Information and Software Technology 51 (2009) 42-55

Contents lists available at ScienceDirect T
I/ —
|____SOFTWARE |
—TECHNOLOGY |

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Performance analysis of allocation policies for interGrid resource provisioning

a,b,*

Marcos Dias de Assuncdo *”*, Rajkumar Buyya*

2 Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science and Software Engineering, 111 Barry Street,
The University of Melbourne, Carlton, Victoria 3053, Australia
Y NICTA Victoria Research Laboratory, The University of Melbourne, Victoria 3010, Australia

ARTICLE INFO ABSTRACT

Keywords:

Resource provisioning

Grid computing

InterGrid resource allocation

Several Grids have been established and used for varying science applications during the last years.
Most of these Grids, however, work in isolation and with different utilisation levels. Previous work
has introduced an architecture and a mechanism to enable resource sharing amongst Grids. It has
demonstrated that there can be benefits for a Grid to offload requests or provide spare resources
to another Grid. In this work, we address the problem of resource provisioning to Grid applications
in multiple-Grid environments. The provisioning is carried out based on availability information
obtained from queueing-based resource management systems deployed at the provider sites which
are the participants of the Grids. We evaluate the performance of different allocation policies. In con-
trast to existing work on load sharing across Grids, the policies described here take into account the
local load of resource providers, imprecise availability information and the compensation of providers
for the resources offered to the Grid. In addition, we evaluate these policies along with a mechanism
that allows resource sharing amongst Grids. Experimental results obtained through simulation show
that the mechanism and policies are effective in redirecting requests thus improving the applications’

average weighted response time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Advances in Grid computing have enabled the creation of Grid-
based resource sharing networks such as TeraGrid [1,2], Naregi [3],
Open Science Grid [4], and PlanetLab [5]. These networks, com-
posed of multiple resource providers, enable collaborative work
and resource sharing amongst groups of individuals and organisa-
tions. These collaborations, widely known as virtual organisations
(VOs) [6], require resources from multiple computing sites.

Although these Grids have contributed to various sciences and
disciplines, they mostly work in isolation. The Grid interoperability
now-community group (GIN-CG) [7] is working on providing
interoperability between Grids by developing components and
adapters that enable secure job submissions, data transfers and
information queries. Even though GIN-CG’s efforts are relevant,
its members also highlight the need for common allocation and
brokering of resources across Grids.! In addition, losup et al. [8]

* Corresponding author. Address: Grid Computing and Distributed Systems
(GRIDS) Laboratory, Department of Computer Science and Software Engineering,
111 Barry Street, The University of Melbourne, Carlton, Victoria 3053, Australia.
Tel./fax: +61 43 7048238.

E-mail addresses: marcosd@csse.unimelb.edu.au (M.D. de Assuncdo), raj@csse.
unimelb.edu.au (R. Buyya).

! The personal communication amongst GIN-CG members is online at: http://
www.ogf.org/pipermail/gin-ops/2007-July/000142.html.

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/].infsof.2008.09.013

have identified the need for resource management across Grids. They
have shown that there is a load imbalance between current Grids.
Moreover, interoperability and common protocols are important,
but not enough to interconnect Grids. For example, a set of common
communication protocols underly the Internet, but when internet
service providers (ISPs) peer with one another they consider their
policies, economic issues, and the social and economic impact of
peering [9,10].

The resource utilisation within a Grid has fixed and operational
costs such as those with electricity providers and system adminis-
trators. Consequently, when Grids are connected with one another,
it is relevant to take into account these costs. There can be benefits
for a Grid to provide spare capacity to peering Grids, possibly in re-
turn for regular payments, and to acquire resources from peering
Grids to serve occasional internal peak demands. We have pro-
posed in previous work [11] a resource exchange mechanism that
enables a Grid, under peak load conditions, to redirect requests to
another Grid. In contrast to existing work in load management
across Grids [8,7] the proposed mechanism takes into account
the compensation of resource providers for the resources offered
to the Grid; this compensation corresponds to the amount paid
by a broker for resources utilised.

In this work, we address the problem of resource provisioning
in environments with multiple Grids. Emerging deadline-driven
Grid applications require access to several resources and predict-

mailto:marcosd@csse.unimelb.edu.au
mailto:raj@csse. unimelb.edu.au
mailto:raj@csse. unimelb.edu.au
http://www.ogf.org/pipermail/gin-ops/2007-July/000142.html
http://www.ogf.org/pipermail/gin-ops/2007-July/000142.html
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 43

able quality of service (QoS). However, it is difficult to provision
resources to these applications because of the complexity of
providing guarantees about the start or completion times of appli-
cations currently in execution or waiting in the resources’ queues.
The resources contributed by providers to a Grid are generally
clusters of computers managed by queueing-based resource
management systems (RMSs), such as PBS [12] and Condor [13].
These RMSs generally use optimisations to the first come first
served (FCFS) policy such as backfilling [14] in order to reduce
the scheduling queue’s fragmentation, improve job response time
and maximise resource utilisation. These optimisations make it
difficult to predict the resource availability over a time frame as
the jobs’ start and completion times are dependent on resource
workloads.

To complicate matters further, Grid users commonly access re-
sources from a Grid via mediators such as brokers or gateways
[15,16]. The design of gateways that provision resources to dead-
line-driven applications relying on information given by current
RMSs may be complex and prone to scheduling decisions that
are far from optimal. Furthermore, a gateway representing a Grid
can have peering arrangements or contracts with other gateways
through which they co-ordinate the resource provisioning. This
complicates provisioning as a gateway needs not only to provision
resources to its users, but also provision spare capacity to other
gateways. Previous work has demonstrated how information about
fragments in the scheduling queue of clusters, or free time slots,
can be obtained from RMSs and provided to gateways to be provi-
sioned to Grid applications [17,18].

In previous work we have evaluated the precision of the avail-
ability information obtained via different techniques and their im-
pact on provisioning in multiple site environments [18]. In the
present work, we utilise this information as the basis for resource
provisioning across Grids. We extend previous studies on InterGrid
load management [11] and utilise the resource provisioning tech-
niques used for multiple site environments as follows. Firstly, we
extend the provisioning policies in order to consider the cost of
delegating resources to a gateway. Second, the mechanism for load
management across Grids that previously assumed an ON/OFF ap-
proach for modelling resource providers’ load, now utilises infor-
mation obtained from scheduling policies using conservative
backfilling [19] and multiple resource partitions [20]. Previous
studies have used ON/OFF models [21] wherein ON and OFF inter-
vals represent off-peak and peak periods, respectively. However,
the queuing-based scheduling policies enhance the evaluation of
the overall mechanism by modelling a scenario closer to reality.
Third, the experiments carried out in this work measure the jobs’
average weighted response time for each scenario. Moreover, we
evaluate whether the proposed policies have a smaller impact on
local providers’ jobs than traditional techniques when the Grids
are interconnected.

The rest of this paper is organised as follows. Section 2 presents
the related work. In Section 3, we describe the InterGrid scenario.
We describe the policies used by resource providers in Section 4.
Section 5 discusses the resource provisioning and load sharing
across Grids. We present and elaborate on the performance evalu-
ation and experimental results in Section 6. Section 7 concludes
the paper and presents future work.

2. Related work

This section is organised as follows. Section 2.1 describes mech-
anisms and optimisations for scheduling and provisioning re-
sources at a site level. Section 2.2 analyses previous systems that
attempt to enable load sharing in multiple site environments and
amongst resource sharing networks.

2.1. Resource provisioning at a site level

2.1.1. Modelling providers’ resource availability

AuYoung et al. [21] consider a scenario wherein service provid-
ers establish contracts with resource providers. The availability
information is modelled as ON/OFF intervals, which correspond
to off-peak and peak periods, respectively. However, they do not
demonstrate in practice how this information can be obtained from
RMSs.

2.1.2. Advance reservations and creation of alternatives to rejected
requests

Mechanisms for elastic advance reservations and generation of
alternative time slots for advance reservation requests have been
proposed [22,23]. These models can be incorporated in the provi-
sioning scenario described in this work to improve resource utilisa-
tion and generate alternative offers for provisioning violations.
However, we aim to reduce the interaction between resource pro-
viders and gateways by allowing the providers to inform the gate-
ways about their spare capacity. We focus on how the availability
information can be obtained from RMSs and how reliable it is un-
der different conditions.

2.1.3. Resource allocation in consolidated centres

Padala et al. [24] apply control theory to address the provision
of resources to multi-tier applications in a consolidated data cen-
tre. Garbacki and Naik [25] consider a scenario wherein custom-
ised services are deployed on virtual machines which in turn are
placed into physical hosts. Although the provisioning of resources
to applications in utility data centres is important, here we focus
on traditional queue-based RMSs.

2.1.4. Resource provisioning

Singh et al. [17,26] have presented a provisioning model where-
in Grid sites provide information on the time slots over which sets
of resources will be available. The sites provide their resources to
the Grid in return for payments, thus they present a cost structure
consisting of fixed and variable costs over the resources provided.
The provisioning model is evaluated considering the scheduling of
workflow applications. The main goal is to find a subset of the
aggregated resource availability, termed resource plan, such that
both the allocation cost and the application make span are mini-
mised. They utilise a multi-objective genetic algorithm (MOGA) ap-
proach to approximate the group of resource plans that correspond
to the Pareto-optimal set. Experiments have been carried out con-
sidering one cluster and one broker at a time. Our work is different
in the sense that we investigate multiple approaches to obtain
availability information and how reliable this information can be
in multiple site environments [18]. In this paper we utilise this
availability information and evaluate the load sharing across bro-
kers (in this work termed gateways), which has not been explored
by Singh et al.

2.1.5. EASY backfilling and conservative backfilling

Schedulers generally use optimisations to the FCFS policy such
as EASY backfilling (also known as aggressive backfilling) and con-
servative backfilling [19]. Backfilling allows a job to jump in the
queue and execute earlier than jobs that arrived before it, given
that enough resources are available and other waiting jobs are
not delayed. Under conservative backfilling, a job can be used to
backfill and execute earlier if it does not delay any other job wait-
ing in the queue. EASY backfilling, on the other hand, uses a job to
backfill and start execution if it does not delay only the first job in
the queue - also termed pivot job. Under EASY backfilling, the
schedule generally contains the expected completion of running
jobs and the start time of the pivot job only. Some schedulers allow

44 M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55

the system administrator to configure the maximum number of
pivots, which in turn enables the scheduler to maintain the start
and expected completion times of up to the maximum number
of pivot jobs [27]. In such case, if the maximum number of pivots
is set to 5, for example, and there are 5 jobs waiting in the queue,
a 6th job that just arrived is used to backfill if it does not delay any
of the 5 pivot jobs. If the maximum number of pivots is set to a
large number, the EASY backfilling algorithm becomes conserva-
tive backfilling. We utilise and extend policies based on these tech-
niques for resource provisioning.

2.1.6. Multiple resource partition policies

Work on multiple resource partitions and priority scheduling
has shown to reduce the job slowdown compared to EASY backfill-
ing policies [20]. We build on this effort and extend it to enable
other multiple partition policies. We also propose a new multiple
resource partition policy based on load forecasts for resource
provisioning.

2.2. Load sharing amongst resource sharing networks

2.2.1. Resource sharing networks and inter-operation efforts

Several Grid-based resource sharing networks have been built
over past few years [1,3,4,28-31]. Recently, initiatives have
emerged for linking resource sharing networks [32,33,7]. OneLab2
[32] and the Global Environment for Network Innovations (GENI)
[33] have evolved from the PlanetLab architecture [5] to allow
the federation of autonomous networks controlled by different
organisations. Other Grid middleware interoperability approaches
have also been presented [34]. These efforts provide the basis for
load management across Grids by facilitating standard job submis-
sion and request redirection. We attempt to build on these efforts
to investigate resource management across Grids.

2.2.2. Intermediate resource agents

Shirako [35,36] is a resource management system based on a re-
source leasing abstraction. Sites delegate limited power to allocate
their resources by registering their offerings with brokers. Guest
applications can acquire resources from brokers by leasing them
for a specified time. Grit et al. [37] investigate the number of vir-
tual machine (VM) migrations incurred when a broker and pro-
vider sites use either conflicting or synchronised policies for
resource provisioning and VM placement. They show that when
providers and the broker use conflicting policies, the number of
migrations can be high. The present work does not investigate
VM migrations and models. Additionally, while Grit et al. investi-
gate the impact of conflicting policies, we take into account the re-
source cost and the exchange of resources by brokers.

2.2.3. Federated clusters and load sharing

Ranjan et al. [38] have proposed a service level agreement
(SLA) based coordination mechanism for Grid superscheduling.
A Grid Federation Agent (GFA) is the resource management sys-
tem responsible for scheduling jobs at a cluster level. A GFA
negotiates contracts and redirects requests to another cluster
through a contract net based protocol. In the present work, an
InterGrid Gateway is a broker with information about the free
time slots at a group of resource providers. In addition, in con-
trast to GFAs, gateways do not engage into bilateral negotiations
if the requests can be handled locally without increasing the cost
above its threshold.

lIosup et al. [8] introduce a matchmaking protocol in which a
site binds resources from remote sites to the local environment.
Delegated matchmaking enables requests for resources to be dele-
gated up and down the proposed site hierarchy. Our model shares
aspects with losup et al.’s work, in the sense that InterGrid Gate-

ways work as site recommenders so matching requests to re-
sources available. However, it differs with respect to the resource
exchange protocol and the consideration for compensation of re-
source providers for the resources acquired by a gateway.

The mechanism presented in this work derives from Medusa
[39], a stream processing system that allows the migration of
stream processing operators from overloaded resources to re-
sources with spare capacity. However, it differs in terms of
the negotiation protocol for exchanging resources between
Grids and the resource selection and request redirection poli-
cies. The resource selection policies take into account the avail-
ability information from multiple sites, which in turn use
scheduling optimisations such as backfilling. The negotiation
protocol considers one round of counter-offers whilst the re-
source price is computed with the availability information sent
by providers.

Wang and Morris [40] provide a taxonomy on load sharing in
distributed systems. Some findings include that efficiency in load
sharing depends on the environment and server-initiative tends
to outperform source-initiative strategies when the same amount
of information about stakeholders is available. In our scenario, re-
sources have multiple processors; also, resources are heteroge-
neous in the number of processors. These conditions make the
local scheduling subproblem different; in addition, resource man-
agement across Grids introduces a third subproblem: the load
sharing between Grids. Surana et al. [41] address the load balanc-
ing in DHT-based P2P networks. Nodes of the P2P system run vir-
tual servers responsible for ranges of objects in the address space;
they inform directories about the load in the virtual servers
whereas the directories periodically compute reassignments and
trigger migrations of virtual servers to achieve balance. The present
work, in contrast, does not perform migration of virtual servers,
and focuses on the redirection and assignment of resources to
requests.

2.2.4. Economics inspired resource allocation

A number of approaches have been proposed which use eco-
nomic models to address resource usage and incentives in a Grid
[42-47]. Particularly, a well-designed market-based resource allo-
cation mechanism provides incentives for participation by ensur-
ing that all the actors in the system maximise their utility and do
not have incentives to deviate from the designed protocol [48].
We use a simple economic inspired mechanism in which gateways
representing Grids redirect or accept requests based on the cost of
serving them. However, we focus on the evaluation of system per-
formance metrics such as response time of both Grid and provid-
ers’ local jobs.

The negotiation protocol used among gateways has been de-
scribed by Rosenschein and Zlotkin [49] as a monotonic concession
protocol. In our implementation, there is one round of concessions
in which the gateway that receives an offer to process a request
creates a counter-offer if a deal cannot be initially reached.

3. Provisioning in InterGrid environments

Our previous work has introduced an architecture, called the
InterGrid, based on gateways that mediate resource exchange be-
tween Grids. It allows participants to allocate resources from dif-
ferent Grids in a seamless manner. We provide an overview of
the InterGrid in this section, but for more details about the archi-
tecture and project goals we refer to previous work [50].

The InterGrid is inspired by the peering agreements between
ISPs. The Internet is composed of competing ISPs that agree to al-
low traffic into one another’s networks. These agreements between
ISPs are commonly termed as peering and transit arrangements

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 45

e Availability
~, . .
Peering A information Local users’
arrangement [I e Resource requests —
or contract‘"_' u = pegiinsscseaans parce
.- S Resource
? o’ i & ; o
&« Gnd\ (Resource | [: -
""" " request . 2 o
.“_,.- Grid Provider ¢ 5
R e e e s en
£ (Client Providers
o local users
application)

Fig. 1. The provisioning scenario with multiple Grids considered in this work.

[9]. Fig. 1 provides an overview of the InterGrid architecture and
the resource provisioning scenario considered in this work.

A resource provider (RP) contributes a share of computational
resources, storage resources, networks, application services or
other type of resource to a Grid in return for regular payments.
An RP has local users whose resource demands need to be satisfied,
yet it delegates provisioning rights over spare resources to an
InterGrid gateway (IGG) by providing information about the re-
sources available in the form of free time slots. A free time slot in-
cludes information about the number of resources available, their
configuration and time frame over which they will be available.
Section 4 describes how this information can be obtained from re-
source management systems. The resources provided can be phys-
ical or virtual resources such as VMs and the delegation can be
made through a secure protocol such as SHARP [51]. Protocols
for secure delegation, however, are not in the scope of this paper;
this work focuses on the resource provisioning aspect. Although a
Grid can have a resource management system of its own (i.e. an
IntraGrid resource manager), for the sake of simplicity, here an
RP delegates provisioning rights directly to an IGG.

A Grid has pre-defined peering arrangements with other Grids,
managed by IGGs and, through which they co-ordinate the use of
resources of the InterGrid. An IGG is aware of the terms of the peer-
ing with other Grids; provides Grid selection capabilities by select-
ing a suitable Grid able to provide the required resources; and
replies to requests from other IGGs. The peering arrangement be-
tween two Grids is represented as a contract. Request redirection
policies determine which peering Grid is selected to process a re-
quest and at what price the processing is performed. The assump-
tion of pre-established arrangements is reasonable as current Grids
need to reserve the network links and set up the resources
required.?

When a Grid user needs to deploy or execute an application, he/
she requests the IGG for a number of resources. When the individ-
ual Grid cannot provide the required resources, the IGG selects a
peering Grid based on the agreements and the policies in place.
The user is then given a resource ticket granting access to the re-
sources, which will later be passed to the selected provider in re-
turn for the required resources.

A request corresponds to an individual job whereas an applica-
tion can comprise several jobs. A request is contiguous and needs
to be served with resources from a single resource provider. Allow-
ing a request to be served with resources from multiple resource
providers may require co-allocation which is not addressed in this
work. A request received by an IGG contains a description of the re-

2 An example includes the interconnection of Grid’5000 with DAS-3 and NAREGL
More information is available at http://www.grid5000.ft.

quired resources and the usage time. The request can require a best
effort service, meaning that the resources can be provided at any
time as long as they are made available for the requested usage
time. Alternatively, for some requests, the resources need to be
allocated within a specified deadline.

3.1. The resource exchange

The peering agreements between Grids define (i) what re-
sources are exchanged between the Grids and the price of the re-
sources exchanged. The policies specify when an IGG redirects
requests to another, and when a request redirected by one IGG is
accepted by another IGG. Therefore, the goal of a participating
IGG is to (i) serve its user communities by providing allocations
that assign resources to satisfy their requirements; (ii) offer spare
resources to peering Grids under some compensation; and (iii) ac-
quire resources from other Grids to satisfy its users under peak
load conditions.

4. Resource provider policies

We have previously investigated resource providers’ scheduling
policies which enable an IGG to obtain resource availability informa-
tion in the form of free time slots [18]. This work considers a subset of
the investigated policies, which have previously demonstrated good
performance. The policies utilise an ‘availability profile’ similar to
thatdescribed by Mu’alem and Feitelson [19]. The availability profile
is a list whose entries describe the CPU availability at particular
times in the future. These correspond to the completion or start of
jobs and advance reservations. A job A whose start time or comple-
tion time coincides with either the start or completion of another
job B, may share entries with B in the profile. By scanning the avail-
ability profile and using load forecasts the resource providers inform
the gateway about the free time slots; the gateway in turn can carry
out provisioning decisions based on this information.

4.1. Conservative backfilling based policies

Under conservative backfilling, a job is used to backfill and start
execution earlier than expected, given that it does not delay any
other job in the scheduling queue [19]. In order to reduce complex-
ity, the schedule for the job is generally determined at its arrival
and the availability profile is updated accordingly. Given those
conditions, it is possible to obtain the free time slots by scanning
the availability profile. This approach, depicted in Fig. 2a, was also
used by Singh et al. [17,26]. In that case, the availability profile is
scanned until a given time horizon thus creating windows of avail-
ability or free time slots; the finish time of a free time slot is either

http://www.grid5000.fr

46 M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55

a Scheduling Queue
Free Time Slot 3 '
% Job 4 , .
S Free Time Slot 2 .
5 Job 3 Free Time Slot 1 '
LL']
o .
= Job 2 Free Time Slot4 | Job 5,
3 X
(&)
O .
a Job 1 .
Current Time Planning
Time Horizon
Scheduling Queue
b Resizing Reallocation
based on load intervals
forecast + + + .
Q) L]
S Grid Job New Grid Job Partition .
g | Partition '
Q L]
LL] []
o X
£ '
@ ‘
o | Local Job New Local Job Partition 5
o .
o | Partition X
o \
Current Time Plan'ning
Time Horizon

Fig. 2. Obtaining the free time slots: (a) by using conservative backfilling and (b) using multiple resource partitions.

the finish time of a job in the waiting queue or the planning hori-
zon. If the horizon is set to oo, the provider will be disclosing all the
information. The availability information can either be provided on
a periodical basis wherein provider and gateway agree on an inter-
val at which the former sends the availability information or upon
the gateway’s request.

4.2. Multiple resource partition policies

In previous work we have evaluated three multiple resource
partition policies [18]. In the present work we describe only two
policies that have demonstrated good performance. The multiple
resource partition policies divide the resources available in multi-
ple partitions and assign jobs to these partitions according to pred-
icates. A partition can borrow resources from another when they
are not in use by the latter and borrowing is allowed by the sched-
uler. The policies are based on the idea of multiple resource parti-
tions described by Lawson and Smirni [20]. Lawson and Smirni’s
original policy implements EASY backfilling. In this case, each par-
tition uses EASY backfilling with one pivot, which is the first job in
the waiting queue for that partition. A job belonging to a given par-
tition can start its execution if it does not delay the partition’s pivot
and the partition has enough resources. In case the partition does
not have enough resources, the job can still start execution if addi-
tional resources can be borrowed from other partitions without
delaying their pivots. Additionally, the policy uses priority schedul-

ing wherein the waiting queue is ordered by priority when the
scheduler is backfilling.

One of the policies we have introduced, depicted in Fig. 2b, can
alternate between EASY backfilling and conservative backfilling.
The policy starts an interval with EASY backfilling, at which the
partitions are resized by the scheduler based on a load forecast
computed from information collected at previous intervals. As load
forecasts are prone to be imprecise, when the scheduler resizes
partitions, it also schedules reallocation events. At a reallocation
event, the scheduler evaluates whether the load forecast has
turned out to be an underestimation or not. If the load was under-
estimated, the policy resizes the partitions according to the load
from the last resizing period until the current time and backfill
the jobs, starting with the local jobs. We use EASY backfilling with
configurable maximum number of pivots, similarly to MAUI sched-
uler [27]. The policy can be converted to conservative backfilling
by setting the number of pivots to a large value, here represented
by co. The other multiple resource partition policy also starts with
two partitions, but uses only conservative backfilling with no load
forecast technique.

Algorithm 1 describes two procedures used by the load forecast
policy. The policy invokes getFreeTimeSlots every time the provider
needs to send the availability information to the gateway; proce-
dure getFreeTimeSlots schedules a later call for reallocationEvent
to verify whether the previous forecast has turned out to be precise
or if a reallocation is required.

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 47

Algorithm 1: Provider’s load forecasting policy.

1 procedure getFreeTimeSlots()
begin

2
3 set the number of pivots of local and Grid partitions to oo
4 schedule / back- 11 jobs in the waiting queue

5 set the number of pivots of local and Grid partitions to 1
6 actual Load + load of waiting/running jobs

7 forecast «— get the load forecast

8 percToProvide < min{0,1 «—actual Load}

9 slots < obtain the free time slots

10 slots « resize slots according to percT'oProvide
11 if percT’'oProvide > 0 then

12 inform gateway about slots

13 schedule reallocation event

14 schedule next event to obtain free time slots

15 end

16 procedure reallocationEvent()

17 begin

18 local Load <+ obtain the local load

19 forecast < get the previously computed forecast
20 if localLoad > forecast then

21 set the number of pivots of local partition to oo
22 schedule / back- 11 jobs in the waiting queue

23 set the number of pivots of Grid partition to oo
24 schedule / back- 11 jobs in the waiting queue

25 slots «— obtain the free time slots

26 inform gateway about slots

27 else

28 L schedule the next reallocation event

29 end

Line 3 and 4 of Algorithm 1 change the scheduler’s backfilling
strategy to conservative by setting the number of pivots in each
partition to co. They also schedule the jobs currently waiting in
the queue. After that, the scheduler’s backfilling strategy is re-
turned to EASY (line 5). Then, from line 6 to 10, the scheduler ob-
tains the load forecast and the free time slots and resizes the free
time slots by modifying the number of CPUs according to the num-
ber of resources expected to be available over the next interval.
Next, the scheduler triggers a reallocation event. From line 20 to
24 the scheduler verifies whether the forecast was underestimated.
If that is the case, the scheduler gives in and turns its backfilling
strategy back to conservative and informs the gateway about the
availability.

In previous work the resource providers’ have not considered
the pricing of resources [18]. In this work we apply a mechanism
for pricing the free time slots delegated by a resource provider to
the gateway. The resource providers use a pricing function for a re-
source unit given by Eq. 1.

price = cost + (cost = load) (1)

where cost is the fixed cost of a unit of resource at the provider;
load is obtained from the policy in use by the resource provider;
load is either the load estimate when the policy supports fore-
casts or the actual load of both running and waiting jobs in the
queue when forecasts are not used. A resource unit corresponds
to one resource per second (i.e. a second of a CPU). Although
straightforward, this pricing function has two components that
capture namely the fixed cost of resources and the variable price
caused by the demand.

5. Resource provisioning and load sharing

The adoption of economic principles for load sharing amongst
Grids comes from observing economic institutions in the real
world and how they regulate the allocation of resources, goods
and the use of services [44]. Economic approaches are useful for
coping with problems like providing Grid resources to different
users with diverging QoS requirements and how to reward re-
source suppliers. As described beforehand, we envision that the
interconnection of Grids involves problems that are similar to
those faced by the peering of ISPs in the Internet. In the Internet,
ISPs are in the business to make a profit - they see one another
as competitors or sources of revenue - but they peer for economic
or technical reasons [10,52-54]. ISPs have fixed and variable costs
with network infrastructure, yet interconnect their network do-
mains allowing traffic into one another’s networks because they
can benefit from peering by having a larger coverage or by offload-
ing expensive links. Similarly, the use of Grid resources has fixed
and variable costs and Grids may benefit from peering with one an-
other. This section describes a mechanism for request redirection
amongst Grids that takes into account their cost.

For each IGG;, the allocation of its resources by its user commu-
nities over a unit of time represents a cost. The real-valued total
cost function of IGG; is represented by cost;(L), where 0 <L < 1 is
the current load determined by the number of resource units avail-
able in its Grid. For simplicity, here a resource unit corresponds to
one resource per second (i.e. a second of a CPU). Therefore, the total
cost given by cost;(L) depends on the number of resources allocated
by the requests. Although each Grid could have its own cost func-
tion, in this work, the participating Grids utilise a quadratic cost

48 M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55

function. Such a function reflects the case of a network infrastruc-
ture in which it is highly costly to keep the resources operating at
full capacity, mainly because it does not offer any provision for
handling peak demands. This way, we believe that a function with
a steep cost when the system approaches full utilisation reflects
the case of current computing and network infrastructure. More-
over, a non-linear function is required by Eq. 4 to specify contracts
with price-ranges as discussed later in this section.

The cost function costi(L) is given by [Lunits * (Peost + (Peost™®
(ﬂL)Z))], where Ly, is the number of units in use at load L, 8 is a
small constant value that determines how steep the cost curve is
as the load approaches 1 and p, is the average price that IGG; pays
to resource providers for a resource unit. The price of a resource
unit within IGG; is given by the second part of the cost function
(i.e. Peost + (Peost * (BL)*). We derive the average price p.,, paid by
IGG; to resource providers for a resource unit using by the follow-
ing equation:

1 Tu;
= il < 2
Peos ; (cp (Zﬂ mj)) (2)

where n is the number of resource providers in IGG;’s Grid; cp; is the
price of a resource unit at resource provider i; and ru; is the number
of resource units contributed by provider i until a given time hori-
zon. This horizon is the request deadline when calculating the re-
quest cost described next. When updating the prices for resource
units specified in the contracts, the horizon is the time of the next
contract update (i.e. the next time when the IGGs update the prices
of units negotiated). This way, L is dependent on how many re-
source units are available from the start time until the horizon
and how many units are in use.

A request redirection is decided based on the per-request cost
mc; : (u,L) — R which is the increment in total cost for IGG; for
agreeing to provide resource units required by request u given its
current load or allocations. If request u requires resource units that
place uyqq load in IGG;’s Grid, then the cost of serving u is derived
by Eq. 3. If request u requires one resource unit, then the request
cost is equals to a unit cost.

mc; = costi(L + Ujpaq) — cOSti(L) (3)

IGG; has a load threshold, by crossing which IGG; considers itself
overloaded. The redirection of requests is enabled between Grids
that have negotiated contracts, at within the contracted price-
range. A contract C;; between IGG; and IGG; has a price-range
PR(Cij) : [price,;,, price,,.], where price,;, and price,,,, are the mini-
mum and maximum prices, respectively paid by IGG; for a resource
unit allocated from IGG;. IGG; can have contracts with multiple
Grids. During periods of peak load, IGG; can redirect requests to
IGG; if and only if both have a contract. Based on the current load
levels, they agree on a final price priceg,, within PR(Cij). IGG; pays
the amount equivalent to (priceg,,+ number of units). The redirec-
tion occurs when a Grid forwards requests to another because the
cost of fulfilling the requests is higher than the amount that it
would have to pay to the other Grid to serve them.

5.1. Contract types

We support two kinds of contracts: fixed-price and price-range
contracts. A fixed-price contract is given by PR(Cy):
[price gy, Drice,.] where price,,, is the fixed-price and a price-
range contract corresponds to PR(Cjj) : [price,q. — A, price,q],
where A determines the price-range. In the case of price-range
contracts, participating Grids have to negotiate the final price at
runtime. As discussed by Balazinska et al. [39], a load management
mechanism based on fixed-price contracts may present disadvan-
tages in some cases. For example, it reduces the flexibility in

redirecting requests as a Grid can only offload requests if their cost
is higher than the exact price it would pay to another Grid (i.e the
number of resource units required by the request multiplied by the
unit cost specified in the contract).

We define the price-range for a resource unit considering the
decrease of load k from the load L. Let u be a request that requires
Unics TEsource units and causes an increase in load u,,4. The de-
crease in the per-unit cost due to removing k from the Grid’s L is
represented by J;, which is defined by the following equation.

oull) = mc(u, L — tjpqq) — me(u, L — k — Uiaq)

(4)

i is the approximate difference in the cost function gradient eval-
uated at the load level including and excluding load k. Given a con-
tract with fixed-price price,,,,, L is the maximum load that an IGG
can approach before its per resource unit cost exceeds price,,,. In
order to estimate the price-range for a resource unit in the contracts
in our experiments, we let L be the load threshold; u,,s be 1 and
A = 5. We evaluate different values for L and k.

Uunits

5.2. Provisioning policies

The policies described in this section define how an IGG offloads
requests to peering Grids considering a contract network and how
it accepts requests from other Grids.

During a time interval, IGG; stores the requests in the waiting
queue. After the interval, IGG; orders the contracts in ascending or-
der of price and for each contract IGG; evaluates whether there are
requests that can be redirected to the peer IGG. Fig. 3 illustrates the
negotiation between IGG; and IGG; under a price-range contract.
The scenario is as follows:

(1) IGG; sends an offer to IGG; when IGG;’s unit cost for the
request is higher than the minimum price of the contract
with IGG;. The price in the offer p,y, is the minimum price
specified in the contract between IGG; and IGG;.

(2) IGG;, in turn, replies with one of the following messages:
(2.1) IGG; sends an accept message whose price is the price

in the initial offer if the request’s cost is lower than or
equals to the amount that IGG; is willing to pay (i.e.
Poger Multiplied by the number of resource units
required by the request rq,,)-

(2.2) If IGGj's request cost is greater than the amount
offered by IGG;, but less than the maximum amount
that IGG; would possibly pay (i.e. the contract’s maxi-
mum price p,,, multiplied by rq,,), then it sends a
counter-offer whose price is mc;/rq,,. For simplicity
the counter-offer contains the peering IGG;’s unit cost
for the request, but the mechanism can easily be
extended to incorporate a profit margin or use profit
maximisation techniques.

(2.3) If IGGj’s request cost is higher than the maximum
amount IGG; is willing to pay, the offer is rejected.

(3) After receiving IGG;'s message, IGG; replies as follows:

(3.1) IGG; accepts the counter-offer if its request cost is still
higher than the amount asked by IGG; (i.e. number of
resource units required rq,,;,, multiplied by the coun-
ter-offer’s price p,.

(3.2) Otherwise, the counter-offer is rejected. IGG; keeps
the request in the queue and repeats the whole pro-
cess for the next contract.

IGG; stores the offers and evaluates them at time intervals. The
evaluation algorithm sorts the offers by decreasing order of price.
In addition, IGG; maintains a list of tickets which it has created to

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 49

Consumer: [condition] Contractor:
IGGi action IGGj
sendOffer(rq,poffer) |
ELD T »
2.1 [poffer*rqunits >= mcj(rqg,L)]
sendAccept(rq,poffer)
<o ooToomomoooomTomm ol
2.2 [poffer*rqunits < mcj(rq,L) AND et
mcj(rqg,L) <= pmax*rqunits] _ OR//// Steps 2.x:
sendCounterOffer(rq, mc/rqunits)--~ -~ 1. acceptance
< ----TmoTomTooTTToooTeT OR 2. counter-offer
2.3 [mci(rq,L) > pmax*rqunits] -7~ 3. rejection
sendReject(rq) R Steps 3.x:
<-----omTooToooooos - 1. confirm usage
3.1 [pet * rqunits < mci(rq,L)] 2. reject usage
confirmUsage(rq) ;
3) >
3.2 [pct * rqunits > mci(rg,L)]
: OR\ rejectUsage(rq)

>T

Fig. 3. Redirection negotiation.

serve the requests whose negotiation is in progress. This way, the
evaluation of the request cost considers the requests being served
as well as those whose negotiation is in progress. Creating a ticket
corresponds to finding a time slot for the job. Moreover, in order to
reduce the number of messages exchanged by IGGs, when IGG;
sends an offer to IGG;, the offer contains a list of requests that
IGG; is willing to redirect to IGG;. That is, a negotiation is performed
for a group of requests and not on a per-request basis. IGG; can ac-
cept all or part of the requests whose price is within the accepted
price-range.

As described beforehand, there are two types of requests, namely
best effort and deadline constrained. We use an earliest start time
policy to select the resources to serve a request. The request’s dead-
line is the time horizon used to calculate the load in the Grid, the
load imposed by the request and consequently the request cost. This
way, the Grid load for example, is determined by the resource
shares provided by RPs and the allocations until the horizon. For
best effort requests we create a virtual deadline given by the latest
start time based on the time slots held by the gateway plus the
runtime estimate; the virtual deadline is used as the horizon.

AuverGrid provider site
Grid’5000 provider site
O DAS-2 provider site

(V Peering arrangement
2 Grid

Fig. 4. Contract topology simulated.

50 M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55

5.3. Storing free time slots at the IGG

The resource providers issue free time slots and send them to
the IGG on a periodical basis. The IGG maintains the availability
information given by a provider on a modified red-black tree
[55]. Each node has two references namely to its predecessor and
successor nodes thus forming a linked list. This tree is analogous
to the availability profile described by Mu’alem and Feitelson
[19]; the nodes are ordered according to their times. That is, a free
slot may lead to the creation of two nodes in the tree, namely to
mark its start and finish times; free time slots can share nodes.
We use the red-black tree to find a time slot to serve a job and
the list to iterate the nodes and check whether the selected pro-
cessing elements are available until the job’s completion time.

6. Performance evaluation
6.1. Experimental scenario

The simulated environment is composed of three Grids, namely
DAS-2 in the Netherlands and Grid’5000 and AuverGrid in France.
The Grids DAS-2 [30], Grid’5000 [29] and AuverGrid [31] comprise
5, 15 and 5 clusters, respectively. For detailed information on the
characteristics of the clusters we refer to losup et al. [8] and the
Grid Workloads Archive website.? Fig. 4 presents the environment
simulated.

The evaluation is performed through simulation by using a
modified version of GridSim.* We resort to simulation because it
provides a controllable environment and enables us to carry out
repeatable experiments.

The workloads of the Grids are modelled using traces obtained
from the Grid Workloads Archive. We divide the traces into 2-
month intervals. At each simulation run, we randomly select one
interval from the trace of each Grid to model the load of that Grid.
Moreover, we disregard the first 8 months of DAS-2’s trace, the first
4 months of AuverGrid’s and the first 16 months of Grid’5000’s.
These intervals have not been considered because they may repre-
sent the set up phase of the Grids and the jobs in these intervals
may not be representative of the Grids’ workloads. We attempt
to eliminate the system warm-up by disregarding the first two
weeks of the experiments. For the load forecast policy, the second
week is used for training.

The resource providers’ local jobs are generated according to
the workload model proposed by Lublin and Feitelson [56]; we re-
fer to this model as Lublin99. We configure the Lublin99 model to
generate type-less jobs (i.e. we do not make distinctions between
batch and interactive jobs); the maximum number of CPUs used
by the generated jobs is set accordingly to the number of nodes
in the clusters; we generate 2-month long workloads. We change
two parameters of the Lublin99 model when generating the work-
load for each cluster. The medium size of a parallel job (specified in
log,) is set to log,m — 0 where m is the number of CPUs in the sys-
tem and 0 is drawn uniformly from 1.5 to 3.5. In addition, the inter-
arrival rate of jobs is modified by setting the p of the used gamma
distribution to a value uniformly distributed between 0.4871 and
0.55. These changes lead to workloads with different loads and dif-
ferent arrival rates, which we believe is representative of Grid re-
sources. For load forecasting we use a weighted exponential
moving average [57], considering a window of 25 intervals.

We perform experiments considering L in Eq. 4 equals to 95% of
utilisation and k set to 5% of the Grid’s resources. In this case, when

3 More details about the modelled resources and the traces used can be obtained
from the Grid Workloads Archive at http://gwa.ewi.tudelft.nl/pmwiki/.

4 More information about the changes in the simulator is available at http://
www.gridbus.org/intergrid/gridsim.html.

the fixed-price (price,,) of a contract is the marginal cost of
accepting a request requiring one resource unit of the Grid’s capac-
ity when the Grid is 95% utilised. The price-range contract has a
maximum price of price,,, and a minimum price given by
price,,,, minus the difference between the request marginal cost
at 95% and at 85% of utilisation.

6.2. Performance metrics

The performance evaluation considers two metrics: the average
weighted response time (AWRT) [58] of jobs and the percentage of
the generated load redirected by the IGGs. The AWRT measures
how long in average users wait to have their jobs executed. A short
AWRT indicates that on average users do not wait long for their
jobs to complete. The redirected load demonstrates the perfor-
mance of the mechanism in terms of managing peak loads; the
AWRT, on the other hand, demonstrates whether the response
time of user requests is improved through peering of IGGs or not.
AWRT, — Djer Dy My - (G —$)) (5)

Zjerkpj . mf
The AWRT, relative to all jobs j € 7, that have been initially submit-
ted to entity k is given by Eq. 5, where m; is the number of proces-
sors required by job j, p; is the execution time of the job, ¢; is the
time of completion of the job and s; is its submission time. The re-
source consumption (p; - m;) of each job j is used as the weight.

6.3. Policy acronyms

In order to reduce space, we abbreviate the name of the policies
as follows. A policy name comprises two parts separated by +. The
first part represents the policy employed by the provider whereas
the second represents the gateway policy. In the resource pro-
vider’s side, Eb stands for EASY backfilling, Cb for Conservative
backfilling, M for Multiple partitions and Mf for Multiple partitions
with load forecast. On the other side, for the gateway’s policy,
least-load means ‘submit to least loaded resource’, earliest repre-
sents ‘select the earliest start time’ based on the free time slots gi-
ven by providers on a periodical basis. This way,
EbMf + earliest — partial for example, indicates that providers
use EASY backfilling, multiple partitions and load forecasts,
whereas the gateway submits jobs selecting the earliest start time
based on the availability information sent by providers at regular
intervals.

6.4. Experimental results

The parameters used for the experiments are summarized in
Table 1. The fixed cost of a resource in Eq. 1 is drawn uniformly

Table 1

Description of the parameters used in the experiments.

Parameter Description
Number of Grids 3

Contract topology all-to-all (see Fig. 4)
Number of simulation rounds 10

Cost of a resource unit 0.90-1.00
Load threshold (%) 95

Value of k (%) 5

Time between contract updates (hours) 1-6
Number of clusters at DAS-2 5

Number of CPUs at DAS-2 400
Number of clusters at AuverGrid 5

Number of CPUs at AuverGrid 475
Number of clusters at Grid’5000 15

Number of CPUs at Grid’5000 1368

http://gwa.ewi.tudelft.nl/pmwiki/
http://www.gridbus.org/intergrid/gridsim.html
http://www.gridbus.org/intergrid/gridsim.html

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 51

from 0.9 to 1. The load threshold (L) and k are set to 95% and 5%,
respectively. The IGGs inform one another about the fixed-prices
or the price-ranges in their contracts based on the current resource
demand at intervals between 1 and 6 h. The results are averages of
10 simulation rounds excluding the best and worst results. The
simulation seed to generate the providers’ local workloads, the
prices and the contract update intervals is changed at each round.

6.4.1. First experiment

The first experiment evaluates the AWRT of both Grid and local
jobs in a scenario wherein the providers send the availability infor-
mation to the IGG every 12 h. Fig. 5 shows the AWRT of Grid appli-
cations for four sets of allocation policies (i.e. Eb + least — load and
EbMf+, Cb+ and CbM + earliest — start). The initial four bars repre-
sent the AWRT under no peering between IGGs, that is, the IGGs
have no contracts with one another and therefore do not redirect

requests. Bars 5-7 represent the AWRT of Grid jobs when fixed-
price contracts are established amongst IGGs, whereas bars 8-10
show the AWRT under price-range contracts. The EASY backfilling
with ‘submit to the least loaded resource’ (i.e. bar 1) is shown for
the sake of comparison. We observe that in an overall, the AWRT
is reduced by the peering of Grids under both fixed-price and
price-range contracts. This occurs despite the fact that IGGs accu-
mulate a number of requests to be handled at random intervals be-
tween 1 and 5min when contracts exist, in contrast to
Eb + least — load in which requests are handled upon their arrival
at the gateway. The load forecast based policy (EbMf + earli-
est — start) leads to a decrease in the AWRT of Grid jobs in both
fixed-price and price-range contracts, but it does not perform as
good as the conservative backfilling based policies. However, our
initial expectations were that this policy would have less impact
on the providers’ local jobs because they resize the free time slots

Average Weighted Response Time of Grid Jobs

400

350 -

300 -

250

200

AWRT (x10%)

150 |

100 |

Eb+least-load (no contracts)
EbMf+earliest-start (no contracts)
Cb+earliest-start (no contracts)
CbM-+earliest-start (no contracts)
EbMf+earliest-start (fixed-price contracts)
Cb+earliest-start (fixed-price contracts)
CbM+earliest-start (fixed-price contracts)
EbMf+earliest-start (price-range contracts)
Cb+earliest-start (price-range contracts)
CbM-+earliest-start (price-range contracts)

A L

50

Fig. 5. Average weighted response time (AWRT) of Grid jobs.

Average Weighted Response Time of Providers’ Local Jobs

160

140

120

ERRITT

R
88088
o0t

2

%
K58
$a%a%%e% |

R
5

%
%
5
%e°

0
=

e
XRRK
e

100+

‘AA‘AA‘AQ
s
B
RS

AWRT (x10%)
XX
R

>
R
R

(o]

o

T
RS

RRRR
S
R

Savarens

>
0’.

%
o

03
X,
<
&

KR

R

TRRIRIR
UK
Sateratotete!

XKL

KRR
S
date

Savarens

%
s
3

..
X
2
5
o

X
La
R
QR
S

X

<
)
o,
o
o

.
5%
2%

X

>

et

%%
o

R

R3
%

40

Eb+least-load (no contracts)
EbMf+earliest-start (no contracts)
Cb+earliest-start (no contracts)
CbM-+earliest-start (no contracts)
EbMf+earliest-start (fixed-price contracts)
Cb+earliest-start (fixed-price contracts)
CbM-+earliest-start (fixed-price contracts)
EbMf+earliest-start (price-range contracts)
Cb+earliest-start (price-range contracts)
CbM+earliest-start (price-range contracts)

SHEGA LR

7

Fig. 6. Average weighted response time (AWRT) of providers’ jobs.

52 M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55

given to the gateway based on load forecasts. In addition, previous
results have shown that the load forecast policy is influenced by
the length of the horizon [18].

The AWRT of local jobs show the impact of peering of Grids in
the providers’ user applications (Fig. 6). Similarly to the Grid appli-
cations, the AWRT of local jobs is reduced with the peering of IGGs.
The reduction is more accentuated for the load forecast based pol-
icy, confirming our expectations that by providing load forecasts,
even if not very precise, the gateway can schedule jobs accounting
for the providers’ local load. Intriguingly, the AWRT of both Grid
and local jobs under price-range contracts is similar to, and in same
cases worse than, that of fixed-price contracts. Our initial expecta-
tion was that, although Grids can redirect more requests under
price-range contracts, the increase in AWRT could be caused by
the fact that IGGs handle the requests and offers at random inter-
vals between 1 and 5 min. However, as described later, with the
chosen price-range contract, some IGGs in fact redirect less re-
quests, thus the increase in AWRT is caused by the fact that a Grid
ends up handling requests locally after a period of unsuccessful
negotiations. This scenario can be improved by introducing a
buy-it-now mechanism where a Grid could make an offer for
immediate access to resources [45]. However, the investigation of
such a mechanism is not in the scope of this paper.

Fig. 7 presents the percentage of the load from each Grid mi-
grated to other Grids when providers send availability information
every 12 h. A previous investigation [11] revealed that the job
acceptance is higher when the contracts define a price-range,
which allows Grids to redirect more load. However, with a price-
range defined by k = 5%, Grids do not redirect more load in all
the cases. For example, Fig. 7 shows that when providers use con-
servative backfilling without multiple partitions, DAS-2 and Auver-
Grid in fact redirect less load. We do not investigate the impact of
different price ranges on provisioning under the all the policies de-
scribed in this paper [11].

6.4.2. Second experiment

In the second experiment we evaluate the AWRT of Grid jobs in
three situations wherein the providers send the availability infor-
mation to the gateway firstly every 24 h, secondly every 12 and fi-
nally every 6 h. Table 2 shows the AWRT of Grid jobs per Grid
under each scenario. In our previous study [11], we noticed that
AuverGrid has a higher load than DAS-2 and Grid’5000. The table
shows that Grids with a low utilisation (i.e. DAS-2 and Grid’5000)
do not have a decrease in the AWRT of their Grid users’ applica-
tions. In fact, we can notice that, the AWRT is worsened. In con-
trast, AuverGrid has a substantial reduction in the AWRT of its

Load Redirected to Other Grids per Contract and Policy Types

EbMf+earliest-start (fixed-price contracts) ———
Cb+earliest-start (fixed-price contracts) EXx=
CbM-+earliest-start (fixed-price contracts) Exxzz
EbMf+earliest-start (price-range contracts) m— _
Cb+earliest-start (price-range contracts) Ex=X
CbM+earliest-start (price-range contracts) £Zz=z2

[}
@©
8 2ol
= 20
[}
]
—
[}
- 15F
@©
[}
—
L
10 B
2]
[
5]
2]
X1
5]
2]
K]
oo
5k KX
K
K
K
k<
K
K
K
k]
0 pfeteds

AuverGrid

Grid’5000

Fig. 7. Percentage of load generated by each Grid that was redirected to other Grids.

Table 2
The AWRT of Grid jobs under different policies and intervals.

Grid No contracts Fixed-price contracts Price-range contracts
EbMf Cb CbM EbMf Cb CbM EbMf Cb CbM
Providers sending availability information every 24 h
DAS-2 39170 45644 43972 46025 50263 51258 47082 55502 47715
AuverGrid 419362 436861 394436 210710 200719 195419 193491 197075 207255
Grid5000 191685 181689 176156 194614 182955 177300 189055 181915 175958
Providers sending availability information every 12 h
DAS-2 37902 41295 40611 49190 44040 45101 50509 44800 43770
AuverGrid 433547 432191 391018 208548 218451 219517 214272 226716 220365
Grid5000 190568 179463 174029 188503 178315 174342 188572 178078 173047
Providers sending availability information every 6 h
DAS-2 39344 39063 38788 53297 42468 41154 51907 42818 40771
AuverGrid 439807 427912 389705 233263 240290 216316 227300 225625 215831
Grid5000 189918 174233 170628 189295 175202 168825 191194 173863 171537

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 53

Table 3
The AWRT of providers’ local jobs under different policies and intervals.

Grid No contracts Fixed-price contracts Price-range contracts
EbMf Cb CbM EbMf Cb CbM EbMf Cb CbM
Providers sending availability information every 24 h
DAS-2 62030 65112 61095 83605 87580 87795 80370 90657 78051
AuverGrid 287352 289922 262810 168008 163892 155444 152469 158253 160937
Grid5000 77573 76926 73146 76620 78199 72868 74580 78154 73939
Providers sending availability information every 12 h
DAS-2 60814 63256 60500 76554 82402 75124 81889 80374 73920
AuverGrid 269261 287900 261086 156361 172751 169217 166731 179381 169700
Grid5000 74285 75484 71831 73788 76657 71632 73263 75857 71478
Providers sending availability information every 6 h
DAS-2 61371 62180 59326 78647 77866 74680 79951 78018 72136
AuverGrid 284865 285926 260735 182447 190212 166531 170587 180327 169151
Grid5000 71993 74611 71098 72005 74084 70519 71216 74336 70774
Table 4

The AWRT of Grid jobs for an interconnection between DAS-2 and Grid’5000.

Grid No contracts Fixed-price contracts Price-range contracts
EbMf Cb CbM EbMf Cb CbM EbMf Cb CbM
Providers sending availability information every 24 h

DAS-2 39139 45694 44001 40799 46058 45303 40623 46455 44495

Grid5000 140843 145003 142751 139269 146913 142429 139719 144835 142768
Providers sending availability information every 12 h

DAS-2 37881 41315 40560 39230 41330 41424 38984 41680 41806

Grid5000 138999 145607 140184 143663 143766 140379 141989 142437 140435
Providers sending availability information every 6 h

DAS-2 39325 39054 38741 39103 39427 38989 39410 39413 39043

Grid 5000 152476 141030 137761 139586 140367 137390 144104 140241 137596

Grid jobs. We can conclude that in terms of improving the AWRT,
the peering of Grids with very different utilisation levels may not
benefit the under-utilised Grids. However, the mechanism
achieves its goal of redirecting requests from a Grid with high util-
isation to others with lower utilisation levels as shown in Fig. 7.

During the second experiment, we also evaluated the AWRT of
providers’ local jobs at different Grids under different horizons. The
results are presented in Table 3 and follow those of the AWRT of
Grid jobs. AuverGrid benefits from the peering thus decreasing
the AWRT of its providers’ local jobs. Grid’5000 has small benefits
in fixed price contracts when providers utilise a conservative back-
filling policy with multiple partitions. DAS-2, on the hand, has the
AWRT of its providers’ job worsened by the peering.

6.4.3. Third experiment

The third experiment has the same characteristics of the sec-
ond, except that we now investigate the peering only between
DAS-2 and Grid’5000. With this experiment we want to investigate
the AWRT of Grid jobs in the peering of two Grids that are not as
utilised as AuverGrid. Table 4 shows the results for the AWRT of
Grid jobs. The AWRT of Grid’5000’s jobs is improved in some cases,
for example, when the horizon is of 6 h. DAS-2 has small increases
in the AWRT under the same horizon and policies. For the other
horizons (i.e. 12 h and 24 h), the results are slightly mixed, pre-
senting small improvements and some increases. The small in-
creases are due to the fact that a gateway stores the messages to
be handled at time intervals when the they have contracts with
other gateways and some requests have an additional time in-
curred by the negotiation.

The experiments show that load management across Grids
through resource exchange considering the compensation of re-
source providers is possible. The amount of load migrated shows
that Grids balance their load and redirect requests. The allocation

policies allow gateways to make decisions on resources provided
to peering Grids. In addition, the overall AWRT of both Grid jobs
and providers’ local jobs is improved. However, some Grids have
increases in the AWRT incurred by the negotiation time.

7. Conclusions and future work

This paper has presented the performance evaluation of policies
for resource provisioning across Grids. It has demonstrated how a
Grid can redirect requests to other Grids during periods of peak de-
mand using a cost-aware load sharing mechanism. The mechanism
relies on availability information obtained via different scheduling
policies at provider sites. The provider policies enable information
about fragments in the scheduling queue of clusters to be obtained
using ordinary resource management systems. We have utilised
this information as the basis for the mechanism for load sharing
among Grids.

We have presented simulation results that demonstrate that the
mechanism and policies are effective to redirect requests across
Grids leading to a reduction in the overall average weighted re-
sponse time (AWRT) of Grid applications. Moreover, we evaluate
whether the proposed policies have a smaller impact on local pro-
viders’ jobs than traditional policies when the Grids are intercon-
nected. We have noticed that in an overall, the AWRT of
providers’ local jobs improves with a network of contracts among
the Grids. However, some Grids have increases in the AWRT in-
curred by the negotiation time. The experiments demonstrate that,
despite the imprecise resource availability information given by
providers, the load management across Grids through resource ex-
change is possible while accounting for the compensation of re-
source providers.

Future work will investigate a buy-it-now mechanism for re-
quests that have deadlines in order to reduce the negotiation time

54 M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55

required to acquire resources to serve them. We will also consider
requests with different priorities. We also plan to investigate how
IGGs can co-ordinate resource provisioning via shared spaces
implemented atop distributed hash tables (DHT) or other P2P sys-
tems. We will extend the mechanism by providing means for Grids
to redirect requests across several Grids (i.e. it will support transi-
tive relationships between the Grids in the contract network). Fu-
ture investigations also include more sophisticated resource
provisioning policies for the gateways, specially for handling ad-
vance reservation requests, more sophisticated load forecasting
techniques and the impact of varying price-range contracts on
provisioning.

Acknowledgement

We would like to thank: the anonymous reviewers for their
comments; Marco Netto, Sungjin Choi and Alexandre di Costanzo
from the University of Melbourne for the technical discussions
on the topic; Mukaddim Pathan for helping in improving the lan-
guage and expression of a preliminary version of this paper. We
are also grateful to Dr. Franck Cappello, Dr. Olivier Richard, Dr.
Emmanuel Medernach and the Grid Workloads Archive group for
making the Grid workload traces available. This work is supported
by DEST and ARC Project grants. Marcos’ PhD research is partially
supported by National ICT Australia (NICTA).

References

[1] C. Catlett, P. Beckman, D. Skow, I. Foster, Creating and operating national-scale
cyberinfrastructure services, Cyberinfrastructure Technology Watch Quarterly
2 (2) (2006) 2-10.

[2] T. Dunning, R. Nandkumar, International cyberinfrastructure: Activities around
the globe, Cyberinfrastructure Technology Watch Quarterly, 2(1), URL <http://
www.ctwatch.org/quarterly/articles/2006/02>.

[3] K. Miura, Overview of Japanese science Grid project NAREGI, Progress in
Informatics (2006) 67-75.

[4] Open Science Grid, <http://www.opensciencegrid.org>, 2005.

[5] L. Peterson, S. Muir, T. Roscoe, A. Klingaman, PlanetLab Architecture: An
Overview, Technical Report PDN-06-031, PlanetLab Consortium, Princeton,
USA, May 2006.

[6] I Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable
virtual organizations, International Journal of Supercomputer Applications 15
(3) (2001) 200-222.

[7] Grid Interoperability now community group (GIN-CG), <http://forge.ogf.org/sf/
projects/gin>, 2006, URL http://forge.ogf.org/sf/projects/gin.

[8] A.losup, D.HJ. Epema, T. Tannenbaum, M. Farrellee, M. Livny, Inter-operating
grids through delegated matchmaking, in: 2007 ACM/IEEE Conference on
Supercomputing (SC 2007), Reno, USA, 2007.

[9] C. Metz, Interconnecting ISP networks, IEEE Internet Computing 5 (2) (2001)
74-80.

[10] P. Baake, T. Wichmann, On the economics of internet peering, NETNOMICS 1
(1) (1999) 89-105.

[11] M.D. de Assuncdo, R. Buyya, A cost-aware resource exchange mechanism
for load management across Grids, in: 14th IEEE International Conference
on Parallel and Distributed Systems (ICPADS'08), Melbourne, Australia,
2008.

[12] OpenPBS: The portable batch system software, Veridian Systems, Inc.,
Mountain View, CA, 2005, URL <http://www.openpbs.org/scheduler.html>.

[13] The Condor Project homepage, <http://www.cs.wisc.edu/condor/>, 2005.

[14] D.A. Lifka, The scheduling systems, in: Workshop on Job Scheduling Strategies
for Parallel Processing (IPPS'95), Springer-Verlag, London, UK, 1995, pp. 295-
303.

[15] R. Buyya, D. Abramson, J. Giddy, Nimrod/g: An architecture for a resource
management and scheduling system in a global computational Grids, in:
Fourth International Conference on High Performance Computing in Asia-
Pacific Region (HPC Asia 2000), Beijing, China, 2000, pp. 283-289.

[16] S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling e-
science applications on global data grids: research articles, Concurrency and
Computation: Practice and Experience (CCPE) 18 (6) (2006) 685-699.

[17] G. Singh, C. Kesselman, E. Deelman, A provisioning model and its comparison
with best-effort for performance-cost optimization in Grids, in: 16th
International Symposium on High Performance Distributed Computing
(HPDC 2007), ACM Press, Monterey, USA, 2007, pp. 117-126.

[18] M.D. de Assuncdo, R. Buyya, Performance analysis of multiple site resource
provisioning: Effects of the precision of availability information, in:
International Conference on High Performance Computing (HiPC 2008),
Bangalore, India, 2008.

[19] AW. Mu’alem, D.G. Feitelson, Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling, IEEE
Transactions on Parallel and Distributed Systems 12 (6) (2001) 529-543.

[20] B.G. Lawson, E. Smirni, Multiple-queue backfilling scheduling with priorities
and reservations for parallel systems, in: Eighth International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP'02), LNCS, Springer-
Verlag, London, UK, 2002, pp. 72-87.

[21] A. AuYoung, L. Grit, J. Wiener,]J. Wilkes, Service contracts and aggregate
utility functions, in: 15th IEEE International Symposium on High
Performance Distributed Computing (HPDC 2006), Paris, France, 2006, pp.
119-131.

[22] T. Roblitz, F. Schintke,]. Wendler, Elastic Grid reservations with user-defined
optimization policies, in: Workshop on Adaptive Grid Middleware (AGridM
2004), Antibes Juan-les-Pins, France, 2004.

[23] M. Wieczorek, M. Siddiqui, A. Villazon, R. Prodan, T. Fahringer, Applying
advance reservation to increase predictability of workflow execution on the
Grid, in: Second IEEE International Conference on e-Science and Grid
Computing (E-Science 2006), IEEE Computer Society, Washington, DC, USA,
2006, p. 82.

[24] P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, K.
Salem, Adaptive control of virtualized resources in utility computing
environments, in: The 2007 Conference on EuroSys (EuroSys 2007), ACM
Press, Lisbon, Portugal, 2007, pp. 289-302.

[25] P. Garbacki, V.K. Naik, Efficient resource virtualization and sharing strategies
for heterogeneous Grid environments, in: Tenth IFIP/IEEE International
Symposium on Integrated Network Management (IM 2007), Munich,
Germany, 2007, pp. 40-49.

[26] G. Singh, C. Kesselman, E. Deelman, Application-level resource
provisioning on the grid, in: Second IEEE International Conference on e-
Science and Grid Computing (e-Science 2006), Amsterdam, The
Netherlands, 2006, pp. 83-83.

[27] D.B. Jackson, Q. Snell, MJ. Clement, Core algorithms of the Maui
scheduler, in: 7th International Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP'01), LNCS, Springer-Verlag, London, UK, 2001,
pp. 87-102.

[28] CNGrid project web site, <http://www.cngrid.org/>, 2007.

[29] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S.
Lantéri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O.
Richard, E.-G. Talbi, T. Iréa, Grid’5000: a large scale and highly reconfigurable
experimental Grid testbed, International Journal of High Performance
Computing Applications 20 (4) (2006) 481-494.

[30] The Distributed ASCI Supercomputer 2 (DAS-2), Dutch University Backbone,
2006.

[31] Conseil Régional Auvergne, AuverGrid, <http://www.auvergrid.fr>, 2007.

[32] Onelab2 website, <http://www.one-lab-2.org/>, 2007.

[33] L. Peterson,]J. Wroclawski, Overview of the GENI architecture, GENI Design
Document GDD-06-11, GENI: Global Environment for Network Innovations,
January 2007, URL <http://www.geni.net/GDD/GDD-06-11.pdf>.

[34] Y. Wang, D. Scardaci, B. Yan, Y. Huang, Interconnect EGEE and CNGRID e-
infrastructures through interoperability between gLite and GOS middlewares,
in: International Grid Interoperability and Interoperation Workshop (IGIIW
2007) with e-Science 2007, IEEE Computer Society, Bangalore, India, 2007, pp.
553-560.

[35] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, K.G. Yocum, Sharing
networked resources with brokered leases, in: USENIX Annual Technical
Conference, Boston, MA, 2006, pp. 199-212.

[36] L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi, A. lamnitchi,]J. Chase,
Toward a doctrine of containment: Grid hosting with adaptive resource
control, in: 2006 ACM/IEEE Conference on Supercomputing (SC 2006), ACM
Press, New York, NY, USA, 2006, p. 101.

[37] L. Grit, D. Inwin, A. Yumerefendi,]J. Chase, Virtual machine hosting for
networked clusters: building the foundations for ‘autonomic’ orchestration, in:
First International Workshop on Virtualization Technology in Distributed
Computing (VTDC 2006), Tampa, Florida, 2006.

[38] R. Ranjan, A. Harwood, R. Buyya, SLA-based coordinated superscheduling
scheme for computational Grids, in: IEEE International Conference on Cluster
Computing (Cluster 2006), Barcelona, Spain, 2006, pp. 1-8.

[39] M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load
management in federated distributed systems, in: First Symposium on
Networked Systems Design and Implementation (NSDI), USENIX, San
Francisco, CA, 2004, pp. 197-210.

[40] Y.-T. Wang, RJ.T. Morris, Load sharing in distributed systems, IEEE
Transactions on Computers C-34 (3) (1985) 204-217.

[41] S.Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, I. Stoica, Load balancing in
dynamic structured peer-to-peer systems, Performance Evaluation 63 (3)
(2006) 217-240.

[42] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, B.A. Huberman, Tycoon: an
implementation of a distributed market-based resource allocation systems,
Technical Report, HP Labs, Palo Alto, CA, USA, December 2004, URL <http://
www.hpl.hp.com/research/tycoon/doc/csDC0412038.pdf>.

[43] T. Eymann, O. Ardaiz, M. Catalano, P. Chacin, I. Chao, F. Freitag, M.
Gallegati, G. Giulioni, L. Joita, L. Navarro, D.G. Neumann, O. Rana, M.
Reinicke, R.C. Schiaffino, B. Schnizler, W. Streitberger, D. Veit, F. Zini,
Catallaxy-based grid markets, International Journal on Multiagent and Grid
Systems, Special Issue on Smart Grid Technologies and Market Models 1
(4) (2005) 297-307.

http://www.ctwatch.org/quarterly/articles/2006/02
http://www.ctwatch.org/quarterly/articles/2006/02
http://www.opensciencegrid.org
http://forge.ogf.org/sf/projects/gin
http://forge.ogf.org/sf/projects/gin
http://forge.ogf.org/sf/projects/gin
http://www.openpbs.org/scheduler.html
http://www.cs.wisc.edu/condor/
http://www.cngrid.org/
http://www.auvergrid.fr
http://www.one-lab-2.org/
http://www.geni.net/GDD/GDD-06-11.pdf
http://www.hpl.hp.com/research/tycoon/doc/csDC0412038.pdf
http://www.hpl.hp.com/research/tycoon/doc/csDC0412038.pdf

M.D. de Assungdo, R. Buyya/Information and Software Technology 51 (2009) 42-55 55

[44] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. Parkes, M. Seltzer,]. Shank, S.
Youssef, Egg: An extensible and economics-inspired open grid computing
platform, in: Third International Workshop on Grid Economics and Business
Models (GECON 2006), Singapore, 2006, pp. 140-150.

[45] A. AuYoung, B. Chun, C. Ng, D.C. Parkes, A. Vahdat, A. Snoeren, Practical
market-based resource allocation, Technical Report CS2007-0901, CSE,
University of California San Diego, 2007.

[46] C. Ernemann, V. Hamscher, R. Yahyapour, Economic scheduling in grid
computing, in: Revised Papers from the Eighth International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP 2002), Springer-Verlag,
London, UK, 2002, pp. 128-152.

[47] R. Buyya, Economic-based distributed resource management and scheduling
for Grid computing, PhD Thesis, Monash University, Melbourne, Australia,
April 2002, URL <http://www.buyya.com/thesis/>.

[48] RK. Dash, N.R. Jennings, D.C. Parkes, Computational-mechanism design: a call
to arms, IEEE Intelligent Systems 18 (6) (2003) 40-47.

[49] J.S. Rosenschein, G. Zlotkin, Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers, The MIT Press, Cambridge, 1994.

[50] M.D. de Assungdo, R. Buyya, S. Venugopal, InterGrid: A case for
internetworking islands of Grids, Concurrency and Computation: Practice
and Experience (CCPE) 20 (8) (2008) 997-1024.

[51] Y. Fu,]. Chase, B. Chun, S. Schwab, A. Vahdat, SHARP: An architecture for secure
resource peering, in: 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), New York, NY, USA, 2003, pp. 133-148.

[52] D.D. Clark, J. Wroclawski, K.R. Sollins, R. Braden, Tussle in cyberspace: defining
tomorrow’s internet, IEEE/ACM Transactions on Networking 13 (3) (2005)
462-475.

[53] M.B. Weiss, SJ. Shin, Internet interconnection economic model and its
analysis: peering and settlement, NETNOMICS 6 (1) (2004) 43-57.

[54] N. Badasyan, S. Chakrabarti, Private peering, transit and traffic diversion,
NETNOMICS 7 (2) (2005) 115-124.

[55] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
second ed., MIT Press/McGraw-Hill, Cambridge, Massachusetts, 2001.

[56] U. Lublin, D.G. Feitelson, The workload on parallel supercomputers: modeling
the characteristics of rigid jobs, Journal of Parallel and Distributed Computing
63 (11) (2003) 1105-1122.

[57] J.E. Hanke, A.G. Reitsch, Business Forecasting, fifth ed., Prentice-Hall Inc.,
Englewood Cliffs, USA, 1995.

[58] C. Grimme,]J. Lepping, A. Papaspyrou, Prospects of collaboration between
compute providers by means of job interchange, Job Scheduling Strategies for
Parallel Processing, of Lecture Notes in Computer Science, 4942, Springer,
Berlin/Heidelberg, 2008, pp. 132-151.

http://www.buyya.com/thesis/

	Performance analysis of allocation policies for interGrid resource provisioning
	Introduction
	Related work
	Resource provisioning at a site level
	Modelling providers’ resource availability
	Advance reservations and creation of alternatives to rejected requests
	Resource allocation in consolidated centres
	Resource provisioning
	EASY backfilling and conservative backfilling
	Multiple resource partition policies

	Load sharing amongst resource sharing networks
	Resource sharing networks and inter-operation efforts
	Intermediate resource agents
	Federated clusters and load sharing
	Economics inspired resource allocation

	Provisioning in InterGrid environments
	The resource exchange

	Resource provider policies
	Conservative backfilling based policies
	Multiple resource partition policies

	Resource provisioning and load sharing
	Contract types
	Provisioning policies
	Storing free time slots at the IGG

	Performance evaluation
	Experimental scenario
	Performance metrics
	Policy acronyms
	Experimental results
	First experiment
	Second experiment
	Third experiment

	Conclusions and future work
	Acknowledgement
	References

