffic congestion, we
scale WAN communication latency from its average values,
up to the worst-case upper bound, which is 2.5x [17].

B. Baseline Algorithms

We consider approaches suitable for Micro-Cloud networks
and avoid comparisons with centralized scheduling approaches
that can lead to significantly delayed scheduling decisions
due to WAN traffic congestion. Therefore, we compare our
DEMOTS approach with the following two decentralized
scheduling methods.

• Nearest Neighbour (NN): A heuristic that schedules
tasks to the nearest available Micro-Cloud, in terms of
the latency [27].

• MCOP: A dynamic decentralized task scheduling algo-
rithm for Micro-Cloud networks [14]. To the best of our
knowledge, MCOP is the state-of-the-art decentralized
task scheduling algorithm for Micro-Clouds that provides
faster execution based on its lightweight heuristic ap-
proach.

C. Results and Analysis

We carried out 24-hour-long experiments for different pa-
rameter configurations. The γ value determines between a
reactive (γ = 0) and a proactive (γ > 0) approach towards
managing power overdraw events. Our aim is to avoid these
events entirely, thus we set γ at 0.3 (i.e., 30% of the available

Fig. 8: DEMOTS: Harnessing Dynamic Power Budget (Col-
lected data from 24 Hours of workload execution)

power triggers task offloading). The θ controls the batch size
of tasks offloading. We observed scheduler sensitivity towards
θ across a range of values (θ ∈ {0.3, 0.4, 0.5, 0.6}). Each sce-
nario was executed across worsening WAN traffic congestion
by up-scaling communication latency. In all configurations, we
set DEMOTS timeout, such that when the WAN latency values
are at the average, DEMOTS is able to receive responses from
all the Micro-Clouds in the network before offloading a task.

Fig. 5 shows scheduler performances for θ = 0.3 in Task
Latency Increase Impact (LI ), Task Schedule Time Impact
(TSI ) and Power Overdraw Impact (POI ). As WAN latency
increases, both MCOP and NN show linear trends for LI

and TSI (Fig. 5-a and Fig. 5-b), and a constant trend in
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TABLE III: Performance Comparison of Schedulers

θ
Scheduling
Algorithm

Mean Value across the WAN Latency Scale (1-2.5x)
Average
POI per
Micro-Cloud
(ws)

Gain over
MCOP (%)

Average LI

per task (s * s)
Gain over
MCOP (%)

Average
TSI

per task (s)

Gain over
MCOP (%)

Total
Number
of Task
Reschedules

Gain over
MCOP (%)

0.3
NN 7704306.95 6.0% 51.52 47.91% 0.0080 -4.92% 1883 -267.77%
MCOP 8195802.23 - 98.89 - 0.0076 - 512 -
DEMOTS 7388672.81 9.85% 47.88 51.58% 0.0038 49.86% 448 12.5%

0.4
NN 6963946.19 15.85% 34.75 37.41% 0.0096 -123.35% 3384 -711.51%
MCOP 8276334.03 - 55.52 - 0.0043 - 417 -
DEMOTS 6665561.13 19.46% 37.50 32.45% 0.0040 5.41% 600 -44.06%

0.5
NN 4933240.99 20.46% 37.78 40.80% 0.0122 -101.75% 5629 -882.37%
MCOP 6202747.05 - 63.83 - 0.00606 - 573 -
DEMOTS 5202313.05 16.12% 38.53 39.63% 0.0054 9.70% 890 -55.41%

0.6
NN 3507866.21 27.06% 34.42 33.84% 0.010 -56.18% 5153 -528.41%
MCOP 4809547.92 - 52.04 - 0.006 - 820 -
DEMOTS 4162482.49 13.45% 36.86 29.15% 0.006 3.96% 1369 -67.0%

POI (Fig. 5-c). The reason behind both these trends is that
MCOP and NN are not aware of the changes in WAN latency,
thus performing the same scheduling decisions. Based on
Equations 6 and 7, if the scheduling decisions remain the same,
the LI and TSI change linearly with the increasing WAN
latency, whereas based on Equation 5 the POI stays the same.
In contrast, DEMOTS reacts to changing WAN latency and
outperforms DEMOTS across all three metrics ( Fig. 5-a, Fig.
5-b, and Fig. 5-c). This is justified as DEMOTS uses a timeout-
based waiting approach, in which the worsening WAN latency
forces it to change its scheduling decisions. DEMOTS achieve
the same performance as MCOP when WAN latency is at its
average. However, as WAN latency increases, DEMOTS take
a different scheduling approach from MCOP, which converges
in better performances.

Fig. 6 shows the comparison of the total number of task
reschedules by schedulers, which is preferred to be minimized
for latency-critical IoT tasks. Because for such tasks, reliability
is critical, and an increased number of reschedules reduces
task reliability. In that regard, NN shows significantly worst
task reliability. NN’s lowest number of task reschedules is
achieved at θ = 0.3, in which both MCOP and DEMOTS
show significantly lower numbers of task rescheduled (Fig. 6-
d). This trend continues for increasing θ (Fig. 6-c to Fig. 6-a).
In comparison, DEMOTS and MCOP seem to be in a similar
range, with DEMOTS having a slight increase over MCOP.
The θ determines the task batch size, thus overall, decreasing
θ results in a reduced number of task reschedules across all
schedulers, as shown from Fig. 6-a to Fig. 6-d.

Fig. 7 shows scheduler sensitivity towards θ in optimizing
Power Overdraw Impact (POI ). In general, decreasing θ results
in lowering POI performance (i.e., higher values for POI ) for
all schedulers as seen from Fig. 7-a to Fig. 7-d. NN has the
worst sensitivity, with POI having a comparatively fast growth
rate. In contrast, both MCOP and DEMOTS show better
sensitivity. Moreover, DEMOTS outperform other schedulers
by converging to better POI across the WAN latency scale,
despite the decreasing θ.

To summarize, a comparison of average performance met-

rics over the WAN latency scale is depicted in Table III. While
having better Power Overdraw Impact (POI ) and Task Latency
Increase Impact (LI ) gains over MCOP (6% to 27%, and
33% to 47% respectively), NN lags behind in Task Schedule
Time Impact (TSI ) (-4% to -123%). Most importantly, NN
needs to perform a higher number of task reschedules over
MCOP (-267% to -882%), which significantly decreases task
reliability. In contrast, DEMOTS performs much better in the
number of tasks reschedules over MCOP (-67% to 12.5%).
Therefore, both MCOP and DEMOTS surpass NN in schedul-
ing latency-critical IoT tasks demanding the highest level of
reliability. Moreover, DEMOTS outperforms MCOP by 36%
to 47% in POI , 9% to 19% in LI , and 3% to 49% in TSI .
Therefore, in the overall scheduling problem, DEMOTS is able
to harness dynamic power budget to reduce power overdraw
events by dynamically scheduling latency-critical IoT tasks
over a WAN with dynamic traffic congestion. Fig. 8 showcase
DEMOTS harnessing dynamic power budget across different
time zones. In which, we observe the collective decentralized
task offloading of DEMOTS successfully shares the workload
based on available power. Concretely, the Micro-Cloud in
California handles workloads near its power capacity (i.e.,
power consumption is around the soft power budget), until
the observing time reaches 60k (seconds). Throughout this
period of time, DEMOTS do not offload tasks to California.
Afterwards, the zone receives excess dynamic power budget,
in which California starts receiving tasks from other Micro-
Clouds executing DEMOTS to utilize the excess power. The
same behaviour can be seen in parallel for both Ireland and
Tokyo.

VI. CONCLUSIONS AND FUTURE WORK

Micro-Clouds leasing resources from power-oversubscribed
colocation datacenters can operate under a soft power budget,
in which rare power overdraw events are managed via extreme
power overdraw recovery techniques affecting latency-critical
IoT tasks. We proposed an approach to increase the soft power
budget to a dynamic power budget with on-site renewable
energy. To harness dynamic power budget for Micro-Clouds
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deployed across Wide Area Network (WAN), we proposed
DEMOTS: A dynamic decentralized task scheduling algorithm
that tolerates dynamic WAN traffic congestion. Our extensive
evaluation experiments show that the proposed DEMOTS
outperforms the state-of-the-art decentralized scheduling al-
gorithm by up to 19% reduction in Power Overdraw Impact,
up to 47% reduction in Task Latency Increase Impact, and up
to 49% reduction in Task Schedule Time Impact.

Future Work: The proposed approach utilizes a probability
distribution model to predict solar energy based on historical
solar energy data, while estimating the criticality of tasks
based on resource usage. The accuracy of both techniques can
be enhanced by incorporating deep learning-based prediction
techniques. We plan to implement the proposed approach in
a real colocated datacenter testbed to assess its effectiveness.
In that, we plan to explore task re-scheduling with data, such
as stateful tasks, in order to further evaluate DEMOTS’ adapt-
ability to scheduling under varying network performances.
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