
MatchCom: Stable Matching-Based Software
Services Composition in Cloud Computing

Environments

Satish Kumar1(B), Renyu Yang2, Rajiv Ranjan Singh3, Rami Bahsoon4, Jie Xu5,
and Rajkumar Buyya6

1 School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds,
UK

s.kumar@leedsbeckett.ac.uk
2 School of Software, Beihang University, Beijing, China

renyu.yang@buaa.edu.cn
3 Department of Cyber Security and Networks, Glasgow Caledonian University, Glasgow, UK

rajiv.singh@gcu.ac.uk
4 School of Computer Science, University of Birmingham, Birmingham, UK

r.bahsoon@cs.bham.ac.uk
5 School of Computing, University of Leeds, Leeds, UK

j.xu@leeds.ac.uk
6 School of Computing and Information Systems, University of Melbourne, Melbourne,

Australia
rbuyya@unimelb.edu.au

Abstract. User preferences on throughput, latency, cost, service location, etc.
indicate specific requirements when choosing a web service from the cloud mar-
ketplace. Service providers can also adopt preferences to prioritize a set of end-
users based on their Service Level Agreement and service usage history. An effec-
tive matching between preferences from both parties enables fair service market-
ing in the cloud marketplace. The existing approaches are insufficient in captur-
ing both parties’ preferences in the service composition process. To address this
limitation, we propose MatchCom, a novel service composition approach driven
by diverse preferences and formulate it as the stable marriage problem. Partic-
ularly, we present a novel fair preference ordering mechanism – in the context
of a cloud marketplace, for enabling users to specify services provider ranking
based on the capability they can provision, and for helping providers select the
most suitable users to be served given users’ profile. MatchCom extends the Gale-
Shapely Algorithm with a service composer algorithm for optimising the stable
service composition. We evaluate MatchCom on a service-oriented system with
10 abstract services, each of which has 100 candidate web services. We estab-
lish through the experimental results that MatchCom outperforms other baseline
approaches and can maximize end-user satisfaction in the composition process.

Keywords: Service Composition · Quality of Services · Stable Matching

1 Introduction

The shift of industrial IT services to cloud-based service models has made service com-
position a key driving force for building on-demand service-oriented software appli-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Stefanidis et al. (Eds.): ICWE 2024, LNCS 14629, pp. 369–377, 2024.
https://doi.org/10.1007/978-3-031-62362-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62362-2_27&domain=pdf
https://doi.org/10.1007/978-3-031-62362-2_27

370 S. Kumar et al.

cations by composing multiple existing web services from the cloud marketplace [1].
However, the emergence of multiple functionally equivalent web services with different
Quality of Service (QoS) values in the cloud marketplace can present challenges when
selecting an optimal web service for composing software applications [2]. Further, it can
be challenging when multiple users express different preferences and constraints to get
the same service in the cloud marketplace. On the other hand, cloud service providers
aim to maintain a positive service reputation while maximizing service revenue [2,3].
To achieve this, it is important to prioritize users who have long-term business poten-
tial based on their Service Level Agreements (SLAs), service usage or other factors. In
this context, preferences could be an effective mechanism for creating fair marketing
in the cloud marketplace. Users express their preferences on service QoS constraints,
service location, service cost, and reputation; and service providers rank the users based
on their SLAs and service matches. However, existing research studies [4–6] have the
limitation of supporting only end-user preferences, neglecting service provider’s pref-
erences when provisioning suitable web services.

To address these challenges, we present a novel Stable Matching Based Ser-
vice Composition called MatchCom that explicitly captures the end user’s and service
provider’s preferences and optimizes the preference stability-aware service composi-
tion. We employ Stable Marriage Problem [7] to model our service composition app-
roach. Our key idea is to capture the end-user’s preferences from their SLAs. Further,
we use these preferences to rank all similar functionally equivalent web services that
exhibit different QoS values. Similarly, the service provider ranks end users based
on their SLA types. Then, we apply GSA-based MatchCom to find the stable service
matches to form the composition solutions.

In a nutshell, the major contributions of this paper are 1© we formulate the service
composition as a stable marriage problem. 2© we model a preference generation scheme
for both end users and service providers in the global cloud marketplace. This scheme
facilitates finding stable service matches driven by the service provider’s and end-user’s
preferences over each other. 3© we tailor a Gale-Shapley Algorithm (GSA) and present
a serviceComposer algorithm that tends to maximize the end-user’s satisfaction in the
composition process. 4© we evaluate MatchCom on a service composition system with
up to 10 abstract services workflow, each of which has 80 to 100 candidate web services,
under different QoS values derived from the real-world WS-DREAM dataset [9].

2 Stable Matching Based Service Composition

The stable marriage problem, introduced by Gale and Shapley in 1962 [7], involves
matching two sets of agents, such as men and women. A crucial aspect of this problem
is the ordering of preferences, where each man and woman rank each other in a strict
order of preference and then a Gale and Shapley algorithm exploits these preferences
to generate stable matches. We leverage this approach in our research with a partic-
ular focus on the diverse preferences-based service compositions in the global cloud
marketplace; where QoS constraints, service budget, service region, and SLA types are
considered the most preferred parameters for both entities to establish a strict order of
preference over each other.

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 371

2.1 Preference Order Modelling

Here, we assume that there are x number of users Ui, i = (1, 2, 3, ...x) and each user
requests y number of tasks in the composite software application Ui j, j = (1, 2, 3, ...y)
with z dimension service constraints (e.g., QoS, Cost, service region/location S loc)
Ui jk, k = (1, 2, 3, ...z) for choosing a web service in the composition. On the other side,
based on functional (e.g., task) and QoS requirements, the service providers offer m
set of web services S p, p = (1, 2, 3, ...m) in the global cloud marketplace and each set
contains n candidate web services that are functionally equivalent to perform jth task
of user Ui j, S pq, q = (1, 2, 3, ...n) and each candidate web service has l dimension QoS
values S pqr, r = (1, 2, 3, ...l) and SLAs type provisioned by cloud service providers as
part of service delivery. Therefore, a matching model is defined M(U, S), where each
user Ui needs to rank all candidate web services in a set S pq for a jth task that satisfies
the service location constraint CL; otherwise, underlying candidate web service will be
discarded from the ranking process using Eq. 1.

(S pq) =

{
1 i f CL = S loc

pq

0 i f otherwise
(1)

Similarly, the service provider ranks all users Ui based on their SLAs type and
service QoS values S pqr legally provisioned in the SLA [2]. Therefore, the preference of
jth task of a user Ui over the qth candidate web service S pq is computed by aggregating
the preference of each QoS constraint over QoS value exhibited by the candidate web
service or vice-versa [4]. Further, we compute the best-case and worst-case values of
each QoS objective (e.g., QoS constraint) imposed by a user or offered by the service
providers as part of their service delivery. In the case of positive QoS (e.g., throughput)
constraints criteria CQ

+, the best case indicates the expected rth QoS value of a web
service must be larger than or equal to the required constraint value of kth objective
(constraint weight) of a user Ui, otherwise expected objective value consider as the
worst-case value for the kth constraint of a user Ui [6]. However, we calculate the exact
values for the best-case and worst-case of each QoS objective required by the users over
candidate web services. Further, the best-case and worst-case values are multiplied by
+1 and −1, respectively, which shows how much the expected value is good or bad for
each required objective of the user, as shown in Eq. 2.

CQ
+(S pq) =

⎧⎪⎪⎨⎪⎪⎩
Ui jk

S pqr
× (−1) i f S pqr < Ui jk

S pqr

Ui jk
× (+1) i f S pqr ≥ Ui jk

(2)

CQ
−(S pq) =

⎧⎪⎪⎨⎪⎪⎩
S pqr

Ui jk
× (−1) i f S pqr > Ui jk

Ui jk

S pqr
× (+1) i f S pqr ≤ Ui jk

(3)

where k indicates the zth constraint weight for the jth task of user Ui.
Similarly, for the negative QoS (e.g., response time) constraints criteria CQ−, best-

case shows the expected objective value should be smaller than the required objective

372 S. Kumar et al.

value of a user Ui, other than shows the worst-case value. These values are calculated
using Eq. 3.

We generate ith user preference P(Ui j) for the jth task over candidate web services
by computing the net ranking value using Eq. 4.

P(Ui jk) = Σ
l
r=1CQ

+(S pqr) + Σ
l
r=1CQ

−(S pqr) (4)

Psla(Ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ws i f Ui = (sla = S ilver)
wg i f Ui = (sla = Gold)
wp i f Ui = (sla = Platinum)

(5)

Algorithm 1: matchGenerator(U, PU, PS)

1 Input: The set of users U and service provider’s web services S . Users preferences PU
(∀ui j ∈ PU) and candidate web services PS (∀spq ∈ PS)

2 Output: array matrix C
3 Initialization: ∀ui j ∈ PU and ∀spq ∈ PS to be free, M ← ∅
4 for ∀ui j ∈ U do
5 while spq ∈ PS is free and PS � ∅ do
6 ui j = jth task of user ui highest ranked on qth web service of set sp to whom qth

has not proposed yet
7 if ui j is free then
8 assign qth web service to jth task of ui
9 M ← M ∪ (ui j, spq)

10 end
11 else if (ui j prefers qth web service over previous assigned nth web service of set

sp) then
12 assign qth web service to jth task of ui
13 M ←M (ui j, spq)
14 assigned nth web service to be free M ←M / (ui j, spn)
15 end
16 else
17 jth task of ui j rejects qth web service of set spq (and qth remain free)
18 end
19 end
20 C ← M
21 end
22 serviceComposer(C,U)

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 373

P(S pqr) = [Σzk=1CQ
+(Ui jk) + Σ

z
k=1CQ

−(Ui jk)] × Psla(Ui) (6)

On the other hand, we consider diverse types of SLAs offered by cloud service
providers as part of web service delivery in the cloud marketplace. Suppose end-users
negotiated different types of SLAs such as silver, gold and platinum with the cloud ser-
vice providers [11]. In this respect, the cloud service provider gives the highest priority
to a user who has platinum SLA rather than gold and silver users SLA, as shown in
Eq. 5. For the sake of simplicity, in this work, we give some weight to distinguish each
SLA says silver (ws = 0.1), gold (wg = 0.3) and platinum (wp = 0.5). The cloud service
provider gives preference over the users Ui based on their SLA types and service QoS
provision documented in their SLA. We compute the net ranking over each user service
demand using Eq. 6.

2.2 Software Services Composition

After generating the preference matrices PU and PS using Eq. (4) and (6) respectively,
Algorithm 1 shows the process of applying the Gale-Shapley Algorithm (GSA) to find
the optimal stable match M(j, q) between the jth task of user ui and qth web service of
set sp. The preference matrices of all users PU and service provider’s web services PS
are provided as input to the algorithm and initialize all parameters that will be used in
the next phase (Lines 5–17). From Lines 5–9, the user ui selects the most preferred qth

web service from the candidate web services set sp and form the matching M(ui j, spq)
if it is not matched with other tasks of user ui in the PU list. From Lines 10–13, if a
jth task of user ui has already had the match of nth candidate web service in the PS list
but jth task prefers to qth web service in the PS list over the current nth web service

Algorithm 2: serviceComposer(C, U)

1 Input: C and U
2 Output: service composition matrix ui(cs)
3 Initialization: ui(cs)← ∅, ud ← ∅
4 while U � ∅ do
5 for ∀ui ∈ U do
6 �global ← checkQoS (ui,Ci)
7 if (�global satisfy user ui constraints) then
8 ui(cs)← Ci

9 else
10 ud ← Ci

11 end
12 end
13 U ← ud
14 matchGenerator(U)
15 end
16 return ui(cs)

374 S. Kumar et al.

match. Then, a new optimal match M(ui j, spq) is formed and further, makes the nth web
service free in the PS list of candidate web services. However, the jth task of user ui
rejects the qth web service request in the matching process if it already had the higher
preference ranking web service match than the preference ranking of qth web service
(Lines 14–16). From Lines 5–17, this process is repeated until the first task of all users
ui in PU list assigned the optimal web service from the PS list. After completing the
first iteration, the qth web service assigned to the first jth task of all users U are stored
in the array matrix C (line 19), and this step is repeated until all users’ tasks assigned
the set of optimal web services (Lines 4–19).

However, Algorithm 1 produced the sets of concrete web services to form the com-
position solutions for all the users requesting services in the cloud marketplace. Further,
C is provided as input to Algorithm 2 for performing a next-level composition process
that guarantees to satisfy all constraints imposed by end-users. In line 6, we calculate
the aggregated QoS values and cost of all web services in Ci for the user ui using QoS
aggregation methods [11] and then check whether the global constraints are satisfied
or not imposed by ith user ui (line 7). If true, then form the composite service for the
user ui (line 8), otherwise, user ui rejects the composition plan and demands a new ser-
vice composition plan, such user IDs are recorded in array ud. This process is repeated
until all web service sets in C are checked (4–11). In line 13, the current users set U
is updated with users set ud who demand the new service composition plans over the
current infeasible plan. Further, Algorithm 1 is invoked with updated user set U to find
the optimal set of web services for the users ud. The whole process is repeated until
users set U to get empty and then return the optimal service compositions plans ui(cs)
for all the users ui.

3 Performance Evaluation

Our experiments aim to answer the research questions – RQ1: Is MatchCom approach
more stable than the baseline approach?; RQ2: How MatchCom can outperform other
baselines including evolutionary algorithm-based approaches?; RQ3: What is the run-
ning overhead of MatchCom compared to other approaches?

3.1 Experiment Setup

For experiment purposes, we employed a service composition system with 10 abstract
services, which are sequentially connected to construct a service composition work-
flow [8]. Further, we deployed 100 candidate web services to perform each abstract ser-
vice in the composition workflow. However, each candidate web service exhibits differ-
ent QoS values, which are randomly picked from the real-world WSDream dataset [9].
Further, the service cost value and service region are generated randomly for each can-
didate web service participating in the composition. Apart from that, we randomly cre-
ate end-user service requirements (number of tasks in the service, throughput, response
time, service cost, and service region), which are generally documented in the end user’s
SLA.

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 375

3.2 Results and Discussion

To answer the above RQs, we examine the performance of MatchCom against Baseline
(GSA) [10] and MOEAD [11] based approaches.

RQ1: SLAs Stability of MatchCom Against Baseline: To answer RQ1, we plot the ser-
vice composition plans optimized by MatchCom and GSA approaches as shown in Fig. 1.
In particular, we examine the end-users SLA constraints such as throughput, response
time and cost on whether the composed service compositions are satisfied or not. As
can be seen from Fig. 1a and 1b, SLA throughput and response time constraints are
violated by the composition solutions generated by GSA approach for the end-users u4,
and u6, whereas, MatchCom satisfies all users SLA constraints. Further, an interesting
insight is shown from a cost perspective as shown in Fig. 1c, GSA satisfies the QoS
constraints for the end-user u10 but fails to meet the service budget requirement. How-
ever, MatchCom does not guarantee the higher values of QoS constraints satisfaction but
satisfies all constraints under given budget requirements.

RQ2: Performance of MatchCom: To investigate RQ2, we assess the performance of
MatchCom by comparing with baseline and evolutionary algorithm (MOEAD) based
approaches. We run all approaches 30 times and record the best QoS value of through-
put, response time and cost objectives from the optimal set of service composition solu-
tions generated in each run. As shown in the boxplots of Fig. 2a and Fig. 2b, we see that
MatchCom achieve much better QoS values for throughput and response time objectives
with small variance than GSA and MOEAD approaches. Also, GSA obtains better QoS

Fig. 1. Users SLA constraints achieved by MatchCom and GSA approaches (users = 10, workflow:
number of tasks = 10, number of candidate web service for each task = 100).

Fig. 2. Throughput, Response Time, Cost and Running Time yield by MatchCom, GSA and MOEAD
approaches.

376 S. Kumar et al.

objectives values than MOEAD. Further, as we can see from Fig. 2c, overall MatchCom
achieves better QoS values with less cost than GSA and MOEAD. Overall, MatchCom out-
performs other approaches in achieving a better QoS value for each objective in the
composition.

RQ3: Running Time of MatchCom: To understand RQ3, we plot the running time of all
approaches as shown in Fig. 2d. As we can see MOEAD is the slowest due to exploiting
a huge search space of XN (X denotes an abstract service, and N = 100 is the num-
ber of candidate services to perform X abstract service). However, GSA and MatchCom

take less execution time than MOEAD because they reduce the search space by discard-
ing all candidate web services they are unable to satisfy the service region constraints
mentioned in the end-user’s preferences (constraints). But, MatchCom is slower than
GSA because it favors maximising the end-user satisfaction in the composition process
whereas GSA does not care to satisfy all user’s constraints, as we have shown in answer-
ing RQ1 and RQ2.

4 Conclusions

In this paper, we proposed a stable matching-based service composition approach called
MatchCom leveraging stable marriage problem. We introduced a novel bilateral prefer-
ence model that gives equal ownership to service providers and end users for fairly
serving and consuming services in cloud marketplace. MatchCom service composer can
generate fair preference ordering for both service providers and end users. The GSA
produces stable service matches which the built-in service composer further uses to
optimize the service composition solutions. Experimental results show that MatchCom
is more effective than baseline approaches and favors to maximize the end-user’s satis-
faction in the composition.

References

1. Bi, X., Yu, D., Liu, J., Hu, Y.: A preference-based multi-objective algorithm for optimal
service composition selection in cloud manufacturing. Int. J. Comput. Integr. Manuf. 33(8),
751–768 (2020)

2. Kumar, S., Chen, T., Bahsoon, R., Buyya, R.: DebtCom: technical debt-aware service recom-
position in SaaS cloud. IEEE Trans. Serv. Comput. 16(4), 2545–2558 (2023)

3. Pudasaini, D., Ding, C.: Service selection in a cloud marketplace: a multi-perspective solu-
tion. In: 2017 IEEE 10th International Conference on Cloud Computing (Cloud), pp. 576–
583 IEEE (2017)

4. Wang, H., Ma, P., Yu, Q., Yang, D., Li, J., Fei, H.: Combining quantitative constraints with
qualitative preferences for effective non-functional properties-aware service composition. J.
Parallel Distrib. Comput. 100, 71–84 (2017)

5. Choi, C.R., Jeong, H.Y.: A broker-based quality evaluation system for service selection
according to the QoS preferences of users. Info. Sci. 77, 553–566 (2014)

6. Wang, H., Chiu, W., Wu, S.C.: QoS-driven selection of web service considering group pref-
erence. Comput. Netw. 99(1), 111–124 (2015)

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math.
Monthly. 69(1), 9–15 (1962)

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 377

8. Kumar, S., Chen, T., Bahsoon, R., Buyya, R.: DATESSO: self-adapting service composi-
tion with debt-aware two levels constraint reasoning. In: 2020 IEEE/ACM 15th International
Symposium on Software Engineering for Adaptive and Self-managing Systems, pp. 96–107.
IEEE/ACM (2020)

9. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans.
Serv. Comput. 7(1), 32–39 (2012)

10. Li, F., Zhang, L., Liu, Y., Laili, Y.: QoS-aware service composition in cloud manufacturing:
a Gale-Shapley algorithm-based approach. IEEE Trans. Syst. Man Cyber. Syst. 50(7), 2386–
2396 (2020)

11. Kumar, S., Chen, T., Bahsoon, R., Buyya, R.: Multi-tenant cloud service composition using
evolutionary optimization. In: 2018 IEEE 24th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 972–979. IEEE (2020)

	MatchCom: Stable Matching-Based Software Services Composition in Cloud Computing Environments
	1 Introduction
	2 Stable Matching Based Service Composition
	2.1 Preference Order Modelling
	2.2 Software Services Composition

	3 Performance Evaluation
	3.1 Experiment Setup
	3.2 Results and Discussion

	4 Conclusions
	References

