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Abstract. Emerging deadline-driven Grid applications require a num-
ber of computing resources to be available over a time frame, starting
at a specific time in the future. To enable these applications, it is im-
portant to predict the resource availability and utilise this information
during provisioning because it affects their performance. It is impracti-
cal to request the availability information upon the scheduling of every
job due to communication overhead. However, existing work has not
considered how the precision of availability information influences the
provisioning. As a result, limitations exist in developing advanced re-
source provisioning and scheduling mechanisms. This work investigates
how the precision of availability information affects resource provision-
ing in multiple site environments. Performance evaluation is conducted
considering both multiple scheduling policies in resource providers and
multiple provisioning policies in brokers, while varying the precision of
availability information. Experimental results show that it is possible to
avoid requesting availability information for every Grid job scheduled
thus reducing the communication overhead. They also demonstrate that
multiple resource partition policies improve the slowdown of Grid jobs.

1 Introduction

Advances in distributed computing have resulted in the creation of computa-
tional Grids. These Grids, composed of multiple resource providers, enable col-
laborative work and resource sharing amongst groups of individuals and organi-
sations. These collaborations, widely known as Virtual Organisations (VOs) [1],
require resources from multiple computing provider sites, which are generally
clusters of computers managed by queueing-based Resource Management Sys-
tems (RMSs), such as PBS and Condor.

Emerging deadline-driven Grid applications require access to several resources
and predictable Quality of Service (QoS). A given application may require a
number of computing resources to be available over a time frame, starting at a
specific time in the future. However, it is difficult to provision resources to these
applications due to the complexity of providing guarantees about the start or



completion times of applications currently in execution or waiting in the queue.
Current RMSs generally use optimisations to the first come first served policy
such as backfilling to reduce the scheduling queue fragmentation, improve job
response time and maximise resource utilisation. These optimisations make it
difficult to predict the resource availability over a time frame as the jobs’ start
and completion times are dependent on resource workloads.

To complicate the scenario further, users may access resources via mediators
such as brokers or gateways. The design of gateways that provision resources
to deadline-driven applications relying on information given by current RMSs
may be complex and prone to scheduling decisions that are far from optimal.
Moreover, it is not clear how gateways can obtain information from current
RMSs to provision resources to QoS demanding applications. Existing work
on resource provisioning in Grid environments has used conservative backfill-
ing wherein the fragments of the scheduling queue are given to be provisioned
by a broker [2]. These fragments are also termed availability information or free
time slots. We consider impractical to request the free time slots from providers
upon the scheduling of every job due to potential communication overhead.

In this paper, we investigate how the precision of availability information af-
fects resource provisioning in multiple site environments. In addition, we enhance
traditional schedulers, allowing the obtention of availability information required
for resource provisioning. We evaluate the reliability of the provided information
under varying conditions by measuring the number of provisioning violations. A
violation occurs when the information given by the resource provider turns out
to be incorrect when it is used by the gateway. Additionally, we evaluate the im-
pact of provisioning resources to Grid applications on providers’ local requests by
analysing the job bounded slowdown. We investigate whether EASY backfilling
and multiple partition policies provide benefits over conservative backfilling if
job backfilling is delayed, enabling large time slots to be provided to the gateway.

2 Related Work

The performance analysis and the policies proposed in this work are related to
previous systems and techniques in several manners.
Modelling providers’ resource availability: AuYoung et al. [3] consider a
scenario wherein service providers establish contracts with resource providers.
The availability information is modelled as ON/OFF intervals, which correspond
to off-peak and peak periods respectively. However, they do not demonstrate in
practice how this information can be obtained from RMSs.
Advance reservations and creation of alternatives to rejected requests:
Mechanisms for elastic advance reservations and generation of alternative time
slots for advance reservation requests have been proposed [4, 5]. These models
can be incorporated in the provisioning scenario described in this work to im-
prove resource utilisation and generate alternative offers for provisioning viola-
tions. However, we aim to reduce the interaction between resource providers and
gateways by allowing the providers to inform the gateways about their spare



capacity. We focus on how the availability information can be obtained from
RMSs and how reliable it is under different conditions.
Multiple resource partition policies: Work on multiple resource partitions
and priority scheduling has shown to reduce the job slowdown compared to
EASY backfilling policies [6]. We build on this effort and extend it to enable other
multiple partition policies. We also propose a new multiple resource partition
policy based on load forecasts for resource provisioning.
Resource allocation in consolidated centres: Padala et al. [7] apply con-
trol theory to address the provision of resources to multi-tier applications in a
consolidated data centre. Garbacki and Naik [8] consider a scenario wherein cus-
tomised services are deployed on virtual machines which in turn are placed into
physical hosts. Although the provisioning of resources to applications in utility
data centres is important, here we focus on traditional queue-based RMSs.
Shared spaces for collaborative scheduling: Ranjan et al. [9] use a P2P
tuple space to co-ordinate the matching of user requests and providers’ resource
claims [9] in federated clusters. We will explore a shared space in future work
with multiple gateways exchanging resource shares obtained from providers.
Resource provisioning: Singh et al. [2, 10] present a provisioning model where
Grid sites provide information on the time slots over which sets of resources are
available. The sites offer their resources to the Grid in return for payments,
thus they present a cost structure consisting of fixed and variable costs over
the resources provided. The main goal is to find a subset of the aggregated
resource availability, termed as resource plan, such that both allocation costs
and application makespan are minimised. Our work is different in the sense that
we investigate multiple approaches to obtain availability information and how
reliable this information can be in multiple site environments.

3 Multiple-Site Resource Provisioning

The multiple site scenario is depicted in Figure 1, which shows DAS-2’s config-
uration used later in the experiments. A Resource Provider (RP) contributes a
share of computational resources to a Grid in return for regular payments. An
RP has local users whose resource demands need to be satisfied, yet it delegates
provisioning rights over spare resources to an InterGrid Gateway (IGG) by pro-
viding information about the resources available in the form of free time slots.
A free time slot describes the number of resources available, their configuration
and time frame over which they will be available. The delegation can be made
through a secure protocol such as SHARP [11].

A Grid can have peering arrangements with other Grids managed by IGGs
and through which they co-ordinate the use of resources. This work does not ad-
dress peering arrangements [12]. Here, we investigate how an IGG can provision
resources to applications based on the availability information given by RPs.
Problem Description: An IGG attempts to provision resources to meet its
users’ QoS demands, improve the job slowdown and minimise the number of
violations. A violation occurs when a user tries to use the resources allocated by
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Fig. 1. Resource providers contribute to the Grid but have local users.

the IGG and they are no longer available due to wrong or imprecise availability
information given by the RP. RPs, on the other hand, are willing to increase the
resource utilisation without compromising their local users requests. IGG should
achieve allocations that minimise the response time and slowdown of Grid users’
requests without perceivable impact on the slowdown of the RPs’ local requests.
Grid Requests: A request received by an IGG is contiguous and needs to be
served with resources from a single resource provider. They contain a description
of the required resources and the time duration over which they are required.
A request can demand either QoS or a best effort service. A QoS constrained
request has an execution estimate, a deadline and a ready time before which the
request is not available for scheduling. A best effort job has an execution time
estimate but does not have a deadline.

4 Policies Investigated

We have extended traditional scheduling policies in order to obtain the free time
slots from resource providers. The policies utilise an ‘availability profile’ similar
to that described by Mu’alem and Feitelson [13]. The availability profile is a list
whose entries describe the CPUs available at particular times in the future. These
entries correspond to the completion or start times of jobs and advance reserva-
tions. By scanning the availability profile and using other techniques described
here, the resource providers inform the gateway about the free time slots; the
gateway in turn can carry out provisioning decisions based on this information.
Conservative Backfilling Based Policies: Under conservative backfilling, a
job is used to backfill and start execution earlier than expected, given that it
does not delay any other job in the scheduling queue [13]. In order to reduce
complexity, the schedule for the job is generally determined at its arrival and the
availability profile is updated accordingly. Given those conditions, it is possible
to obtain the free time slots by scanning the availability profile. This approach,
depicted in Figure 2a, was also used by Singh et. al [2, 10]. In that case, the
availability profile is scanned until a given time horizon thus creating windows
of availability or free time slots; the finish time of a free time slot is either
the finish time of a job in the waiting queue or the planning horizon. We have
also implemented a conservative backfilling policy that uses multiple resource
partitions based on the EASY backfilling proposed by Lawson and Smirni [6].
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Fig. 2. Obtaining free time slots: (a) conservative backfilling, (b) multiple partitions.

Multiple Resource Partition Policies: We have implemented 3 policies based
on multiple resource partitions. In our implementation, each policy divides the
resources available in multiple partitions and assigns jobs to these partitions ac-
cording to partition predicates. A partition can borrow resources from another
when they are not in use by the latter and borrowing is allowed by the sched-
uler. One policy implements the EASY backfilling (aka aggressive backfilling)
described by Lawson and Smirni [6]. In this case, each partition uses aggressive
backfilling and has a pivot, which is the first job in the waiting queue for that
partition. A job belonging to a given partition can start its execution if it does
not delay the partition’s pivot and the partition has enough resources. In case
the partition does not have enough resources, the job can still start execution
if additional resources can be borrowed from other partitions without delaying
their pivots. Additionally, the policy uses priority scheduling wherein the wait-
ing queue is ordered by priority when the scheduler is backfilling. In order to
evaluate this policy, we attempt to maintain the configuration provided by Law-
son and Smirni [6], which selects partitions according to the jobs’ runtimes. The
partition p ∈ {1, 2, 3} for a job is selected according to Equation 1, where tr is
the job’s runtime in seconds.

p =

8><>:
1, 0 < tr < 1000

2, 1000 6 tr < 10000

3, 10000 6 tr

(1)

We also introduce a new policy, depicted in Figure 2b, in which, the partitions
are resized by the scheduler at time intervals based on a load forecast computed
from information collected at previous intervals. As load forecasts are prone to
be imprecise, when the scheduler resizes partitions, it also schedules reallocation
events. At a reallocation event, the scheduler evaluates whether the load forecast
has turned out to be an underestimation or not. If the load was underestimated,
the policy resizes the partitions according to the load from the last resizing
period until the current time and backfill the jobs, starting with the local jobs.
We use EASY backfilling with configurable maximum number of pivots, similarly



to MAUI scheduler [14]. The policy can be converted to conservative backfilling
by setting the number of pivots to a large value, here represented by ∞.

Algorithm 1 describes two procedures of the load forecast policy; getFree-
TimeSlots is invoked when the provider needs to send the availability informa-
tion to the IGG whereas reallocationEvent is triggered by getFreeTimeSlots to
verify whether the previous forecast has turned out to be precise or if a realloca-
tion is required. From line 3 to 4 the scheduler becomes conservative backfilling
based by setting the number of pivots in each partition to ∞. It also schedules
the jobs in the waiting queue. After that, the scheduler returns to EASY backfill-
ing (line 5). Then, from line 6 to 10, the scheduler obtains the load forecast and
the free time slots, which are resized by modifying the number of CPUs accord-
ing to the number of resources expected to be available over the next interval.
Next, the scheduler triggers a reallocation event. At line 19 the scheduler verifies
whether the forecast was underestimated. If that is the case, it turns the policy
to conservative backfilling and informs the gateway about the availability. We
have also implemented a multiple resource partition policy based on conservative
backfilling.

Algorithm 1: Provider’s load forecasting policy.

procedure getFreeTimeSlots()1
begin2

set number of pivots of local and Grid partitions to ∞3

schedule / backfill jobs in the waiting queue4
set number of pivots of local and Grid partitions to 15

actualLoad← load of waiting/running jobs6
forecast← get the load forecast7

percToProvide← min{0, 1− actualLoad}8
slots← obtain the free time slots9
slots← resize slots according to percToProvide10
if percToProvide > 0 then11

inform gateway about slots and schedule reallocation event12

schedule next event to obtain free time slots13

end14

procedure reallocationEvent()15
begin16

localLoad← obtain the local load17
forecast← get the previously computed forecast18
if localLoad > forecast then19

set number of pivots of local partition to ∞20

schedule / backfill jobs in the waiting queue21
set number of pivots of Grid partition to ∞22

schedule / backfill jobs in the waiting queue23
slots← obtain the free time slots24
inform gateway about slots25

else26
schedule next reallocation event27

end28

The policies we consider for the gateway are described as follows:



-Least loaded resource: The gateway submits a job to the least loaded
resource based on utilisation information sent by the resource providers
every ten minutes.

-Earliest start time: This policy is employed for best effort and deadline
constrained requests when the resource providers are able to inform the
gateway about the free time slots. When scheduling a job using this policy,
the scheduler is given the provider’s availability information and the job.
If the providers send the information at regular time intervals, this infor-
mation is already available at the gateway; otherwise, the gateway requests
it from the resource providers. If the job is not deadline constrained, the
gateway selects the first provider and submits the job to it. When the job
is deadline constrained, the gateway attempts to make a reservation for it.
If the reservation cannot be accepted by the provider, the provider updates
its availability information at the gateway.

5 Performance Evaluation

5.1 Scenario Description

We have modelled DAS-2 Grid configuration because job traces collected from
this Grid and its resources’ configuration are publicly available and have been
previously studied [15]. As depicted in Figure 1 beforehand, DAS-2 is a Grid in-
frastructure deployed in the Netherlands comprising 5 clusters. The evaluation
of the proposed mechanism is performed through simulation by using a modi-
fied version of GridSim.1 We resort to simulation as it provides a controllable
environment and enables us to carry out repeatable experiments.

The resource providers’ workloads have been generated using Lublin and Fei-
telson [16]’s model, here referred to as Lublin99. Lublin99 has been configured
to generate four month long workloads of type-less jobs (i.e. we do make distinc-
tions between batch and interactive jobs); the maximum number of CPUs used
by the generated jobs is set to the number of nodes in the clusters. Grid jobs’
arrival rate, number of processors required and execution times are modelled
using DAS-2 job trace available at the Grid Workloads Archive.2 We use the
interval from the 9th to the 12th month. The jobs’ runtimes are taken as runtime
estimates. Although this generally does not reflect the reality, it provides the
basis or bounds for comparison of scheduling approaches [17].

To eliminate the simulations’ warm up and cool down phases from the results,
the last simulated event is the arrival of the last job submitted in any of the
workloads and we discard the first two weeks of the experiments. In the case
of the forecast based policy, the second week is used as training period. We
select randomly the requests that are deadline constrained. In order to generate
the request deadlines we use a technique described by Islam et al. [18], which
provides a feasible schedule for the jobs. To obtain the deadlines, we perform the
1 More information available at: http://www.gridbus.org/intergrid/gridsim.html
2 Grid Workloads Archive website: http://gwa.ewi.tudelft.nl/pmwiki/



experiments by using the same Grid environment using aggressive backfilling at
the resource providers and ‘submit to the least loaded resource’ policy at the
gateway. A request deadline is the job completion under this scenario multiplied
by a stringency factor. The load forecasting uses a weighted exponential moving
average [19], considering a window of 25 intervals.
Performance Metrics: One of the metrics considered is the bounded job slow-
down (bound=10 seconds) hereafter referred to as job slowdown for short [17].
Specifically, we measure the bounded slowdown improvement ratio R given by
Equation 2, where sbase is the job slowdown using a base policy used for com-
parison; and snew is the job slowdown given by the policy being evaluated. We
calculate the ratio R for each job and then take the average. The graphs pre-
sented in this section show average ratios.

R =
sbase − snew

min(sbase, snew)
(2)

We also measure the number of violations and messages exchanged between
providers and IGG to schedule Grid jobs. The reduction in the number of mes-
sages required is used for estimating the tradeoff between precision of information
and communication overhead. A given job j faces a violation when the inequality
jpst − jgst > T is true, where jgst is the job start time assigned by the gateway
based on the free time slots given by providers; jpst is the actual job start time
set by the provider’s scheduler; and T is a tolerance time. The experiments
performed in this work use a T of 20 seconds. A violation also occurs when a
resource provider cannot accept a reservation request made by the gateway.
Policy Acronyms: Due to space limitations, we abbreviate the name of the
evaluated policies in the following manner. A policy name comprises two parts
separated by +. The first part represents the policy employed by the provider
whereas the second is the gateway policy. In the resource provider’s side, Ar
stands for Advance reservation, Eb for EASY backfilling, Cb for Conservative
backfilling, M for Multiple partitions and Mf for Multiple partitions with load
forecast. For the gateway’s policy, least-load means ‘submit to least loaded
resource’, earliest represents ‘select the earliest start time’, partial indicates
that providers send free time slot information to the gateway on a periodical
basis and ask means that the gateway requests the free time slot information
before scheduling a job. For example, ArEbMf+earliest-partial indicates that
providers support advance reservation, EASY backfilling, multiple partitions and
load forecasts, whereas the gateway submits jobs selecting the earliest start time
based on the availability information sent by providers at regular intervals.

5.2 Experimental Results

The first experiment measures the number of messages required by the policies
supporting advance reservation and conservative backfilling (i.e. ArCb), both
that request the free time slots and those in which the time slots are informed
by providers at time intervals. We investigate whether we can reduce the number



of messages required by making the resource providers publish the availability
information at gateways at time intervals. We vary the interval for providing the
availability information; we also measure the number of violations and average
job slowdown to check the tradeoff between the precision of scheduling decisions
and the freshness of the information. The planning horizon is set to∞, so that a
provider always informs all the free time slots available. In addition, we consider
a two phase commit protocol for advance reservations. The time interval for
providing the time slots to the gateway is described in the last part of the name
of the policies (e.g. 15 min., 30 min.). The stringency factor is 5 and around 20%
of the Grid requests are deadline constrained.
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Figure 3a shows that the number of messages required by the policy in
which the gateway asks for the time slots upon the schedule of every job (i.e.
ArCb+earliest-ask) is larger compared to other policies. In contrast, policies that
provide the free time slots at regular intervals or when an advance reservation
request fails lead to a lower number of messages.

The number of violations increases as the providers send the availability in-
formation at larger intervals (Figure 3b). If the scheduling is made based on
information provided every 15 minutes, the number of violations is 973, which
accounts for 0.43% of the jobs scheduled. To evaluate whether these violations
have an impact on the resource provisioning for Grid jobs, we measure the av-
erage bounded slowdown of Grid jobs (Figure 3c). As shown in the figure, there
is an increase in the job slowdown as the interval for providing the free time
slots increases. However, when the providers send availability information every
15 minutes, the average slowdown is improved. We can conclude that for a Grid
like DAS-2 wherein providers send the availability information at intervals of
15 to 30 minutes resource provisioning can be possible using a simple policy
supporting conservative backfilling.

The second experiment measures the average of jobs ratio R described in
Equation 2 proposed by Lawson and Smirni [6]. The values presented in the
graphs are averages of 5 simulation rounds, each with different workloads for



providers’ local jobs. The set of policies used as basis for comparison are EASY
backfilling in the providers and ‘submit to the least loaded resource’ in the gate-
way. This way, the experiment measures the average improvement ratio wherein
the base policies are EASY backfilling and submit to the least loaded resource.
The resource providers send the availability information to the gateway every
two hours. In this experiment we do not consider deadline constrained requests,
as they could lead to job rejections by some policies, which would then impact
on the average bounded slowdown.

The results conservative backfilling and ‘least loaded resource’ policies (i.e.
ArCb+least-load and ArCbM+least-load) tend to degrade the bounded slow-
down of Grid jobs (Figure 4a). The reason is that submitting a job to the least
loaded resource, wherein utilisation is computed by checking how many CPUs
are in use at the current time, does not ensure immediate start of a job because
other jobs in the waiting queue may have been already scheduled. Moreover, the
gateway is not aware of the time slot the job will in fact utilise.
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The multiple resource partition policies with conservative backfilling without
priorities and providing the free time slots to the gateway improve the average
slowdown of both Grid jobs (Figure 4a) and providers’ local jobs (Figure 5b).
ArEbM+least-load, proposed by Lawson and Smirni [6], improves the slowdown
of local jobs (Figure 4b) providing little changes in the slowdown of Grid jobs.
That occurs because in the original implementation of this policy, higher priority
is given to local jobs. The EASY backfilling policy that resizes the resource
partitions according to load estimates improves the slowdown of both Grid jobs
(Figure 4a) and providers’ local jobs but not as much as that of the other multiple
partition policies.

We also vary the intervals for providing the free time slots in the previous ex-
periment. Figure 5a shows that for small planning horizons, the multiple resource
partition policy with EASY backfilling and load estimates (i.e. ArEbMf+earliest-
partial) improves the average ratio, but not as much as the other policies. How-
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ever, as the time interval for providing the availability information increases, the
policy outperforms the other multiple partition policies. The slowdown improves
compared to the other policies when the interval increases. The reason for the
better performance under long intervals is probably because if a load estimate is
wrong, the policy becomes a multiple partition conservative backfilling. When an
incorrect estimate is identified in a long interval, it may take a while to approach
the next interval when the policy will become EASY backfilling again. This con-
servative backfilling provides a better slowdown and updating the availability in
the middle of an interval provides an advantage over the other policies. How-
ever, to confirm that, we require further investigation. Furthermore, we expect
that better load forecast methods can improve the jobs slowdown under varying
intervals.

6 Conclusions and Future Work

This work investigates resource provisioning in multiple site environments. It
evaluates whether it is possible to provision resources for Grid applications based
on availability information given by resource providers using existing resource
management systems. We present empirical results that demonstrate that in an
environment like DAS-2, a gateway can provision resources to Grid applications if
the resource providers inform the available time slots between 15 and 30 minutes.
Additionally, multiple resource partition policies can improve the slowdown of
both local and Grid jobs if conservative backfilling is used. Future investigations
include more sophisticated resource provisioning policies for the gateways and
more accurate load forecasting techniques.
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