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Abstract—The user-level brokers in grids consider 

individual application QoS requirements and minimize 

their cost without considering demands from other users. 

This results in contention for resources and sub-optimal 

schedules. Meta-scheduling in grids aims to address this 

scheduling problem, which is NP hard due to its 

combinatorial nature. Thus, many heuristic-based 

solutions using Genetic Algorithm (GA) have been 

proposed, apart from traditional algorithms such as 

Greedy and FCFS. 

 We propose a Linear Programming/Integer 

Programming model (LP/IP) for scheduling these 

applications to multiple resources. We also propose a novel 

algorithm LPGA (Linear programming driven Genetic 

Algorithm) which combines the capabilities of LP and GA. 

The aim of this algorithm is to obtain the best meta-

schedule for utility grids which minimize combined cost of 

all users in a coordinated manner. Simulation results show 

that our proposed integrated algorithm offers the best 

schedule having the minimum processing cost with 

negligible time overhead. 

I. INTRODUCTION 

Grid computing enables harnessing of a wide range 
of heterogeneous, distributed resources for solving 
compute- and data-intensive applications [23].  
Recently, it has been rapidly moving towards a pay-as-
you-go model wherein providers expect an economic 
compensation for the computational resources or 
services offered to grid users. In one side there are users 
with applications to execute and, in the other side, there 
are providers [7] willing to offer their resources or 
computing services in return for regular payments. 
Environments with this decoupling of users from 
providers are generally termed as utility grids [24]. 

Scheduling in utility grids is complex due to the 
distributed ownership of the resources. Moreover, 
consumers and providers are independent from one 
another and have different access policies, scheduling 
strategies and objectives [16]. Previous work has 
proposed grid market infrastructures [25][14] [15]  for 
utility grids. Although this work provides the basis for 
resource markets, application scheduling considering 
aspects such as the distributed resource ownership and 

cost minimization under these scenarios is still in its 
infancy. Furthermore, existing Grid brokers, that 
consider cost minimization, are generally single-user 
based [17][18][25]. These single-user brokers may 
lead to sub-optimal schedules and are certainly not 
designed with the aim of minimizing the cost for a 
group or community of grid users. 

In this work we focus on meta-scheduling of 
different applications from a community of users 
considering a commodity market. As an example of a 
user community, we consider the financial institution 
Morgan Stanley that has various branches across the 
world. Each branch has computational needs and QoS 
constraints that can be satisfied by grid resources. In 
this scenario, it is more appealing for the company to 
schedule various applications in a coordinated manner. 
Furthermore, another goal is to minimize the cost of 
using resources to all users across the community (the 
company in this case). This meta-scheduling problem 
is NP hard due to its combinatorial nature. 

This paper proposes a novel LP driven meta-
scheduling algorithm that maps independent 
applications with a given deadline and budget to rented 
resources in the grid with the aim of minimizing the 
combined cost of all the users who share a meta-
scheduler. We have combined the benefit of LP and 
GA to obtain an efficient solution for the scheduling 
problem in the grid with concurrent users and multiple 
heterogeneous resources. Although only three QoS 
parameters are considered (i.e. number of processors, 
deadline and budget), the proposed algorithm is 
general enough to deal with more parameters. A 
simulation study shows the effectiveness of the 
proposed algorithms compared to other greedy and 
genetic algorithms. 

The main contributions of this paper are: (a) an 
LP/Integer Programming (IP) model for the meta-
scheduling problem; (b) Modified Mincost (MMC) 
algorithm for approximating an LP/IP optimal solution 
for those applications that can run on only one grid 
resource (single-grid node) and (c) LPGA for 
scheduling single-grid node applications.  



The rest of the paper is organized as follows. In the 
next section, we describe the related work on meta-
schedulers and heuristic based scheduling. In Section 3, 
we present the problem definition, which is given with 
the LP model of the scheduling problem. Then, in 
Section 4, we present LPGA scheduling algorithm. In 
Section 5, we discuss simulation study of various 
algorithms and their comparison with the proposed 
algorithms. Finally, Section 6 concludes the paper and 
described the future work. 

II. RELATED WORK 

     Market based mechanisms can be divided into two 
based on market models i.e. auctions and commodity 
market model. As our work is relevant for commodity 
markets in Grid thus in this section we will compare our 
with other resource allocation mechanisms for this 
market model. Cost-based resource management and 
market-oriented models have proven to be useful for 
resource management [18]. The most relevant works to 
our research are [9][19][21] and [20]. In our previous 
work Gridbus Broker[9] and Nimrod/G[25], a greedy 
approach is proposed to schedule a parameter sweep 
application with deadline and cost constraints. To be 
precise, our previous work on grid scheduling [9][25] 
was focused on application level scheduling, i.e. a 
personal broker for efficient deployment of an 
individual application on utility grids. But this work is 
focused on scheduling of many applications from users 
having different QoS requirements with the aim of 
global optimization across many user applications. 
     G-commerce [19] is another economic-based study 
that applies strategies for pricing grid resources to 
facilitate resource trading, and it compares auction and 
commodity market models using these pricing models. 
Feng [21] proposed a deadline cost optimization model 
for scheduling one application with dependent tasks. 
These studies has many limitation (1) algorithms 
proposed are not designed to accommodate concurrent 
users competing for resources (2) also application 
model considered are simple i.e. independent task or 
parametric sweep application. In this work we have 
modeled both independent and parallel applications 
submitted by concurrent users.  Similarly, Dogan [20] 
proposed a metascheduling algorithm considering many 
concurrent users but application model was again very 
simple. They assumed that each application consists of 
one task and also each application is independent. In 
this paper, we have considered multiple and concurrent 
users competing for resources in a meta-scheduling 
environment to minimize combined cost of all users. 
Moreover, in this paper, we presented a formal 
theoretical mathematical model for optimal scheduling 

of jobs with Deadline and Budget constraints which is 
essential to develop an effective heuristic that may 
provide a near optimal solution.  
    In the grid environment, where each user has 
different QoS constraints, the scheduling problem 
becomes a Generalized Assignment Problem (GAP) 
which is a well known NP hard problem. GAP can be 
solved using heuristic based GA [2][4]. Thus many GA 
based heuristics are proposed in the literature 
Wiessman et al. [6] proposed a novel GA based 
algorithm which schedules a divisible data intensive 
application. Martino et al. [10] presented a GA based 
scheduling algorithm where the goal of super-
scheduling was to minimize the release time of jobs. 
These GA based heuristic based solutions [13][10][6] 
do not consider QoS constraints of concurrent users 
such as budget and deadline. The viability of 
evolutionary algorithm-based scheduling such as GA 
for realistic scientific workloads is demonstrated by 
systems like Mars [11]. Mars is a meta-scheduling 
framework for scheduling tasks across multiple 
resources in a grid. In a recent study [5], five heuristic 
based algorithms were compared, which found that GA 
produces the best utility for users in comparison to 
heuristics such as Min-Min. Due to these reasons we 
have used GA seeded with greedy as an algorithm to 
compare with. 

 From scheduling approaches outside the Grid 
computing, it is well known that LP/IP can offer 
optimal solutions in minimization/ maximization 
scheduling problems when constraints and objective 
functions are linear.  In Feltl et al. [4], an LP/IP based 
initial solution and followed by an intelligent 
replacement of offspring based on Martello et al. [3] is 
proposed. But these models do not consider the 
deadline and budgets constraints. As they are 
developed based on specific domain knowledge, they 
can’t be applied directly to grid scheduling problems, 
and hence have to be enhanced accordingly.  

The main contribution of this paper is to develop a 
mathematical model and an LP/IP based GA algorithm 
to minimize the combined procession cost of user 
application in a concurrent user’s environment for 
utility Grids. To best of our knowledge, the solution 
methodology proposed doesn’t overlap with existing 
techniques for scheduling problems.  

III. PROBLEM DEFINITION  

A. System Model 

Figure 1 shows the interaction of the MetaBroker 
with resource providers and users. Grid users submit 
their application jobs to the MetaBroker with their 



QoS requirements. The QoS requirements consist of 
budget, deadline, and number of processing elements 
(PEs) i.e. CPU required. Each application job consists 
of independent tasks with each task requiring one PE. A 
resource comprises of homogeneous PEs. Two kinds of 
user’s application jobs considered are: 

• Multi-grid node (MGN) jobs can split into 
independent tasks, which can run on different 
resources. For example, bag of tasks 
applications. 

• Single-grid node (SGN) jobs which require a 
complete set of PEs on the same resource and 
fail if all PEs are not available. For example, 
synchronous parallel applications. 

   The MetaBroker gathers information about 
resources such as PEs available, grid middleware, cost 
of PEs per unit time for each user and PEs capacity (e.g. 
Millions of Instruction per Seconds (MIPS) rating) from 
the resource providers who have agreed to rent their 
computational resources to MetaBroker. The 
MetaBroker generates a combined schedule based on 
algorithms discussed in subsequent sections. As the 
demand for resources may exceed the supply in the grid, 
some jobs are placed in the queue for latter assignment 
when resources are available or freed. 
 

 
Figure 1. Grid model with MetaBroker 

 

B. Problem Formulation  

The objectives of meta-scheduling in the above 
environment with m resources and n jobs are as 
follows: 

 
• Scheduling based on QoS, i.e., budget and 

deadline.  
• Minimize combined cost for all the users by 

meeting the budget and deadline constraints.  

• Maximize the total number of user’s job 
submission.  

 

Let iP represent the information which MetaBroker 

receives from grid resource i at a given instance T. 

)(: i, vi,j, ci, niri
P where 

ri is the Resource Id, 
ni is number of free PEs available on the resource, 
ci,j is the cost of using a single resource per second 
    for the job/user j, 
vi is the MIPS speed of one of the PE,  

     and { }mIi ..1=∈  

 
Let Qj represent the QoS demand which MetaBroker 

receives from the user j at a given time instance T. 
Qj: (uj, jj, bj, dj, Mk, mj) where 
     uj is the user id, 

 jj  is the job id, since one user can submit multiple 
    jobs, hence combination (uj,jj) is unique, 
bj  is the budget constraint the user specifies, 
dj  is the deadline constraint for finishing the job, 

    Mk size of each task in the job in terms of Millions 
          of Instructions (MI) [22][9],  

mj is the number of PEs the user requires for 
       executing the job, 

     and { } { }jmKknJj ..1 ,..1 =∈=∈ . 

 The mathematical model for scheduling of SGN 
jobs is as follows: 
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In Equation (1), the variable rij denotes the number 

of PEs allotted to a job j on a resource i. Note that, in 
case of SGN jobs, the value of rij would be either 0 or 
mj (the number of PEs required by the job j). The 
variable xij denotes that whether job j is mapped to 
resource i or not. Equation (1) denotes cost function 
which all users have to pay to resource providers. The 
constraints are following : 
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Equation (2) denotes the resource’s capacity 
constraints. Equation (3) denotes the PE requirement of 
user’s job i.e., mj. Equations (4) and (5) denote the 
assignment matrix, which indicates that a job can be 
assigned to a maximum of one resource. Equation (6) is 
added for satisfying the budget constraints and Equation 
(7) is added for the time constraints. Equation (1) is 
solved for minimization to obtain an optimal cost 
efficient schedule. All the quantities, i.e., the resources, 
cost, deadline and budget are greater than zero, hence 
the Equation (8). Note that Equations (4) and (5) make 
the problem NP-hard as these constraints make the 
problem a 0-1 assignment problem which is well known 
to be NP-hard [3][4][8].  

LP/IP model for scheduling MGN jobs is almost 
same as for SGN jobs. The only difference is that model 
for MGN jobs will not include constraints (4) and (5).  

C. Genetic Algorithm Formulation  

     Genetic Algorithms (GAs) [8] provide robust search 
techniques that allow a high-quality solution to be 
derived from a large search space in polynomial time, 
by applying the principle of evolution. A genetic 
algorithm combines the exploitation of best solutions 
from past searches with the exploration of new regions 
of the solution space. An individual (chromosomes) 
represents any solution in the search space of the 
problem. A genetic algorithm maintains a population of 
individuals that evolves over generations. The quality of 
an individual in the population is determined by a 
fitness-function. The fitness value indicates how good 
the individual is compared to others in the population. A 
typical genetic algorithm consists of the following steps:  

(1) Initial population generation;  
(2) Evaluation;  
(3) repeat  
(4) Selection;  
(5) Crossover;  
(6) Mutation;  
(7) Evaluation;  
(8) until (convergence).  

    Convergence can be a different criterion for different 
problems, but generally ‘a no change in the solution for 
n generations’ is considered as convergence. The most 
important aspect in GA is the solution space encoding 
and the fitness function. We have taken the same fitness 
function and solution space encoding as given in our 
previous work [8]. The genetic operations, i.e., 

crossover, mutation and inversion are standard 
operations in GA.  

IV.  PROPOSED ALGORITHMS 

A. Linear Programming based Algorithm for 

Scheduling MGN Jobs 

As discussed in the previous section, the 
mathematical model for MGN jobs scheduling will be 
converted to an LP/IP model after removing 
constraints (4) and (5). LP/IP can be then easily solved 
using standard integer programming algorithms. For 
simulation purposes, we have used the Coin-OR library 
[12]. 

B. Linear Programming based Algorithm for 

Scheduling SGN Jobs (LPGA) 

Due to the absence of constraints (4) and (5), LP/IP 
solutions obtained in section 4.1 are infeasible for the 
SGN jobs scheduling problem. We need to 
approximate LP/IP to a feasible solution. For this 
problem, we have designed a novel algorithm MMC to 
approximate an infeasible LP/IP solution to a feasible 
solution for the SGN jobs scheduling problem. 
 

1) Modified MinCost (MMC) Algorithm: Our   
MMC algorithm is inspired from Minimum Cost 
Algorithm which is a well-known method for finding 
the feasible solution near to optimal in the transport 
problems. In the Minimum Cost algorithm, we find the 
minimum cost resource, assign maximum number of 
jobs to that and reduce the demand and supply. The 
process is repeated until all jobs are allocated.  

In MMC, we take an optimal solution from the LP 
based algorithm (discussed in the previous section) and 
then approximate it to obtain a feasible solution for 
SGN scheduling problem. This algorithm gives a 
solution, which is between the optimal, and the greedy 
solutions, i.e. it will give a better solution than greedy 
but not an optimal as shown in the evaluation section. 
The solution obtained from this algorithm acts as an 
initial solution to GA.  

The pseudo code for MMC is given in Algorithm 1, 
which shows how MMC approximates an LP/IP 
solution. It takes as input a list of jobs which is a 
structure containing information regarding how 
different tasks of a job are mapped to resource 
providers and how many PEs are required by the job. 
This job list is generated from algorithm for scheduling 
MGN jobs. First, MMC algorithm makes a copy of the 
input, and  then sorts job list on the basis of number of 
resources to which the job is mapped (line 1-2). This is 
done so that we get a solution as closer as possible to 
the optimal LP/IP solution.  



We handle differently the jobs which are mapped 
only to (a) one resource and (b) more than one resource. 
For jobs which are mapped only to one resource, we 
freeze their mappings. The mappings will not change 
during the algorithm, and thus we reduce the total 
capacity of resource (line 4, 5, 6). Then, these jobs are 
added later to the schedule list (line 7). The jobs, which 
were mapped to more than one resource, will be mapped 
to a resource pi which has the capacity to allocate the 
full job j1 and is most economical (line 9-11). Other 
jobs which are allocated to this resource will be 
remapped to resource where job j1 was allocated other 
than pi, if deadline and budget constraints are satisfied; 
otherwise they are allocated to dummy resources (line 
15). Other jobs, which are not allocated in the above 
process, will be mapped to the dummy resource (line 
19). These jobs are remapped to real resources using a 
greedy approach. 
 

Algorithm 1: ModifiedMinCost (Listjobs) 
1 

2 

3 

ListJ←Listjobs.clone(); 

sort(ListJ);  
for i←0 to ListJ.size()-1 do 

4 

5 

6 

7 

8 

 j1←ListJ(i); 

if (numofProviders(j1)==1) then 
    changeAvailableCapacity(Provider(j1),j1); 

    Goto step 20 

else    
9 

10 

 

11 

  P←J1.providerlist.clone(); 

sort(P); //number of PE allocated on 
                Provider 
for p←0 to P.size() do 

12    if(remainingCapacity(p)>PERequired(j1)) 
13 

15 

16 

    AllocateFull(j1,p); 

InterchangeCapacity(p,p.joblist[]); 

Goto step 20 

17   endfor 

18 

19 

 endif 

addjob(j1,DummyResProv); 

20 

21 

22 

23 

endfor 

ScheduleDummyResJob(); 

MakeScheduleList(ListJ); 

return ListJ; 

 
Complexity: Complexity of MMC algorithm for m 
resources and n jobs is O(nlogn + mn + 

O(interchangeCapacity() function)*n). We have taken a 
simple implementation of interchangeCapacity function 
using arrays, which has worst-case complexity as 
O(mn). Thus, the worst-case complexity of the 
algorithm becomes O(mn

2
), which  is very high upper 

bound over real complexity as average number of jobs 
per resource will be less than total number of jobs.  
 

2) LPGA Algorith: LPGA seeds the approximate LP 
solution with Genetic algorithm for generating a 
solution near to optimal solution. In LPGA, first we 
solve an LP/IP problem without constraints (4) and (5) 

and then MMC approximates the solution obtained in 
the previous step. Finally, using the feasible solution 
from MMC, we iterate various genetic operations to 
get the best solution.  
 

     Algorithm 2. LPGA() 
1 

2 

ScheduleList←null; 

while (current_time < next_schedule_time) do 
3 

4 

 RecvResourcePublish(Pj); //from providers 
RecvJobQos(Qj); //users 

5 

6 

7 

8 

9 

endwhile 

if (numJobs>numResource)  AddDummyNode(); 

ListP←ListProviders.clone(); 

Sort(ListP) //cost of resource 

for each job ‘j’ in Q do  
10  compute QoS index 

11 

12 

13 

14 

15 

16 

endfor 

ListJ=sort(Q); //descending order of QoS index 

LPschedule=GetLPsolution();//from Coin  Library 

ScheduleList= ModifiedMinCost(LPschedule); 

AddinPopulation(POPU_LIST, ScheduleList); 

generateNextGenerationPopulation(){ 

17  for each i in (population_size-POPU_LIST.size()) 
18 

19 

  cromos=GenerateRandomCromosome(i); 

POPU_LIST.add(cromos); 

20 

21 

22 

 endfor 

ComputeFitnessfunction(); 

bestCromos=SearchBestCromosome(POPU_LIST); 

23 

24 

 if (termination) return bestCromos 

doSelection(){ 

25 

 

26 

27 

28 

29 

30 

  SelectBestCrossoverRateCromosome() // ‘based 
on‘Roulette wheel selection policy’ 
DoCrossover() 

DoMutation() 

AddtoPopulationList(POPU_LIST); 

Goto step 16 

} 

31 

32 

33 

} 

Schd_List =GenerateSchedulelist(bestCromos); 

for each element in Schd_List do 
34  notifyuser(); 

35 endfor 

Algorithm 2 gives the pseudo code. As the 
MetaBroker at a particular time instance does 
scheduling, it waits for jobs from users (taken as QoS 
requirement for job in line 4) and resource load from 
provider (line 3). Then we have to add dummy job 
queue with high cost and number of PEs to make 
scheduling problem balanced, i.e. to balance supply of 
resource service and demand by users for computing 
services (line 6). After that, we sort resource list on the 
basis of their cost and job list on the basis of QoS 
index (line 7-12). After sorting resource list and job 
list, we get the LP/IP solution which is obtained 
without considering constraints (3) and (4) discussed in 
section 3.2 (line 13). This solution is approximated 
using MMC algorithm (line 14) which is used to 
generate initial population space for the genetic 
algorithm (line 17-20). From initial population space, 
we select the best chromosome values based on the 



fitness function. These best chromosomes are then 
mutated to generate the next generation population (line 
21-30). This operation is repeated until the convergence 
criterion is reached or maximum specified limit of 
iteration is reached (line 23). Based on the chromosome, 
schedule list is generated and users are notified about 
mappings (line 32-34). One limitation to the problem 
formulation is that if the number of resources requested 
is more than the number of resources available for the 
broker, then the problem results in an infeasible 
solution. Therefore, we propose addition of dummy 
resources with infinite capacity and having more cost 
than any of the resources available on the grid. This 
enables the algorithm to converge and assign some of 
the jobs to the dummy resources. Dummy resource jobs 
are rolled over to the next schedule period, as they 
cannot be executed. 

V. PERFORMANCE EVALUATION 

A.  Simulation Methodology 

We use the GridSim toolkit [1] to simulate a grid 
environment and the MetaBroker for scheduling user’s 
application. We simulated the grid with heterogeneous 
resources having different MIPS [22] ratings and each 
resource having different number of PEs in the range of 
4 to 12 with mean number of PEs as 8. A Grid having 
resources in the range of 25 to 200 is generated. The 
usage cost per second of each resource is varied (using 
Gaussian distribution) between 4G$-5G$ (G$ means 
Grid dollar) with mean cost of 4.5G$. Execution time in 
the simulator setup for the several hundred runs restricts 
us to model 50 jobs per run. Thus, the MetaBroker 
schedules the jobs (which consist of several tasks, each 
require one PE to run) submitted by 50 concurrent users 
with simulation interval of 50 seconds. The jobs are also 
simulated with varying QoS requirements. Jobs with 
average number of 5 tasks and having 10-50% 
variations in the number of tasks (using Gaussian 
distribution) are considered and all the jobs are 
submitted within 20 seconds of simulation start time.  

Average estimated run time for jobs is also taken to 
be 400 seconds and varied by ±20% using Gaussian 
distribution. As far as QoS parameters are concerned, 
i.e.., budget and deadline, three simulations are done for 
different deadline scenarios as listed below: 
Experiment-1: Tight deadline (estimated time+(50 
seconds with ±20% variation)). 
Experiment-2: Medium deadline (estimated time+(250 
seconds with ±20% variation)). 
Experiment-3: Relaxed deadline (estimated time+(500 
seconds with ±20% variation)). 

As far as the budget is concerned, all the jobs are 
given relaxed budget constraints (i.e., twice the cost of 

average job execution time). Our performance 
evaluation examines the relative performance (users 
spending) of LPGA with respect to 3 other following 
meta-scheduling algorithms for the above type of jobs 
by varying the number of resources: 

1. Greedy based meta-scheduling algorithm. 
2. Heuristic GA algorithm (HGA) [8]. 
3. Modified Mincost algorithm (MMC).  
The results for the three different simulation 

scenarios for both MGN LP based algorithm and SGN 
LP driven Genetic Algorithm (LPGA) are discussed in 
the next section. 

 
B.  Performance Results  

1) LP/IP based Meta-Scheduling Algorithm for 

MGN Jobs: The results are compiled in Table 1. In 
tight deadline out of 50 jobs (246 tasks) only 34 jobs 
(170 tasks) were scheduled where as in medium and 
relaxed deadlines all jobs i.e. 50 (246 tasks) were 
scheduled. The reason behind this is the tight deadline, 
for which many jobs missed the deadline constraints 
due to simulation interval. Thus, even though the 
number of resources increased in number, the number 
of scheduled jobs remained same. 

 
TABLE 1.  

TOTAL COST SPENT BY USERS FOR MGN JOBS  
 

Number 

Of 

Providers 

Total 

Cost in 

Medium 

Deadline 

Total 

Cost in 

Relaxed 

Deadline 

Total 

Cost in 

Tight 

Deadline 

25 259832.6 194668.9 245280.8 

50 261059.7 198771.5 247655 
100 260689.1 198462.5 247251.2 
150 260653.5 198360.5 247245.4 
200 260664 198455.3 247015.7 

 
Moreover, in case of relaxed deadline, user 

spending is the minimum in comparison to other 
deadline types because more jobs are scheduled to 
resources with least cost.  Also, even though it seems 
that this trend is not followed when we compare tight 
deadline and medium deadline scenarios, it results in 
more number of jobs scheduled in the case of medium 
deadline. It is also interesting to note that in the tight 
deadline scenario, with the increase in number of 
resources; total cost spent by users is also decreasing.  
 

2) SGN Job Scheduling Algorithms: The 
performance of four meta-scheduling algorithms has 
been compared by varying the number of jobs 
scheduled and users spending. The results are 
compiled and presented in Fig. 2 to Fig.4. In the first 
set of results, i.e., Fig. 2a, 3a and 4a, aggregated 



revenue earned for the completed jobs are plotted on Y-
axis. In the first set of results, i.e. Fig. 2b and 3b, X-axis 
presents the grid resources while Y-axis presents the 
jobs completed  (out of the 50 concurrent jobs 
submitted). Due to space constraint we have not 
presented the number of jobs completed with number of 
resources and also trend in medium deadline case is 
very similar to trend in case of relaxed deadline.  
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Figure 2. Tight Deadline     

The figures 2a, 3a and 4a for relaxed, medium and 
tight deadlines show that LPGA has outperformed all 
other meta-scheduling algorithms, thus minimizing the 
users spending.  In case of all deadline, even though 
initially, user spending in schedule given by HGA and 
LPGA seems to be same, as number of resources 
increases, LPGA decreases the user spending if 
compared to other algorithms. Since the cost variations 
within the grid resources are not significant (i.e. 4.5 G$ 
with ±0.5G$) only up to 7-8 % cost benefit was noticed. 
However, more benefit can be anticipated if the 
variations are higher.  

More interesting results can be observed when we 
compare performance of MMC algorithm and greedy 
approach. It is clear from the graphs that cost gain for 
users in case of MMC algorithm can be as much as 30% 
more beneficial for users than greedy approach. Thus, 

the results demonstrate the user spending for each job 
decreases when LPGA is used by Meta-Broker for 
combined scheduling of jobs. This is because MMC 
algorithm is giving better schedule than greedy 
algorithm.  
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        Figure 3. Medium Deadline      
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Figure 4. Relaxed Deadline       

It can be noticed from Fig. 2b and 4b that the curves 
become smoother and peak early compared to tighter 
deadline. This trend is due to the relaxed deadline 
having more jobs completed with the same number of 
resources. As when deadline is more relaxed, meta-



brokers try to complete more and more tasks.  With 
increase in number of resources, all algorithms schedule 
the same number of user jobs. In case of tight deadline 
(fig. 2b), as many jobs missed the deadlines (very tight); 
only 34 jobs are completed even though the number of 
resource increased to 200. 

Next simulation study presents the advantage of 
LPGA algorithm over HGA algorithm. We have 
compared the number of iteration taken by both 
algorithms in case of tight deadline. The results shown 
in Fig. 5 indicate that in case of LPGA, number of 
iterations is reduced with a decrease in user spending. 
For example, with 50 resources, the number of iterations 
performed in HGA is 1000, whereas in LPGA it is less 
than 700.  Even though the number of iterations in HGA 
is less than in LPGA with 150 resources, the revenue 
generated is smaller which can be observed from Fig. 
3b. These results also indicate that in spite of taking 
more iteration, the HGA could not find the global/better 
optimum. Hence, to find a better solution (either the one 
found by HGA implementation or any other better 
solution) the algorithm would have required a higher 
number of iterations. This clearly explains the reason 
for a higher number of iterations in case of LPGA when 
the number of resources is 150. 
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Figure 5. Comparison of number of iterations in HGA and LPGA 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have modeled the scheduling 
concurrent user jobs in utility grids as an LP/IP 
problem. Two different types of jobs were considered, 
namely multi-grid node jobs and single-grid node jobs. 
We also presented a novel algorithm called MMC that 
approximates the LP solution to get a single-grid node 
job scheduling solution near to optimal. We designed 
the LPGA algorithm to decrease the combined user 
spending and resource utilization by seeding the 
solution from MMC algorithm to genetic algorithm. We 
have also taken into consideration user QoS constraints, 
i.e., deadline, number of PEs and budget. 

The results show that LPGA out performs other 
meta-scheduling algorithms such as greedy approach 
and HGA by giving the minimum processing cost. In 
LPGA, not only number of iterations is reduced by 7% 
to 25% compared to HGA, but user spending is also 
decreased as the number of resources increases. Our 
results also show that MMC can reduce the combined 
user spending up to 30% over traditional greedy 
approach. 

The application of approximation algorithms like 
MMC in Grid environment is novel. In addition, this 
work shows us that many good heuristics can be 
designed after some modifications. In future, our goal 
is to study and analyze such algorithms. Also we would 
like to integrate this algorithm with some available 
meta-schedulers and deploy them on real test beds. We 
have given priority to jobs that are mapped to 
minimum number of resource providers in the LP 
solution. For future work, we intend to improve the 
performance of MMC and test it with different priority 
indexes such as deadline and execution time. We also 
want to investigate other approaches used for the 
assignment problem which can be modified for utility 
grids. We want to experiment our algorithm with a 
wide range of costs to study the effect of costs change.  
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