
Simurgh: A Framework for Effective Discovery,
Programming, and Integration of Services Exposed

in IoT
Farzad Khodadadi, Amir Vahid Dastjerdi, Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computing and Information Systems

The University of Melbourne, Australia
Email: {fkhodadadi@student., amir.vahid@, rbuyya@}unimelb.edu.au

Abstract—While Internet of Things has emerged as a great
opportunity for industrial investigations and similarly pursued
by research communities, current architectures proposed for
creation of IoT environments lack support for efficient and
standard way of discovery, composition services, and their in-
tegration in scalable manner. We propose Simurgh, a framework
to leverage modern state-of-the-art techniques and standards to
define, discover and compose “things” and their corresponding
services. Our approach allows for efficient discovery of IoT
devices and their exposed services, while also considers humans
as main players. This new approach facilitates communication
between involved entities by forming a ubiquitous environment
of IoT elements, described using standard human-and-machine-
readable files, which can easily find each other and call advertised
IoT services using standard RESTful web APIs. Furthermore,
by chaining IoT service calls together to form flows and then
combining and orchestrating these flows, end-users can achieve
their desired functionality without having to worry about pro-
gramming skills.

I. INTRODUCTION

Number of smart devices is estimated to outnumber living
human beings in 2017 [1]. Considering the fact that many
of these devices use Internet as their backbone for commu-
nication, Internet of Things has emerged as a new paradigm
aiming at providing solutions for integration, communication,
data consumption and analysis of these devices. The Internet of
Things (aka IoT) is the term used for drawing a circle around
sensors, actuators, smart devices and in general, every object
capable of communicating via Internet to form a collection of
identifiable smart entities [2].

IoT promises a new world of connected devices and humans
in which managing infrastructures and cities are less cum-
bersome, health services are conveniently accessible, disaster
recovery is more efficient, and in summary a superior life
quality is achieved.

Although new smart devices and their connectivity present
potential for innovation, they are not playing the main role
in the market. The real demand is derived from applications
consuming data that IoT devices generate. The main issue here
is having a standard, comprehensive and yet simple framework

to make use of IoT devices. Moreover, another key challenge
in a distributed, heterogeneous, and mobile environment such
as IoT is properly handling “things” discovery and services
they provide, yielding to facile integration with other networks
and services, thus resulting in a ubiquitous and more coherent
environment.

In today’s market, we have to look beyond existing cus-
tomers to unlock IoT services for wider set of user appli-
cations. We address aforementioned adoptability issues by
introducing Simurgh1, a framework that not only precisely
defines “things’, humans, and their specific properties, but
also facilitates service definition and IoT service composi-
tion in form of flows. Furthermore, with burst of resources
made available by different organizations, companies, and
websites, there has been long effort in research community
to standardize the way these resources can be exposed and
securely accessed by authorized end users. Service-oriented
architectures, including SOAP-based approaches and RESTFul
methods are two examples of these efforts. Recently, large
attention is absorbed by the concept of web APIs and how they
can be defined, shared, and accessed easily. Hence, Simurgh
will leverage RESTful API Modeling Language (RAML) [3],
a standard API definition language, to extend this notion to
objects defined in IoT environment, thus making resource
and service exposition more simple and practical. By using
this framework, large number of entities can be defined and
leveraged, utilizing definition files created by vendors and
maintained in an easy-to-use repository.

The rest of this paper is organized as follows. Section II
presents related works and positions them in relation to the
proposed framework. Section III explains the architecture and
the components of Simurgh framework. Details about Thing
Description Document and discovery component is given in IV
and V, respectively. Section VI introduces the envisioned case
study for framework utilization along with implementation

1Simurgh is a mythical bird in Iranian mythology. In the story, a band of
thirty birds is searching for the Simurgh to be their king. They are looking for
a superior creature as each of them represent a human imperfection. Finally,
once they arrive at the place of the Simurgh, what they can observe is a lake
in which they see their own reflection. This resembles a well-connected and
integrated IoT environment.978-1-4799-8325-4/15/$31.00 c©2015 IEEE

details and how the flows can be created using our proposed
framework. Conclusions and future works are discussed in
Section VII.

II. RELATED WORK

In terms of communication protocols, Constrained Applica-
tion Protocol (CoAP) promises to bring RESTful web services
to constrained and embedded devices. As it is being standard-
ized, researches [4]–[6] have been conducted to investigate its
effectiveness in IoT domain. However, since the concept is
new and has not been adopted by industry leading companies,
practical usage of proposed solutions remains unclear.

Mayer et al. [7] proposed a web-based infrastructure for
smart “things” to facilitate their integration and look-up
process. Different markup languages such as Microdata and
Microformats are used in their work for describing smart
devices, but most of these languages are now considered
obsolete.

In [8] authors argue about using Web Service Description
Language (WSDL) and Microformat-based markup languages
to implement a discovery and selection framework for WS-*
and RESTful services. Although their solution uses machine-
readable files for resources API exposition, they do not support
location-based discovery of devices, which is included in
our proposed framework. In a similar way, the author in [9]
proposes a central repository that registers Web-based things
by assigning each one a unique tag.

Li et al. [10] and Klauck et.al [11] suggest a SOA-based
service discovery framework in IoT which leverages Domain
Name System (DNS) to map available objects to domain
names by encoding devices information and then discover
them through XML files representing different service cat-
egories. However, considering huge number of devices that
will be involved in a typical IoT environment, this mechanism
doesn’t provide a scalable and robust solution.

Briefly, other works [12], [13], whether opting syntax-based
discovery method or semantic-based one, do not consider user
requirements in developing IoT applications, although, effi-
cient discovery of resources is an essential part of this process.
We try to address this issue in our proposed framework by
embedding discovery component as a service in user-creatable
flows.

III. PROPOSED ARCHITECTURE

Our proposed architecture offers an integrated solution
that uniquely applies state-of-the-art technologies to simplify
discovery, accessing, and programming of functionalities and
services offered in IoT environments. An important goal of this
architecture is to simplify management of IoT services, things,
humans (experts and volunteers) who are involved in processes
designed in smart environments enabled by IoT technologies.

The main objective is to achieve easy process design, service
reusability, openness and security at the same time. In the
architecture, this is achieved mainly through exposing IoT
services as APIs and compose them via creating API flows to
achieve more complex functionalities which can be wrapped

Flow
Composition

Flow Design

Flow Execution Engine

Thing
Description
Repository

Things layer

Platform layer

Two-Phase Discovery Engine

Low-level Programming Libraries

API Mediator

Flow Template Management

End User layer

Flow
Template

Repository

Request Management

API Access Management

Network Discovery and Registration
Broker

Fig. 1: Simurgh framework overview

to flow templates. The process of designing and composing
flows can be carried out by an expert and then used as
normal user application. This approach, considerably reduces
the overhead of accessing and programming IoT services
for majority of users and increases their adoptability. The
proposed architecture is depicted in Figure 1 and its main
components are described below:

Things Layer
• Network Discovery and Registration Broker: This

component handles incoming connection requests from
devices that want to join the domain. It also keeps a
repository of entities with their assigned unique identi-
fiers.

• Low-Level Programming Libraries: It provides device-
specific interfaces to access functionalities of devices
made by different vendors.

• API Mediator: API(Application Programming Interface)
is an interface that allows a programmer to expose func-
tionality of his application in forms of callable functions
with precisely defined input and output types. Generally,
APIs are made of libraries that include specifications for
data structures, procedures, variables and object classes.
A class of APIs which we focus here is known as “Web
APIs” and has these main features:

– is invoked over Internet
– almost always uses HTTP (or HTTPS) as the main

communications protocol
– uses XML, JSON, Object types, or plain text to

represent a response
– often uses either HTTP query parameters or XML

documents to represent a request
Web is switching to Web API/REST, because older
service-oriented methods are more complicated to de-
velop and require much more resources (RAM, band-

width, Computation resources), as a result of all request-
response data conversions that should take place. Further-
more, the standard form of data exchange in SOAP based
web services is XML, which can efficiently be replaced
by more lightweight formats such as JSON.
Building APIs facilitates and speeds the way organiza-
tions can share their services with users, helping them
attract more people while focusing on the functionality
of their products rather than on presentation. Considering
multi-tenancy security features of modern Web APIs such
as OAuth, APIs are capable of boosting an organization’s
service exposition and commercialization, while also
providing better service monitoring tools than previous
service-oriented approaches.
API Mediator provides a wrapper around low-level inter-
faces of devices that do not have RESTful API. When
dealing with humans, the mediator shows what devices
and operations are linked to a person and how he/she
can be reached by communication means such as email
and SMS. All provided API Mediators and their corre-
sponding low-level libraries are kept in a central repos-
itory, which enables easy search and access method for
connecting to a device, calling its services, and updating
core functionalities. This component can also take the
responsibility of converting already defined services that
do not use RAML format for service definition.

• API Access Management: Once IoT Services are ex-
posed beyond the firewall, we require a way to han-
dle identity and access management from a centralized
management component. This component utilizes state-
of-the-art protocols such as OAuth and OpenID Connect
and provides secure and auditable access to IoT services
for end users, regardless of the device, application or
location.

Platform Layer

• Thing Description Repository: It contains description
of things and humans and services offered by them.
The repository is constantly updated by the Network
Discovery and Registration Broker and API Mediator
component.

• Two-Phase Discovery Engine: This component allows
for discovery of “things” that not only have capability of
fulfilling the user request, but are also equipped with APIs
that can be utilized in a flow to satisfy user requirements.

• Flow Design: It provides a user interface that allows users
to discover things and their APIs and call found APIs.
Additionally, this component is responsible for consider-
ing human in loop interactions with smart devices (i.e.
finding and calling necessary communication APIs such
as Email, SMS, etc).

• Flow Composition: This component is capable of com-
bining two or more flows to build a new flow that delivers
new functionalities.

• Flow Execution Engine: Once a user asks for a flow
execution, this engine for a given number of times, or

for a provided time period, provisions required resources,
configures them and then execute all necessary APIs
in order to fulfil the request. This component is also
responsible for provisioning resources for testing the
flows once they are being designed.

• Flow Template Management and Repository: Flow
Template Repository contains pre-designed flows that are
likely to be reused. Template management tasks including
access control, persistence, test, and update is carried out
by Flow Template Management component periodically.

• Request Management: This component matches the user
request to flow templates. If no match is found, the
request will be forwarded to Flow Composition module
to check whether any composition flow can match the
requirement. Finally, if no flow is found, user will be
presented with a Flow Design interface to build the
required flow.

IV. THINGS DESCRIPTION DOCUMENT AND API
DEFINITION

To describe building blocks of an IoT environment including
devices, sensors, and humans, a file should be created for each
of these entities, detailing its specific features and callable
services. For this purpose, a lightweight human-and-machine
readable file format is required to simplify writing descriptions
without adding extra overhead. However, due to the lack of
standardization in this area, we have developed our own meta-
model called Thing Description Document (TDD) in the form
of a JSON file. A TDD file consists of two major parts: 1)
IoT entity properties 2) Services offered by each entity.

1) Entity Properties: The first part of any TDD as shown
in Listing 1, lines 2-21, is dedicated to describe different
properties of its related entity. A user-chosen name for faster
and easier discovery with information about last modification
date and entity’s location are mandatory parts of every TDD,
but any other required data field can also be defined in this
section, as long as it conforms to JSON validation rules. In
lines 32-38, it is declared that this sensor is being operated by a
human. Later, when we explain the discovery phase, managing
human interactions in IoT and how to discover and leverage
them is detailed.

2) Entity Services: After describing properties, there is a
dedicated section to define APIs that are available by the entity
being described. Lines 22-31 in Listing 1 demonstrate how this
objective is achieved. The API definition files can have RAML
or Swagger [14] format type and each one can be parsed by an
appropriate parser and called using their specific client tools.
These TDDs with API definition files will be kept and indexed
by TDD Repository component to be later searched by Two-
phase discovery component.

Listing 2 depicts a minimal and simple RAML file used for
defining and describing a single service offered by a typical
person. When a connection to the endpoint hosting this web
service is initiated, the service implementation is supposed to
respond with the email address of this person by accepting an
identifier that has numeric type. As it is evident, using an API

definition language provides opportunities for developers to
define and expose their implemented services easier and also
augments the clarity of final result, compared to approaches
using SOAP and WSDL.

A. Motivation Behind Using RAML to Expose IoT Services

Several open-source API definition languages and tool-
sets are currently available, with the two most renowned
being RAML [3] and Swagger [14]. We use RAML in our
implementation because of having better integration with our
flow composition engine. Although both formats can be used
when referring to API definition section in TDD, when RAML
is used, after the discovery phase and given the discovered
TDD, the services can be easily called using RAML client
tools that are available as part of API flow composition tools
such as Anypoint Studio [15]. This makes API discovery, flow
execution, debugging, testing, and deploying more convenient.
Furthermore, RAML allows for easy integration of security
mechanisms like OAuth and provides option for including
schemas that define the actual query parameter types each
service accepts.

Listing 1: Typical description document for a thermal sensor
1 {
2 "name": "Thermal Sensor TDD",
3 "description": "This is the description document for a

sample Thermal sensor",
4 "last-modified": "2014-12-15",
5 "tags": [
6 "thermal",
7 "Celsius",
8 "sensor"
9],

10 "id":"192.168.1.3:683C.B35A.17DB",
11 "location":
12 {
13 "Room":712,
14 "Building":"Doug McDonalds",
15 "Number":10,
16 "Street":"Swanston",
17 "City":"Parkville",
18 "State":"Victoria",
19 "Country":"Melbourne",
20 "Postal code":3000
21 },
22 "api": [
23 {
24 "type": "Raml",
25 "name": "thermal-tdd.raml"
26 },
27 {
28 "type": "Swagger",
29 "name": "thermal-tdd.swagger"
30 }
31],
32 "operated-by": [
33 {
34 "Full Name": "Farzad Khodadadi",
35 "email": "info@khodadadi.com",
36 "sms": "xxxxxxxxx"
37 }
38]
39 }

Listing 2: Describing services using RAML
1 #%RAML 0 . 8

2 t i t l e : Person dealing with temperature anomalies
3 v e r s i o n : v1
4 b a s e U r i : https://{URL}/{ v e r s i o n}/
5 p r o t o c o l s : [HTTP, HTTPS]
6 mediaType: application/json
7

8

9 /api:
10 displayName: APIs
11 description: Show available APIs
12 get:
13 responses:
14 200:
15 /contact:
16 /email:
17 description: Returns the email address of this

person
18 queryParameters:
19 id:
20 type: number
21 get:
22 responses:
23 200:

V. TWO-PHASE DISCOVERY COMPONENT

To remove the load of handling network connections from
discovery component, network discovery module is responsi-
ble for registering all devices connecting to a specific domain.
Devices can use multiple communication protocols such as
Bluetooth, ZigBee, and Wi-Fi to register themselves and obtain
a unique identifier. Later, each participating entity including
smart devices and humans must submit its description docu-
ment with the assigned unique identifier. This way, discovery
module knows which entities are active and what services are
available to be called.

For efficient discovery of things and their available services,
a two-phase syntax-based discovery approach will be used.
Syntax-based searching methods are fast and do not require
any knowledge about the underlying data, because search
is performed by matching the data against desired search
keywords.

Purpose of the discovery component is not only finding
an entity with desired capabilities (e.g capable of measuring
temperature and humidity) and desired properties (e.g. located
at specific room) but also the required API associated with it.
In the first phase, the discovery module will search in TDD
repository to find entities matching given search criteria. The
way this component is implemented gives the user the option
of choosing between exact match or subsume match when
submitting a query [16].

Discovered entities may contain group of smart devices
having specific properties or can be humans having specific
communication details while operating a desired device. After
finishing the first step, if the target is finding an API capable
of doing specific task, another search is performed on the API
Description Documents of devices or humans found in the first
phase. We provide a comprehensive discovery example in the
next section.

VI. CASE STUDY AND IMPLEMENTATION

In this section a case study is described which helps us
demonstrate the effectiveness of our proposed framework.

Fig. 2: Thermal sensor discovery flow

Fig. 3: Anomaly detection and further processing flow

Fig. 4: Anomaly expert discovery flow

The case study is a smart university campus containing large
number of sensors including humidity and temperature. The
main objective of this case study is to show how a building
manager can use our framework to adjust temperature of rooms
dynamically based on room temperature, outside temperature
and electricity price. Let’s consider a case of a server room,
so the desired flow has to be able to:

• Locate a device with capability of reading temperature
from the server room located in DMD 7.12. The discov-
ered sensor has to be equipped with an API that provides
temperature with numeric format and in Celsius degrees.

• Discover and call an API that can detect anomalies
of streamed data (in this case, continuous temperature
measurement from a thermal sensor) in the output of
calling previous API.

• Discover and call an API that can store the anomaly data.
These generic APIs that are not device specific, can be
implemented using any SOA approach, such as SOAP
of REST. A smart interface is responsible for parsing
service description files such as WSDL, if required, and
finally call the service. Returned result can be mapped to
another format or object by defining routines that describe
how the mapping between input and output should be
performed. This way, chaining service calls and designing
flows can be easily achieved.

• Find a device or human who can deal with the abnormal
temperature situation.

• Discover and call an API that has the capability of

communicating with the discovered human or device.

For demonstrating the realization of how flow orchestration
can influence task execution and better integration, we use
Anypoint Studio [15], a tool for enterprise service integration
to create and execute flows. Each flow consists of several
service calls which can contain services from other “things”
or be services from outside current domain, such as social
media services. Since security is one of the important points
of consideration in IoT, service calls can use SSL protocol and
security mechanisms such as OAuth for providing confiden-
tiality and proper access control.

For the given case study, end users will be presented with an
interface to discover their desired entities by searching through
them according to name, type, location, or any other custom
defined property. The discovery process is implemented as a
RESTful web service and can be extended to look for “things”
with APIs containing specific words and input types. When
a match is found by searching through API definition files,
that service will be called by Flow Execution Engine and
the response will be analysed by a smart mapper, responsible
for detecting response type. After this step, users can create
mappers to extract information from response of a service call,
change its format if needed, and then forward it as an input of
another service call. This chaining of service calls will make
sophisticated operations feasible.

As shown in Figure 2, first the discovery component which
is implemented as a RESTful web service is invoked. The
parameters used when calling this service depends on what

the user is searching for. In this scenario, the user is looking
for a thermal device capable of sensing a specific room’s
temperature and returning the result in Celsius degrees. Thus,
all these information will be sent as input parameters to the
discovery engine and the result is analysed and mapped to
appropriate format using a data mapper component. Finally,
the URL of the sensor’s API description document is saved in
a local variable.

The next step is calling sensor’s service using its API
description document, which is in RAML format. This is
achieved by using “APIkit Router” tool to parse the RAML
file and then invoke the target service. We should mention
that the way each RAML file is parsed and its services are
invoked in Anypoint Studio, requires additional steps including
loading the file and calling any specific service defined in it,
which for sake of simplicity are not shown here. Behind the
scenes, APIkit Router first loads the configuration settings,
giving the location of RAML file for this entity. Then based
on the services defined in the RAML file, appropriate stubs are
created to connect to the specified endpoint . Finally, the result
of calling the web service to sense the room’s temperature is
mapped to a convenient format and stored in a global session
variable.

In Figure 3, same approach for using discovery component
is taken to search for an anomaly detection service. The result
from calling discovery component is mapped and saved in a
local variable and then the first flow is called to get the room’s
temperature. Later, anomaly detection service is called and the
analysed result is stored in a global session variable and a local
file. Here we used a pre-defined toolkit to store the file, but
same discovery and call procedure can be used to find services
providing the option of saving data to any desired file.

Figure 4 depicts the same process used in previous steps to
discover a person capable of handling anomalies in data. Again
for simplicity, we assume such a person exists, otherwise, we
can use condition specifying tools to check if the result from
any step is empty or has a specific content. By passing the
RAML file containing the API description of how to contact
the expert person to APIkit tool and eventually calling the
target service, we can then use a SMTP toolkit to notify him
by Email.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced a framework to describe
devices, sensors, humans, and their available services using
web API notation and API definition languages. A two-
phase discovery approach was also proposed to find entities
having certain properties, while having services that match
a specific pattern of keywords and input types. Additionally,
flow composition was opted and discussed as an appropriate
way of integrating “things” and creating sophisticated tasks,
thus forming a novel and practical framework for IoT domain.

For future work, we plan to extend current framework to
support semantic reasoning and annotations, resulting in more
precise query matching rate. Furthermore, considering seman-
tic web and Linked Data with protocols specially designed for

IoT like CoAP can be pursued as future directions.
Moreover, since Cloud Computing provides great opportu-

nities for executing flows based on how many resources they
need, flow scheduling optimization in Cloud environments,
particularly scheduling flows for integrated stream processing
is of our interest.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and
methodology, 20132018,” June 2014. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.html

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] MuleSoft, “Restful application modeling language.” [Online]. Available:
http://www.raml.org

[4] I. Ishaq, J. Hoebeke, J. Rossey, E. D. Poorter, I. Moerman, and
P. Demeester, “Enabling the web of things: facilitating deployment,
discovery and resource access to iot objects using embedded web
services,” International Journal of Web and Grid Services, vol. 10, no. 2,
pp. 218–243, 2014.

[5] G. K. Teklemariam, J. Hoebeke, I. Moerman, and P. Demeester, “Facili-
tating the creation of iot applications through conditional observations in
coap,” EURASIP Journal on Wireless Communications and Networking,
vol. 2013, no. 1, pp. 1–19, 2013.

[6] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud
services for the internet of things with coap,” in Proceedings of the 4th
International Conference on the Internet of Things (IoT 2014), 2014.

[7] S. Mayer, D. Guinard, and V. Trifa, “Searching in a web-based in-
frastructure for smart things,” in Internet of Things (IOT), 2012 3rd
International Conference on the. IEEE, 2012, pp. 119–126.

[8] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the soa-based internet of things: Discovery, query, selection, and
on-demand provisioning of web services,” Services Computing, IEEE
Transactions on, vol. 3, no. 3, pp. 223–235, 2010.

[9] V. Stirbu, “Towards a restful plug and play experience in the web of
things,” in Semantic computing, 2008 IEEE international conference on.
IEEE, 2008, pp. 512–517.

[10] P. Li, J. Dong, J. Wen, and W. Zhou, “A soa-based service discovery
framework in internet of things,” Journal of Convergence Information
Technology, vol. 6, no. 9, 2011.

[11] R. Klauck and M. Kirsche, “Bonjour contiki: A case study of a dns-
based discovery service for the internet of things,” in Ad-hoc, Mobile,
and Wireless Networks. Springer, 2012, pp. 316–329.

[12] Q. Wei and Z. Jin, “Service discovery for internet of things: a context-
awareness perspective,” in Proceedings of the Fourth Asia-Pacific Sym-
posium on Internetware. ACM, 2012, p. 25.

[13] S. Mayer and G. Basler, “Semantic metadata to support device interac-
tion in smart environments,” in Proceedings of the 2013 ACM conference
on Pervasive and ubiquitous computing adjunct publication. ACM,
2013, pp. 1505–1514.

[14] Swagger, “A framework for api definition.” [Online]. Available:
http://swagger.io

[15] MuleSoft, “Anypoint studio.” [Online]. Available: http://www.mulesoft.
com/platform/mule-studio

[16] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with owls-mx,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM, 2006,
pp. 915–922.

