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Abstract

Numerous Grids have been created during the last years.
Most of these Grids work in isolation and with different
utilisation levels. As the resource utilisation within a Grid
has fixed and operational costs, there can be benefits for a
Grid to offload requests to another Grid or provide spare re-
sources, thus reducing the cost of over-provisioning. In this
work, we enable load management across Grids through
resource exchange between them considering the cost for
one Grid to acquire resources from another. However, en-
abling resource exchange amongst Grids is a challenging
task: a Grid should not compromise the performance of
its local user communities’ applications, yet benefit from
providing spare resources to other Grids. The load man-
agement mechanism and related policies take into consid-
eration the economic compensation of providers for the re-
sources allocated. Experimental results show that the mech-
anism achieves its goal in redirecting requests, increasing
the number of user requests accepted and balancing the
load amongst Grids.

1. Introduction

The potential of Grid computing has led to the creation
of several Grid-based resource sharing networks (e.g. Ter-
aGrid [5], Naregi [19] and Open Science Grid [21]). Al-
though these Grids have been used for various applications,
they mostly work in isolation and with different utilisation
levels [14], thus contrasting with the original view of Grid
computing [10]. The Grid Interoperability Now - Commu-
nity Group (GIN-CG) [12] has been working to provide
interoperability between Grids by developing components
and adapters to enable secure job submissions, data trans-
fers and information queries. These efforts are crucial to en-

able interoperability between Grids, but GIN-CG also high-
lights the need for resource management across Grids.1

A Grid infrastructure is expensive to maintain as re-
source utilisation within it has fixed and operational costs
such as those with electricity providers and system adminis-
trators. Resource providers may offer resources to the Grid
expecting some economic compensation. Consequently,
there can be benefits for a Grid to provide spare capacity to
peering Grids, possibly in return for regular payments, and
to acquire resources from peering Grids to serve occasional
internal peak demands. This load management across Grids
could reduce the costs incurred by over-provisioning.

Enabling load management across Grids, however, is
complex due to the autonomy for capacity planning and
provisioning of resources to user communities within each
Grid. There is contention for resources and dynamicity of
shares supplied by resource providers within each Grid. The
main challenges when designing a load management mech-
anism are how a Grid can (i) meet the demand of local user
communities by providing the required resources; (ii) co-
ordinate with other Grids through peering arrangements or
contracts to acquire additional resources to satisfy excess
demands; and (iii) provide spare resources to other Grids in
return for payments.

In this work, we focus on load management across
Grids and investigate a resource exchange mechanism that
takes into account the economic compensation of resource
providers and considers the cost for one Grid to acquire
computational resources from another. Grids establish con-
tracts that resemble the peering arrangements between In-
ternet Service Providers (ISPs). The Internet is composed of
competing ISPs that agree to allow traffic into one another’s
networks providing their customers with connectivity to the

1The personal communication amongst GIN-CG members is online at:
http://www.ogf.org/pipermail/gin-ops/2007-July/000142.html



entire Internet. These agreements between ISPs are com-
monly termed as peering and transit arrangements [18].
Here, Grids establish arrangements specifying the type of
resource exchanged as well as their price.

The proposed mechanism allows a peering Grid to redi-
rect a request to another Grid when the cost of serving it
locally is higher than the price the Grid would pay to the
peering Grid to process the request. The redirection takes
place between Grids that have a pre-established peering ar-
rangement. We evaluate the proposed mechanism in terms
of load balancing across the Grids and the increase in the
overall request acceptance rate.

The main contributions of this paper are:

• A load management mechanism based on resource ex-
change and request redirection between Grids.

• Policies for redirection (acceptance) of requests across
(from) peering Grids, which allow a Grid to evaluate
when it is economic beneficial to redirect (accept) re-
quests.

2. Related Work

Several Grid-based resource sharing networks have been
built over past few years [3, 5–7, 19, 21, 27]. Recently, ini-
tiatives have emerged for linking resource sharing networks.
OneLab2 [20] and the Global Environment for Network In-
novations (GENI) [23] have evolved from the PlanetLab ar-
chitecture [22] to allow the federation of autonomous net-
works controlled by different organisations. GIN-CG under
the Open Grid Forum [12] utilises community efforts to ad-
dress issues on security, standard job submission, data man-
agement and information services. Other Grid middleware
interoperability approaches have also been presented [28].
These efforts provide the basis for load management across
Grids by facilitating standard job submission and request
redirection. We attempt to build on these to investigate re-
source management across Grids.

Shirako [15,24] is a resource management system based
on a resource leasing abstraction. This system allows sites
to delegate limited power to allocate their resources by reg-
istering their offerings with brokers. Guest applications can
acquire resources from brokers by leasing them for a spec-
ified time. Our work shares some concepts with Shirako
such as the delegation of provisioning rights. We focus on
the policies for resource exchange amongst InterGrid Gate-
ways, which are similar to brokers in Shirako. To the best
of our knowledge, resource exchange amongst Shirako bro-
kers has not been explored yet. Grit et al. [13] investigate
the number of Virtual Machine (VM) migrations required
when a broker and provider sites use either conflicting or
synchronised policies for resource provisioning. They show
that when providers and the broker use conflicting policies,

the number of migrations can be high. The present work
does not investigate VM migrations and models the load of
resource providers as an on-off model described later [1].
Additionally, while Grit et al. investigate the impact of con-
flicting policies, we take into account the resource cost and
the exchange of resources by brokers.

Iosup et al. [14] introduce a matchmaking protocol in
which a site binds resources from remote sites to the local
environment. Delegated matchmaking enables requests for
resources to be delegated up and down the proposed site hi-
erarchy. Our model shares aspects with Iosup et al.’s work,
in the sense that InterGrid Gateways work as site recom-
menders so matching requests to resources available. How-
ever, it differs with respect to the resource exchange pro-
tocol and the consideration for economic compensation for
the resources acquired from the providers.

A Service Level Agreement (SLA) based co-ordination
mechanism for a federation of clusters of computers was
proposed by Ranjan et al. [25]. A Grid Federation Agent
(GFA) is the resource management system responsible for
scheduling jobs at a cluster level. A GFA negotiates con-
tracts and redirects requests to another cluster through a
Contract-Net based protocol. In the present work, an In-
terGrid Gateway is a broker with information about the free
time slots at a group of resource providers. In addition, in
contrast to GFAs, gateways do not engage into bilateral ne-
gotiations if the requests can be handled locally without in-
creasing the cost above its threshold.

The mechanism presented in this work derives from
Medusa [2], a stream processing system that allows the mi-
gration of stream processing operators from overloaded re-
sources to resources with spare capacity. However, it dif-
fers in terms of the negotiation protocol for exchanging re-
sources between Grids and the resource selection and re-
quest redirection policies.

Wang and Morris [29] demonstrated that efficiency in
load sharing depends on the environment. In addition,
server-initiated tends to out-perform source-initiated strate-
gies when the same amount of information about stakehold-
ers is available. Their experiments consider single proces-
sor nodes in a local network. In our scenario, resources
have multiple processors; also, resources are heterogeneous
in the number of processors. These make the local schedul-
ing sub-problem different; in addition, resource manage-
ment across Grids introduces a third subproblem: the load
sharing between Grids. Surana et al. [26] address the load
balancing in DHT-based P2P networks. Nodes of the P2P
system run virtual servers responsible for ranges of objects
in the address space; they inform directories about the load
in the virtual servers whereas the directories periodically
compute reassignments. Load balancing is achieved by mi-
grations of virtual servers. Although this technique has a
very low overhead, we do not perform migration of virtual
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Figure 1. The main InterGrid components.

servers, and focus on the request redirection and their as-
signment to resources.

3. InterGrid: Resource Exchange across Grids

Our previous work introduced an architecture, called
the InterGrid, based on gateways that mediate resource ex-
change between Grids. It allows participants to allocate re-
sources from different Grids in a seamless manner. We pro-
vide an overview of the InterGrid in this section, but for
more details about the architecture and project goals, we
refer to another work [9].

The InterGrid is inspired by the peering agreements be-
tween ISPs. The Internet is composed of competing ISPs
that agree to allow traffic into one another’s networks.
These agreements between ISPs are commonly termed as
peering and transit arrangements [18]. The resources ex-
changed between Grids can be physical or virtual resources
such as Virtual Machines (VMs). Figure 1 provides an
overview of the InterGrid architecture.

A Resource Provider (RP) contributes a share of compu-
tational resources, storage resources, networks, application
services or other type of resource to a Grid in return for
regular payments. An RP advertises the resource by dele-
gating its provisioning rights over a given time frame. This
delegation can use a secure protocol such as SHARP [11].
In this paper we consider one type of resource (i.e. CPU);
the resource providers send the availability information in
the form of free time slots. A free time slot contains the
number of CPUs available, their configuration, and the start
and finish times of the slot. For the sake of simplicity here,
an RP delegates provisioning rights directly to an InterGrid
Gateway (IGG). However, the architecture also considers
the case wherein the Grid has already an internal broker or
resource management system [9].

A Grid has peering arrangements with other Grids, man-
aged by IGGs and, through which they coordinate the use of
resources of the InterGrid.2 An IGG is aware of the terms
of the peering with other Grids; provides Grid selection ca-

2The assumption of pre-established arrangements is reasonable as cur-
rent Grids need to reserve the network links and set up the resources re-
quired. An example includes the interconnection of Grid’5000 with DAS-3
and NAREGI. More information is available at http://www.grid5000.fr

pabilities by selecting a suitable Grid able to provide the re-
quired resources; and replies to requests from other IGGs.
The peering arrangement between two Grids is represented
as a contract. Request redirection policies determine what
peering Grid is selected to process a request and at what
price the processing is performed.

When a Grid user needs to deploy or execute an appli-
cation, he/she requests the IGG for a number of resources.
When the individual Grid cannot provide the required re-
sources, the IGG selects a peering Grid based on the peering
agreements and the policies in place. The user is then given
a resource ticket granting access to the resources, which will
later be passed to the selected provider in return for the re-
quired resources.

A request is contiguous and needs to be served with re-
sources from a single resource provider. We do not han-
dle co-allocations in this work. A request received by an
IGG contains a description of the required resources and
the usage time. The request can require a best effort ser-
vice, meaning that the resources can be provided at any time
as long as they are made available for the requested usage
time. Alternatively, for some requests, the resources need
to be allocated within a specified deadline.

3.1. The Resource Exchange

The peering agreements between Grids define (i) what
resources are exchanged between the Grids and the price
of the resources exchanged. The policies specify when an
IGG redirects requests to another, and when a request redi-
rected by one IGG is accepted by another IGG. Therefore,
the goal of a participating IGG is to (i) serve its user com-
munities by providing allocations that assign resources to
satisfy their requirements; (ii) offer spare resources to peer-
ing Grids under some economic compensation; and (iii) ac-
quire resources from other Grids to satisfy its users under
peak load conditions.

4. The Load Management Mechanism

For each IGGi, the allocation of its resources by its user
communities over a unit of time represents a cost. The
real-valued total cost function of IGGi is represented by
costi(L), where 0 6 L 6 1 is the current load determined
by the number of resource units available in its Grid. For
simplicity, here a resource unit corresponds to one resource
per second (i.e. a second of a CPU). Therefore, the total
cost given by costi(L) depends on the number of resources
allocated by the requests. Although each Grid could have
its own cost function, in this work, the participating Grids
utilise a quadratic cost function. The use of a quadratic
function allows us to specify contracts with price ranges as
discussed later in this section.
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The cost function costi(L) is given by [Lunits ∗ (pcost +
(pcost∗(βL)2))], where Lunits is the number of units in use
at load L, β is a small constant value that determines how
steep the cost curve is as the load approaches 1 and pcost

is the average price that IGGi pays to resource providers
for a resource unit. The price of a resource unit within
IGGi is given by the second part of the cost function (i.e.
pcost + (pcost ∗ (βL)2). We derive the average price pcost

paid by IGGi to resource providers for a resource unit us-
ing Equation 1.

pcost =
n∑

i=1

(
cpi

(
rui∑n

j=1 ruj

))
(1)

where n is the number of resource providers in IGGi’s
Grid; cpi is the price of a resource unit at resource provider
i; and rui is the number of resource units contributed by
provider i until a given time horizon. This horizon is the re-
quest deadline when calculating the request cost described
next. When updating the prices for resource units specified
in the contracts, the horizon is the time of the next contract
update (i.e. the next time when the IGGs update the prices
of units negotiated). This way, L is dependent on how many
resource units are available from the start time until the hori-
zon and how many units are in use.

A request redirection is decided based on the per request
cost mci : (u, L) → < which is the increment in total cost
for IGGi for agreeing to provide resource units required by
request u given its current load or allocations. If request
u requires resource units that place uload load in IGGi’s
Grid, then the cost of serving u is derived by Equation 2. If
request u requires one resource unit, then the request cost is
equals to a unit cost.

mci = costi(L+ uload)− costi(L) (2)

IGGi has a load threshold, by crossing which IGGi

considers itself overloaded. The redirection of requests
is enabled between Grids that have negotiated contracts,
at within the contracted price range. A contract Ci,j be-
tween IGGi and IGGj has a price range PR(Ci,j) :
[pricemin, pricemax], where pricemin and pricemax are
the minimum and maximum prices respectively paid by
IGGi for a resource unit allocated from IGGj . IGGi

can have contracts with multiple Grids. During periods
of peak load, IGGi can redirect requests to IGGj if and
only if both have a contract. Based on the current load lev-
els, they agree on a final price pricefinal within PR(Ci,j).
IGGi pays the amount equivalent to (pricefinal∗ number
of units). The redirection occurs when a Grid forwards re-
quests to another because the cost of fulfilling the requests
is higher than the amount that it would have to pay to the
other Grid to serve them.

4.1. Contract Types

We support two kinds of contracts: fixed price and
price range contracts. A fixed price contract is given
by PR(Ci,j) : [pricemax, pricemax] where pricemax is
the fixed price and a price range contract corresponds to
PR(Ci,j) : [pricemax−∆, pricemax], where ∆ determines
the price range. In the case of price range contracts, partic-
ipating Grids have to negotiate the final price at runtime.
As discussed by Balazinska et al. [2], a load management
mechanism based on fixed price contracts may present dis-
advantages in some cases. For example, it reduces the flex-
ibility in redirecting requests as a Grid can only offload re-
quests if their cost is higher than the exact price it would
pay to another Grid (i.e the number of resource units re-
quired by the request multiplied by the unit cost specified in
the contract).

We define the price range for a resource unit considering
the decrease of load k from the load L. Let u be a request that
requires uunits resource units and causes an increase in load
uload. The decrease in the per-unit cost due to removing k
from the Grid’s L is represented by δk, which is defined by
Equation 3.

δk(L) =
mc(u, L− uload)−mc(u, L− k − uload)

uunits
(3)

δk is the approximate difference in the cost function gra-
dient evaluated at the load level including and excluding
load k. Given a contract with fixed price pricemax, L is
the maximum load that an IGG can approach before its per
resource unit cost exceeds pricemax. In order to estimate
the price range for a resource unit in the contracts in our ex-
periments, we let L be the load threshold; uunits be 1 and
∆ = δk. We evaluate different values for L and k.

4.2. Request Redirection Policies

The policies described in this section define how an IGG
offloads requests to peering Grids considering a contract
network and how it accepts requests from other Grids.

During a time interval, IGGi stores the requests in the
waiting queue. After the interval, IGGi orders the contracts
in ascending order of price and for each contract IGGi eval-
uates whether there are requests that can be redirected to
the peer IGG. Figure 2 illustrates the negotiation between
IGGi and IGGj under a price range contract. The scenario
is as follows:
1) IGGi sends an offer to IGGj when IGGi’s unit cost

for the request is higher than the minimum price of the
contract with IGGj). The price in the offer poffer is the
minimum price specified in the contract between IGGi

and IGGj .
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Figure 2. Redirection negotiation.

2) IGGj , in turn, replies with one of the following mes-
sages:

2.1) IGGj sends an accept message whose price is the
price in the initial offer if the request’s cost is lower
than or equals to the amount that IGGi is willing to
pay (i.e. poffer multiplied by the number of resource
units required by the request rqunits).

2.2) If IGGj’s request cost is greater than the amount of-
fered by IGGi, but less than the maximum amount
that IGGi would possibly pay (i.e. the contract’s
maximum price pmax multiplied by rqunits), then
it sends a counter-offer whose price is mcj/rqunits.
For simplicity the counter offer contains the peering
IGGj’s unit cost for the request, but the mechanism
can easily be extended to incorporate a profit margin
or use profit maximisation techniques.

2.3) If IGGj’s request cost is higher than the maximum
amount IGGi is willing to pay, the offer is rejected.

3) After receiving IGGj’s message, IGGi replies in the fol-
lowing manner:

3.1) IGGi accepts the counter-offer if its request cost
is still higher than the amount asked by IGGj (i.e.
number of resource units required rqunits multiplied
by the counter-offer’s price pct;

3.2) Otherwise, the counter-offer is rejected. IGGi keeps
the request in the queue and repeats the whole pro-
cess for the next contract.

IGGj stores the offers and evaluates them at time inter-
vals. The evaluation algorithm sorts the offers by decreasing
order of price. In addition, IGGj maintains a list of tickets
which it has created to serve the requests whose negotiation
is in progress. This way, the evaluation of the request cost
considers the requests being served as well as those whose

negotiation is in progress. Creating a ticket corresponds to
finding a time slot for the job. Moreover, in order to reduce
the number of messages exchanged by IGGs, when IGGi

sends an offer to IGGj , the offer contains a list of requests
that IGGi is willing to redirect to IGGj . That is, a nego-
tiation is performed for a group of requests and not on per
request basis. IGGj can accept all or part of the requests
whose price is within the accepted price range.

As described beforehand, there are two types of requests,
namely best effort and deadline constrained. We use an ear-
liest start time policy to select the resources to serve a re-
quest. The request’s deadline is the time horizon used to
calculate the load in the Grid, the load imposed by the re-
quest and consequently the request cost. This way, the Grid
load for example, is determined by the resource shares pro-
vided by RPs and the allocations until the horizon. For best
effort requests we create a virtual deadline given by the lat-
est start time based on the time slots held by the gateway
plus the runtime estimate; the virtual deadline is used as the
horizon.

5. Performance Evaluation

5.1. Experimental Scenario

The modelled environment is composed of three Grids,
namely DAS-2 in the Netherlands and Grid’5000 and Au-
verGrid in France. The Grids DAS-2, Grid’5000 and Auver-
Grid comprise 5, 15 and 5 clusters respectively. For detailed
information on the characteristics of the clusters we refer to
the Grid Workloads Archive website.3 Figure 3 presents the
environment simulated (layers 1, 2 and 3 represent a picto-
rial view of the physical location of provider sites, their Grid
organisation and the interGrid configuration respectively).
Table 1 summarises the parameters.

Table 1. Parameter description.

Parameter Value
Number of Grids 3
Contract topology all-to-all (Figure 3)
Load at off-peak (ON) intervals (%) 50 – 100
Load at peak (OFF) intervals (%) 20 – 50
ON interval duration (hours) 24 – 72
OFF interval duration (hours) 12 – 48
Cost of a resource unit 0.90 – 1.00
Number of dedicated CPUs (DAS-2) 192
Number of dedicated CPUs (AuverGrid) 234
Number of dedicated CPUs (Grid’5000) 648
Deadline constrained requests (%) 30
Stringency factor 5.00

The evaluation of the proposed mechanism is performed

3http://gwa.ewi.tudelft.nl/pmwiki/
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through simulation by using a modified version of Grid-
Sim [4].4 We use simulation as it provides a controllable
environment and enables us to carry out repeatable experi-
ments. The resource providers use a pricing function for a
resource unit given by price = cost+ (cost ∗ load) where
cost is drawn from a uniform distribution; load is generated
using an on-off model as described by AuYoung et al. [1],
wherein on and off intervals correspond to off-peak and
peak periods respectively. The duration of these intervals
and the load in each are also modelled using uniform distri-
butions as described in Table 1. The on-off model is used to
model the availability of part of the providers, around 50%,
the remaining resource providers are dedicated to the gate-
ways. Table 1 presents the number of CPUs dedicated in
each Grid. We are currently investigating how to improve
this scenario and obtain this provisioning information from
traditional aggressive and conservative backfilling policies
and through the use of multiple resource partitions [8, 17].

The workloads of the Grids use traces of real Grids ob-
tained from the Grid Workloads Archive. We divided the
traces into 4-month intervals. We use the interval between
the 9th-12th months of DAS-2’ trace, the 5th-8th months of
AuverGrid’s and the 17th-20th months of Grid’5000’s. We
make an effort to eliminate the cool-down phase of the sys-
tem. This way, the last simulated event is the arrival of the
last job submitted in any of the Grid workloads. Addition-
ally, we attempt to eliminate the system warm-up by dis-
regarding the first week of the experiments. As described
beforehand, there are two types of requests, namely dead-
line constrained and best-effort. We select randomly the
requests that are deadline constrained. In order to generate
the request deadlines we use a technique described by Islam
et al. [16], which provides a feasible schedule for the jobs.
We perform the experiments by using the same Grid envi-
ronment with no contracts amongst the gateways, using an
aggressive backfilling policy at the resource providers and a
‘submit to the least loaded resource’ policy at the gateway.
A request’s deadline is the completion of the correspond-
ing job under this scenario multiplied by a stringency factor
(Table 1).

We calculate the price of a resource unit in the con-
tracts between the Grids by assigning different values to
L in Equation 3. We perform experiments considering L
equals to 0.99 and 0.95 and with different values for k (i.e.
0.01, 0.05, 0.1 and 0.2). For example, when L=0.99 and
k=0.01, the fixed price (pricemax) of a contract is the cost of
a request requiring one resource unit of the Grid’s capacity
when the Grid is 99% utilised. The price range contract has
a maximum price of pricemax and a minimum price given
by pricemax minus the difference between the request cost
at 99% and at 98% of utilisation.

4More information about the changes in the simulator is available at
http://www.gridbus.org/intergrid/gridsim.html

DAS-2
Grid’5000

AuverGrid

AuverGrid provider site

Grid’5000 provider site

DAS-2 provider site

Peering arrangement

Grid

IGG
IGG

IGG

1

2

3

Figure 3. Contract topology simulated.

Performance metrics: We select two metrics, namely
increase in requests accepted and percentage of the gen-
erated load redirected by the IGGs. The redirected load
demonstrates the performance of the mechanism in terms of
managing peak loads; the increase in requests accepted, on
the other hand, demonstrates whether the IGG compromises
local users by peering with other IGGs. We also compute
the increase in utilisation for comparison against the migra-
tion of load.

5.2. Experimental Results

All the results presented in this section are averages of 10
simulation rounds using different seeds and excluding the
best and worst results. The global increase in the number of
requests served under different types of contracts is shown
in Table 2. Overall, there is an increase in the number of re-
quests accepted, except for DAS-2, whose acceptance rate
is decreased. Further investigation revealed that DAS-2 has
a lower utilisation than the other two Grids. When we calcu-
late the deadlines using the ‘submit to least loaded resource’
and aggressive backfilling policies, the deadlines become
very tight as many jobs are started immediately while oth-
ers backfill easily thus generating very tight deadlines. As
IGGs run the provisioning algorithm at time intervals, some
requests are rejected. When the deadlines are not used, all
the requests are processed. As the price range increases,
more load can be migrated. However, in the experiments
we performed, as k becomes large (e.g. k > 0.2), the mech-
anism becomes unstable as Grids tend to both redirect and
accept too many requests.

The table also shows the increase in resource utilisation
at each Grid. Also, Grid’5000 redirects smaller amounts
of load (Figure 4). Even though it has not a substantial in-
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Table 2. Increase in both requests accepted and resource utilisation.

L = 0.99 L = 0.95

Fixed
Price

k Fixed
Price

k

Metric Grid 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

Increase in number
of requests served

DAS-2 -6.50 -4.50 -3.38 -5.25 -10.00 -5.38 -4.25 -8.00 -4.25 -4.88
AuverGrid 658.00 661.12 661.12 657.00 663.00 650.38 659.50 658.12 661.00 662.00
Grid´5000 19.12 8.88 10.62 4.88 6.38 18.25 7.00 13.12 10.50 14.88

Increase in
resource utilisation
(%)

DAS-2 7.62 7.99 9.42 12.56 8.39 7.72 8.93 8.18 8.69 9.24
AuverGrid -23.30 -24.15 -26.45 -27.56 -29.15 -22.20 -23.45 -25.42 -27.52 -30.96
Grid´5000 6.12 6.38 6.92 6.35 7.98 5.71 5.51 6.78 7.25 8.13
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Figure 4. Load redirected (L=0.99).

crease in the acceptance rate of the requests originated by
its users, it increases its resource utilisation without com-
promising the acceptance rate. This leads to an increase in
profit as they can receive a payment from the other Grids for
the resources provided. However, we do not measure the
profits of each Grid here. Overall, the algorithms achieve
their goal, which is to redirect requests driven by the re-
quests cost. AuverGrid has a decrease in utilisation in con-
trast to DAS-2 and Grid’5000. As AuverGrid has a higher
utilisation than DAS-2 and Grid’5000 when they are not
redirecting requests, this decrease in utilisation shows that
the mechanism is effective in redirecting AuverGrid’s re-
quests to other Grids. Figure 5 shows that there is an ini-
tial load imbalance between the Grids, as the utilisation of
AuverGrid without contracts is close to 70%, while DAS-2
and Grid’5000 are both close to 10%. The table shows that
the mechanism helps in balancing the load across the Grids
connected.

Figure 4 presents the percentage from the load generated
by each Grid migrated to other Grids, or exchanged by the
IGGs. When Grids define the maximum price for a resource
unit as the unit cost at 99% of utilisation (i.e. L = 0.99),
they exchange load and the overall number of requests ac-
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Figure 5. Resource utilisation at Grids (L=0.99).

cepted is improved in almost all the cases (Table 2). The
acceptance is better when the contracts define a price range,
which allows Grids to redirect more load.

When IGGs set the maximum price as the unit cost at
a low value for L and the price range is large, the number
of requests accepted increases whereas the amount of load
exchanged decreases. The reason for this behaviour is that
overloaded IGGs tend to be more conservative in accepting
load from other IGGs, even though they try to migrate load
more easily. An IGGi that needs to offload will redirect re-
quests willing to pay a price lower or equal to the maximum
price of a contract. If the unit cost of the IGG considering
to accept the load is slightly above the maximum price, it
will not accept the load. In our experiments, this behaviour
is reflected in the increase of requests accepted.

The experiments show that load management across
Grids through resource exchange considering the economic
compensation of resource providers is possible. The re-
source utilisation and increase in requests accepted show
that Grids balance their load and redirect requests thus min-
imising the costs with resource usage.

7



6. Conclusions and Future Work

This paper proposes a mechanism and policies to redi-
rect requests across Grids during periods of peak demand.
Simulation results demonstrate that the mechanism achieves
its goal as it leads to an overall increase in requests ac-
cepted and balances the load across the interconnected
Grids. The experiments show that load management across
Grids through resource exchange taking into account the
economic compensation of resource providers is possible.

In future work IGGs will be able to overbook resources
and employ techniques for maximising their revenue. We
also plan to include and handle penalties when providers
cannot honour their resource offers. Moreover, the pro-
posed mechanism will be extended by providing means for
Grids to redirect requests across several Grids (i.e. we are
extending the mechanism to support transitive relationships
between the Grids in the contract network).

Acknowledgements

We thank Marco Netto, Kyong Hoon Kim, Suraj Pandey,
Sungjin Choi, Mukaddim Pathan, Alexandre di Costanzo
and Srikumar Venugopal from the University of Melbourne
for sharing their thoughts on the topic. We are grateful to
Dr. Franck Cappello, Dr. Olivier Richard, Dr. Emmanuel
Medernach and the Grid Workloads Archive group for mak-
ing the Grid workload traces available. This work is sup-
ported by DEST and ARC project grants. Marcos’ PhD re-
search is partially supported by NICTA.

References

[1] A. AuYoung, L. Grit, J. Wiener, and J. Wilkes. Service contracts and
aggregate utility functions. In 15th IEEE International Symposium
on High Performance Distributed Computing (HPDC 2006), pages
119–131, Paris, France, July 2006.

[2] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based
load management in federated distributed systems. In 1st Symposium
on Networked Systems Design and Implementation (NSDI), pages
197–210, San Francisco, USA, March 2004.

[3] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
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