
An Infrastructure Cost Optimised Algorithm for Partitioning of
Microservices

Kalyani Pendyala
School of Computing and Information Systems, University

of Melbourne
Australia

kalyani208@gmail.com

Rajkumar Buyya
School of Computing and Information Systems, University

of Melbourne
Australia

rbuyya@unimelb.edu.au

Abstract
The evolution and advances made in the field of Cloud engineering
influence the constant changes in software application develop-
ment cycle and practices. Software architecture has evolved along
with other domains and capabilities of software engineering. As
migrating applications into the cloud is universally adopted by
the software industry, microservices have proven to be the most
suitable and widely accepted architecture pattern for applications
deployed on distributed cloud. Their efficacy is enabled by both
technical benefits like reliability, fault isolation, scalability and pro-
ductivity benefits like ease of asset maintenance and clear owner-
ship boundaries which in turn lead to fewer interdependencies and
shorter development cycles thereby resulting in faster time to mar-
ket. Though microservices have been established as an architecture
pattern over the last decade, many organizations fail to optimize the
architecture design to maximize efficiency. In some cases, the com-
plexity of migrating an existing application into the microservices
architecture becomes overwhelmingly complex and expensive. Ad-
ditionally, automation and tool support for this problem are still at
an early stage as there isn’t a single well-acknowledged pattern or
tool which could support the decomposition. This paper discusses
a few impactful previous research and survey efforts to identify
the lack of infrastructure cost optimization as a parameter in any
of the approaches present. This paper proposes an Infrastructure-
optimised predictive algorithm for partitioning monolithic software
into microservices. It also summarizes the scope for future research
opportunities within the area of microservices architecture and
distributed cloud networks.

CCS Concepts
• Information systems applications; • Enterprise information
systems; • Enterprise resource planning;

Keywords
Additional Keywords partitioning, infrastructure optimization, soft-
ware architecture, cloud applications, microservices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACMLC 2024, July 26–28, 2024, Bangkok, Thailand
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1001-8/24/07
https://doi.org/10.1145/3690771.3690796

ACM Reference Format:
Kalyani Pendyala and Rajkumar Buyya. 2024. An Infrastructure Cost
Optimised Algorithm for Partitioning of Microservices. In 2024 6th Asia
Conference on Machine Learning and Computing (ACMLC 2024), July 26–28,
2024, Bangkok, Thailand. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3690771.3690796

1 Introduction
The famous quote “Change is the only constant” is most applicable
in the field of software engineering and technology. The drift and
shift in the technology landscape is continuous due to the rich con-
tributions towards advancements in the fields of distributed comput-
ing, cloud deployment offerings, software development frameworks
andmore. These advancements have led to a quest for more scalable,
resilient, reliable, and efficient software applications. To support
these innovations, the software industry is continuously developing
techniques and processes to improve the application performance
along with the performance of the software development teams.
As the agility of applications is growing the need to adopt new
architectural designs is gaining prominence as it is the backbone of
the performance characteristics [2] of a software-intensive system.

A system’s software architecture depicts the system’s organi-
zation or structure and explains how it behaves. An efficient ar-
chitecture is the foundation for efficient software. [3] As software
architecture gives a visual depiction of the system to be built with all
its components and behaviours, it allows the architect or designer
to perceive possible outcomes and shortcomings. Consequently, it
ensures the final built product is reliable both from its functional
outcomes and other efficiency parameters considered.
Given the importance of software architecture, earlier software
development models treated the architecture, implementation and
operations of software to be completely independent components.
however, within in last decade, there has been a huge shift in the
traditional operational style. Software architecture has broadened
its definition to a combination of elements, behaviours, and design
concepts and it must consider the extensibility and flexibility of the
software as the change in scope of software is very less predictable.
This work encapsulates the history of software architecture evolu-
tion, advantages and challenges with Microservices architectural
style and focuses on optimisation of the microservices decomposi-
tion strategy. As identified in the extensive survey [1] the decom-
position guidelines and tools are in the early stage as there aren’t
any widely accepted or successful standards defined. So, this work
proposes a monolith to microservices partitioning approach where
a monolith software is represented collectively as a set of existing
source code, functional flows, and infrastructure resource templates
and the partitioning of the monolith into microservices targets the

85

https://orcid.org/0009-0001-4707-044X
https://orcid.org/0000-0001-9754-6496
https://doi.org/10.1145/3690771.3690796
https://doi.org/10.1145/3690771.3690796
https://doi.org/10.1145/3690771.3690796
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3690771.3690796&domain=pdf&date_stamp=2025-03-05

ACMLC 2024, July 26–28, 2024, Bangkok, Thailand Kalyani Pendyala and Rajkumar Buyya

Figure 1: Software Architecture Evolution.

optimisation of infrastructure cost and operational efficiency. The
proposed method is evaluated and compared with a few of the
existing approaches. The paper concludes by identifying the open
research opportunities in the microservices architecture domain.

2 Software Architecture Evolution
Building software is analogous to building a house. the building of
any house starts with planning. It involves an architect providing a
blueprint or architecture document to help visualise the final built
product and ensure all the functional capabilities and connectivity
requirements are captured. software architecture plays a similar
role in the software development life cycle, with emerging trends
of technology and cloud offerings, software architecture patterns
have also evolved as shown in Figure 1.

One early pattern is a Monolithic software architecture which is
a traditional unified container of whole application functionality
and often comprises of a single large deployable unit packaged with
all its dependencies and originating from a single complex code
base being shared between multiple development teams. As the ap-
plication grows, the monolith architecture faces several challenges
as it is difficult to scale, and hard to maintain and enhance. This
further leads to operational complexity, absence of fault isolation
mechanism and hard software coupling, resulting in long incident
management-related downtimes and long build/test/release cycles.
The next major shift in the architectural styles is with layered soft-
ware architecture where the application is majorly layered based
on the responsibility of the module where each layer has dedi-
cated responsibilities like Client-Server architecture. A client-side
user interface, a server-side program, and/or a database are often
included in such a system. Followed by SOA (service-oriented Ar-
chitecture) where each service provides a business capability that
reduces the duplication of functionality and encourages reusable
components. SOA architecture improves the time to market due to
the modularisation capabilities provided.
Microservices are an evolution of SOA architecture consisting of
a collection of small, autonomous services , Each service is self-
contained, self-deployable and ideally should implement a single
business capability within a bounded context. A bounded context
is a natural division within a business and provides an explicit
boundary within which a domain model exists.
A few advantages the microservices architecture brings in are Ease
to Build, Ease to Enhance, Ease to deploy, selective scalability where

only selected services with higher traffic could be scaled accord-
ingly, Fault Isolation which enables partial run states of the applica-
tion, smaller release cycles, Dependencies are specific and optimal,
increased application and data security. All these attractive bene-
fits made Microservices an anonymous choice of architecture for
many organizations especially those that chose to be cloud native
or migrating to cloud.
While building a microservices application from scratch could be
clean and enable the organizations with the ideal benefits of the
architecture, the most practical approach would be to migrate exist-
ing legacy monolithic applications into microservices architecture
and this problem of determining the boundaries of each microser-
vice extracted from the monolith and defining the functional scope
of each microservice is known as microservices partitioning or
decomposition.
The partitioning task plays an important role in determining the
efficiency and performance of the implemented application and also
plays a key role in enabling the application to fetch all the benefits
that are provided by the architecture pattern, though the definition
of the partitioning task is straight forward - the partitioning task
needs to divide a whole set of functional capabilities and a unified
source code base into individual services which as a whole should
satisfy all the functional flows delivered by the monolith. In simple
terms, the problem can be looked at as dividing a set of classes into
multiple small subsets satisfying some conditions. The solutions
and automation tools available for this problem are still in their
infancy.

3 Related Work
An efficient innovation or research contribution would be only
possible when the current state of the art and problem domain are
well understood, and the research gaps are evaluated.

Microservice identification and extraction is an open challenge in
the software industry which is currently being solved using human
intellect and domain excellence. There were a few approaches
proposed earlier to automate the whole process of microservice
extraction. Where many papers have elaborated on the advantages
of microservice architecture, there are also many challenges in
implementing them optimally even when done manually following
many evolving guidelines.
As mentioned, many of the challenges are caused by the increased
number of moving parts in the system. This architectural style
also introduces organizational operational challenges like splitting
teams and designating responsibilities. As part of their work, EMIL
& ERIK have identified a few important factors to be considered in
the partition process identifying Service boundaries, Automation
in integration and deployment, Communication between services,
Decentralized data, Fault tolerance and fault handling.
These factors need to be considered as prime metrics when any
tool, is proposed or implemented for the partitioning service. To
efficiently develop an algorithm and implement we need a standard
representation of the existing system and the desired result set of
systems. We also need to define the metrics to be optimized in this
process, input parameters, and standard output characteristics to
allow performance comparison to existing approaches.

86

An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices ACMLC 2024, July 26–28, 2024, Bangkok, Thailand

Figure 2: Phases of partitioning task.

An extensive literature review and methodological survey have
been conducted which defines the microservices partitioning work
has been broadly phased into Input collection, Monolith Analysis,
Microservices identification, Microservices optimisation, Evalua-
tion, and Deployment shown in Figure 2. Though few tools have
targeted a few phases independently there is no unique standard
tool that is widely evaluated and accepted.
The input collection is an important step as it represents the existing
monolith application, acts as the current knowledge set and is a key
for visualisation and efficient modelling. The inputs used across
the significant works are code base, domain models, application
real-time and performance logs, functional flows identified by test
cases, and application traces. These inputs of an application could
be collected using static and dynamic analysis tools, Once the input
is collected representing the application or modelling this collected
input data would be the next step, The most suitable representation
adapted for a software application is a graph and some approaches
use SET representation.
The next step would be Microservices identification or partitioning
FoSCI uses themonolith’s execution traces as the input, and extracts
service candidates using a search-based functional atom grouping
algorithm. Bunch relies on source code to extract the graph of the
entities (e.g., classes) and relations (e.g., function calls) in the source
code and applies search-based clustering algorithms to produce a
subsystem.
Mono2Micro performs spatiotemporal decomposition, leveraging
well-defined business use cases and runtime call relations to create
functionally cohesive partitioning of in application classes. This
approach uses hierarchical clustering using jacquard distance, pre-
defining the number of subsystems or clusters that are desired from
the partitioning.
CO-GCN is the very early approach where deep learning is used
for microservice clustering, CO-GCN uses the static code-derived
Graph as a feed to a graph convolutional neural network and super-
vised learning techniques are applied to populate subgraphs which
could be the potential microservice candidates.
DEEPLY is an extension on the CO-GCN where a similar Graph-
based CNN approach is proposed whereas the focus of this work
was mainly on fine-tuning the hyper hyper-parameter optimizers
(HPO) to improve the performance of the predefined metrics.
Evaluating the extracting microservices is also challenging as there
are no concrete metrics or evaluation benchmarks available, though
there are few open source monolith applications whose source
code is available and are used as benchmark candidates across
past research work, comparison of each of the methods to the
other is not accurate as the evaluation parameters used and the
definition of the evaluation parameters vary from implementation
to implementation, generic evaluation metrics used are Modularity,
Interface Number, Cluster sizing, Inter-service communication, ,

coupling and cohesion are also popular metrics. Table 1 notes a
summary of the focus of past works.

4 Proposed Algorithm
From an extensive review of the current literature and exploring
the industry pain points, we identified that many organizations
struggle to efficiently partition and migrate an existing monolith
into microservices as there are not enough automated tool support
or visualisation/ modelling tools available which help architects
simulate the microservices applications. As we migrate from one
single deployable application into multiple unified deployable units,
Total infrastructure cost is one of the important parameters that
needs to be considered and optimised when designing the partitions
which has not been considered in any of the past works.

In this paper, we propose using total infrastructure cost as a
significant parameter in the partitioning algorithm. In general,
microservices partitioning realisation has three major steps:

Step 1: Choosing the input artifacts and translating the input
artifacts into analytical data format, as part of this work we chose
three different artifacts related to an application source Code which
is the base input that needs to be partitioned into sub-sets of classes,
provides all the dependency information and relationships between
different classes, the stack trace of the application for one week to
make sure all the business cases are covered, Current infrastruc-
ture file. We have used a benchmark open-source Java monolith
daytrader which has a total of 111 Java classes.

Once the input artifacts are all gathered, the Translation of this
input into the form of graphs is done using a Class dependency
analyzer on the source code, we have based the graph translation
on a custom rule-based engine we defined to translate the stack
trace into functional dependency matrix. As the scope of this work
is to optimise the infrastructure cost, the parameters affecting this
cost must be properly defined, we have used the YAML file of the
existing open-source application and implemented a few rules to
abstract the template of cloud resources that existing application is
using and define the parameter of infrastructure as the total number
of infra components that the monolith application is using and we
also define the future state infrastructure cost by tagging the class
files using each of the components and thus be able to predict the
total infrastructure cost of the split microservices.

The current resource factor is defined as:
Infrastructure Factor = (Nvms, Nfs, Ndb, Nca)
While these parameters respectively Number of deployable VMs,

Number of file storages, Number of database nodes, and Number of
cache instances are mapped to the Number of Ec2, Number of S3,
Number of databases, Number of Caches required in future dates
based on the Algorithm 1ALGORITHM 1: Predictive Infrastructure
Each class in the application source code is denoted by a Node
P and the class dependency analyser is used to define the Edges

87

ACMLC 2024, July 26–28, 2024, Bangkok, Thailand Kalyani Pendyala and Rajkumar Buyya

Table 1: Overview of techniques in literature

Input Partitioning techniques Benchmark applications Evaluation parameters

Source code Clustering (hierarchical,
kmeans)

DayTrader cohesion

Build artifact Genetic algorithms PBW coupling
Functional logs, execution traces Neural networks AcmeAiR Inter service calls
Performance logs Dependency graph analysis Dietapp Cluster size
Domain model Cogcn, deep learning JpetStore
Dataflow diagrams Graph partitioning algorithms
Test cases /scenarios

Algorithm 1 Predictive infrastructure factor definition
Input: Class Nodes (P), resource Nodes (R), yml
Output: IF = (Nec, Ns3, Ndb ,Nca)
1 for each resource r in R
2 Function(P,R)
3. If (exists a resource edge from Pi)
4. identify the infrastructure resource type from yml
5. translate the resource to the cloud infrastructure
component
6. (if the type of R is file storage, Ns3 = Ns3+1)
6. consolidate the total number of predictive resources
7. Output the Infrastructure factor.

Figure 3: Sample Application Representation.

between the P nodes, an edge is present with Pij to Pnj if there
is a direct dependency from class I to class N, all the resources of
the application (file storage, database, ec2 instances, caches) are
represented as Resource nodes and an edge between a resource
node Rij to Pin exist if the class N depends on the resource I, then
we process the execution traces sorted and grouped into functional
flows so each set of execution traces denote one complete functional
flow, so we build a FF graph where all the classes part of a functional
flow Fi would be having an entry/ edge FiPi.
So as a whole the application is represented by G= (P,R,F,Er,Ef) a
sample representation can be seen in Figure 3.
Step 2: Choosing the right partitioning algorithm with partitioning
rules is the second step in the process, after exploring the available
graph partitioning and clustering algorithms, we have chosen an al-
gorithm as in general the graph partitioning algorithms try to keep
the interactions between the partitions minimal and that is in line

Figure 4: Proposed implementation steps.

with one of our partitioning objectives i.e. to keep the number of
inter-partition calls (IPC) at a minimum, As the graph partitioning
problem is an NP-Hard and there is no single perfect algorithm/
solution we have used METIS , a weighted graph partitioning algo-
rithm to partition the Weighted graph created in step 1 with ‘TOIU ’
to be optimised.
Step 3: Now that we have the partitions and microservices split
from the monolith evaluating the performance or the efficiency
of partitions created in step 3, though there is no single way to
evaluate our implementation of the existing approaches as none of
the previous works has considered infrastructure optimisation as a
partitioning objective, we still used the Newman Girvan Modularity
‘NGM’ metric to measure the quality of the partitions created and
the number of microservices generated.
Our implementation steps, as represented in Figure 4, have provided
an NGM score of 0.5, with the number of microservices as 4 for the
day trader monolith application.

5 Implementation and Evaluation
As discussed, the implementation of the proposed approach can be
divided into Data collection, Data Translation, Partitioning, Evalu-
ation This section describes each of these steps in detail.

5.1 Dataset
We have chosen four popular benchmark open-source applications
namely daytrader, jpetstore, springBlog and PBW. whose properties
are summarized in Table 2. All these monolith applications are Java
applications. The source code of the applications and deployment
configuration files are the data sources for the implementation. The
application.yml file available for the SpringBlog application makes
it suitable for the infrastructure property configuration.

88

An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices ACMLC 2024, July 26–28, 2024, Bangkok, Thailand

Table 2: Dataset properties

Application classes Clusters Infrastructure Involved

Daytrader
https://github.com/WASdev/sample.daytrader7

111 6 Compute, database

Jpetstore
https://github.com/mybatis/jpetstore-6

24 3 Compute, database

springBlog
https://github.com/Raysmond/SpringBlog

47 5 Compute, database, cache

PBW
https://github.com/WASdev/sample.daytrader7

36 4 Compute, database,

Figure 5: Resulting partitions of the Jpetstore application.

5.2 Data translation
Once the data sources are collected conversion of a Java application
into a graph representation defining the various nodes, class nodes,
and resource nodes, building the dependency graph and defining
the weights of the edges based on the infrastructure configuration
is part of the data translation step.

We used the class dependency analyzer (CDA) tool to extract the
dependencies and relationships between the classes, when CDA is
run on an application jar file an XML file with the class-to-class
relationships is generated.

We have implemented a rule filter to convert the XML generated
by the CDA into a graph where the nodes of the graph represent the
Application classes and Edges defining the relationship between the
nodes, the weight of an edge is defined based on the nature of the
relation and depending on the common infrastructure components
between the nodes.

If N1 and N2 share an infrastructure resource DB1 the weight
parameter of edge E12 is incremented by 1. Thus, an application
graph is defined in total.

5.3 Data Partitioning
The graph partitioning algorithm used is METIS, METIS is proven
to generate partitions with the minimal number of cross-partition
edges and is an efficient algorithm for partitioning weighted graphs.

Figure 5 shows the result of the partitioning of the jpetstore
application.

5.4 Performance Evaluation
To evaluate our proposed solution, we have chosen three parameters
that are recommended in the literature to measure the effectiveness
of the partitions defined by our approach. The parameters are
F-measure, NGM Modularity, and Interface Number (IFN).

5.4.1 F-measure. F-measure or F-score is used to evaluate the ac-
curacy and quality of the clusters defined, the accuracy metric com-
putes how many times a model made a correct prediction across
the entire dataset it is a harmonic mean usually of precision and
recall and ranges between 0 and 1. F1 measure is calculated as

F1 = (?A428B8>=∗A420;;) /(?A428B8>= + A420;;)

5.4.2 Newman Girvan Modularity. The Girvan-Newman algorithm
is popularly used to evaluate the modularity of a graph, the higher
the NGM value higher the significance of the community structure.

89

ACMLC 2024, July 26–28, 2024, Bangkok, Thailand Kalyani Pendyala and Rajkumar Buyya

Table 3: Evaluation Results on Datasets

Dataset F1 NGM

JPetstore 0.7 0.44
daytrader 0.6 0.5
springblog 0.8 0.34
pbw 05 0.9

This measure identifies the density of clusters based on the principle
that random nodes in a graph wouldn’t be densely connected as
a high modular graph or cluster. It compares the same edges of
a cluster to the partition members of randomly generated graph
edges.

5.4.3 Interface Number. Interface Number is a direct indication of
the interactions between the clusters or classes, minimum IFN num-
ber between the clusters would mean the clusters or microservices
obtained are optimal and need less inter-communication between
the microservices.

The evaluation results on the datasets chosen are listed in Table
3. F1 score measure is very specific to the context, but a general
rule is an F1 measure of 0.7 or higher is good, as we can see the
values on Jpetstore, and spring blog applications are in the good
range which indicates the algorithms can generate partitions with
balance. Similarly, the NGM ranges are from -0.5 to 1 higher the
value of the NGM score significant is in the community structure,
in our experiment though the Springblog application has NGM on
the lower side PBW applications have a score close to 1.

6 Conclusions and Future Scope
This research work discussed the need for microservices partition-
ing algorithms and their current state of the art. It also proposed
the need for considering the infrastructure cost as an impact pa-
rameter to decide the microservices partitioning. The method tests
the proposed approach with a benchmark monolith application and
identifies future extensions possible to this work. as any automa-
tion and simulation of microservices partitioning would be a huge
saving of initial investment to the organizations, supporting them
in designing their microservices architecture effectively. all the
benefits of the popular architecture pattern could be availed with
an eye on cost/resource optimization.

As part of the research work, we identified the amount of tool
and automation support available for data representation and trans-
lation is less. there are no tools easily available for converting an
existing monolith application into a graph format or tools to ana-
lyze the stack trace, especially if the logging tools used are legacy
as is the general case with any monolith applications being subject
to partition.

Currently, there is rare to no emphasis on optimization of re-
sources and performance metrics to be considered as impacting
parameters for microservices and partitioning approaches. There-
fore, investigating predictive artificial intelligence algorithms and
data analysis to the partitioning approaches will help in predicting
approximate cost and allow cost-efficient microservices.

Another research area open for exploration is the evaluation pa-
rameters definition and benchmarking as the evaluation parameters
for the microservices partitioning task are still vague in definition
and there are no unique open-source benchmark data available for
the researchers to validate and evaluate their work against. This
would save the initial investment and aid the organizations design
their microservices architecture effect.

References
[1] Yalemisew, Abgaz and McCarren, Andrew, ”Decomposition of Monolith Applica-

tions Into Microservices Architectures: A Systematic Review,” IEEE Transactions
on Software Engineering, vol. 49, 2023.

[2] M. Shaw and P. Clements, ”The golden age of software architecture,” IEEE Soft-
ware, 2006.

[3] IEEE Standards, ”IEEE Recommended Practice for Architectural Description for
Software-Intensive Systems,” IEEE Std 1471-2000, 2000.

[4] David Garlan and Mary Shaw, ”An introduction to software architecture.,” Ad-
vances in Software Engineering and Knowledge Engineering

[5] Kassab, Mohamad & Mazzara, Manuel & Lee, JooYoung & Succi, Giancarlo. ,
”Software architectural patterns in practice: an empirical study,” Innovations in
Systems and Software Engineering, 2018.

[6] Erickson, John & Siau, Keng. , ”Service Oriented Architecture: A Research Review
from the Software and Applications Perspective,” Innovations in Information
Systems Modeling: Methods and Best Practices, 2009.

[7] H. Zhang, S. Li, Z. Jia, C. Zhong and C. Zhang„ Microservice Architecture in
Reality: An Industrial Inquiry, 2019 IEEE International Conference on Software
Architecture (ICSA), 2019.

[8] Tozzi, Christopher, ”6 Reasons Not to Adopt Microservices,” [Online]. Available:
https://cloudnativenow.com/features/microservices-use-not-use-question.

[9] Benjamin Benni, Sébastien Mosser, Jean-Philippe Caissy, ”Can microservice-
based online-retailers be used as an SPL? a study of six reference architectures.,”
in ACM Conference on Systems and Software Product Line.

[10] Vikram Nitin, Shubhi Asthana, Baishakhi Ray, and Rahul Krishna., ”CARGO:
AI-Guided Dependency Analysis for Migrating Monolithic Applications to Mi-
croservices Architecture,” IEEE/ACM International Conference on Automated
Software Engineering, 2023.

[11] Desai, Utkarsh & Bandyopadhyay, Sambaran & Tamilselvam, Srikanth., ”Graph
Neural Network to Dilute Outliers for Refactoring Monolith Application,” AAAI
Conference on Artificial Intelligence, 2021.

[12] S. Mancoridis, B. S. Mitchell, Y. Chen and E. R. Gansner, ”Bunch: a clustering
tool for the recovery and maintenance of software system structures,” in IEEE
International Conference on Software Maintenance, 1999.

[13] Y. Zhang, B. Liu, L. Dai, K. Chen and X. Cao„ ”Automated Microservice Identifi-
cation in Legacy Systems with Functional and Non-Functional Metrics,” in IEEE
International Conference on Software Architecture (ICSA), 2020.

[14] Anup K. Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and De-
basish Banerjee, ”Mono2Micro: a practical and effective tool for decomposing
monolithic Java applications to microservices,” in ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021.

[15] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo and Q. Zheng, ”Service Candidate Identi-
fication from Monolithic Systems Based on Execution Traces,” IEEE Transactions
on Software Engineering, 2021.

[16] Matias, T., Correia, F.F., Fritzsch, J., Bogner, J., Ferreira, H.S., Restivo, A., ”De-
termining Microservice Boundaries: A Case Study Using Static and Dynamic
Software Analysis,” springer, 2020.

[17] Rahul Yedida, Rahul Krishna, Anup Kalia, Tim Menzies, Jin Xiao, and Maja
Vukovic, ”An expert system for redesigning software for cloud applications,” in
Expert Syst. Appl., 2023.

[18] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao, Ji-
dong Ge, Zhihao Shan„ ”A dataflow-driven approach to identifying microservices

90

https://cloudnativenow.com/features/microservices-use-not-use-question

An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices ACMLC 2024, July 26–28, 2024, Bangkok, Thailand

from monolithic applications,” in Journal of Systems and Software„ 2019.
[19] Karypis, George & Kumar, Vipin., ”METIS: A software package for partitioning

unstructured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices,” 1997.

[20] Newman, Mark & Girvan, Michelle., ”Finding and evaluating community struc-
ture in networks,” in E, Statistical, nonlinear, and soft matter physics, 2004.

[21] Manfred Duchrow, ”Class Dependency Analyzer,” [Online]. Available: http://
www.dependency-analyzer.org.

[22] M. S. Tamboli, ”daytrader,” [Online]. Available: https://github.com/WASdev/
sample.daytrader7.

[23] L. Dobrica and E. Niemela, ”A survey on software architecture analysis methods,”
IEEE Transactions on Software Engineering, 2002

91

http://www.dependency-analyzer.org
http://www.dependency-analyzer.org
https://github.com/WASdev/sample.daytrader7
https://github.com/WASdev/sample.daytrader7

	Abstract
	1 Introduction
	2 Software Architecture Evolution
	3 Related Work
	4 Proposed Algorithm
	5 Implementation and Evaluation
	5.1 Dataset
	5.2 Data translation
	5.3 Data Partitioning
	5.4 Performance Evaluation

	6 Conclusions and Future Scope
	References

