Resource Provisioning based on Lease Preemption in InterGrid

Mohsen Amini Salehi

Bahman Javadi

Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia
Email: {mohsena, bahmanj, raj}@csse.unimelb.edu.au

Abstract

Resource provisioning is one of the main challenges
in resource sharing environments such as InterGrid.
Recently, many resource management systems in re-
source sharing environments use lease abstraction and
virtual machines for provisioning. In resource shar-
ing environments resource providers serve requests
from external (grid) users along with their own lo-
cal users. The problem arises when there is not suffi-
cient resources for local users, which have higher pri-
ority than grid users, and need resources urgently.
This problem could be solved by preempting leases
from grid users and allocating them to the local users.
However, preempting leases entails determining which
lease(s) are better choices to be preempted and what
should be done with the preempted leases. To answer
these questions, in this work, we propose different re-
quest types in the InterGrid environment. Then, we
propose and compare several policies that determine
the proper set of lease(s) for preemption. The first
policy increases resource utilization as a system cen-
tric criterion. The second policy improves user satis-
faction by decreasing the number of preempted leases.
The third policy makes a trade-off between resource
utilization and the number of lease preemption. Sim-
ulation results demonstrate that the proposed pre-
emption policies serve up to 72% more local requests
without increasing the rejection ratio of grid requests.

1 Introduction

Managing and providing computational resources for
user applications is one of the challenges in the high
performance computing community. Resource shar-
ing environments enable sharing, selection, and aggre-
gation of different resources across several Resource
Providers (RP), which are also called sites, and usu-
ally scattered over a geographical region. These RPs
are connected through high bandwidth network con-
nections. Nowadays, heavy computational require-
ments, mostly from scientific communities, are sup-
plied by these RPs, such as Grid 5000 in France and
DAS-2 in the Netherlands.

InterGrid (De Assungédo et al. 2008), provides an
architecture and policies for inter-connecting different
Grids. As shown in Figure 1, in InterGrid computa-
tional resources in each RP are shared between grid
users as well as local users. The provisioning rights

Copyright (©2011, Australian Computer Society, Inc. This pa-
per appeared at the 32nd Australasian Computer Science Con-
ference (ACSC 2011), Perth, Australia, January 2011. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 113, Mark Reynolds, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

over the resources from several RPs inside a Grid are
delegated to the InterGrid Gateway (IGG). IGGs co-
ordinate resource allocation for requests through pre-
defined contracts between Grids (De Assuncao et al.
2008). On the other hand, local users send their re-
quests directly to the local scheduler of the RP.

Hence, resource provisioning in InterGrid is done
for two different types of users, namely: local users
and external (grid) users. As illustrated in Figure 1,
local users (hereafter termed local request), refer to
users who ask their local RP for resources. Grid users
(hereafter termed grid request) are those users who
send their requests to the IGG to get access to larger
amount of resources. Typically, for an RP local re-
quests have more priority than grid requests (Chase
et al. 2003). However, removing the contention be-
tween the local request and grid request is challeng-
ing. In other words, the organization that owns the
resources would like to ensure that its community has
priority access to the resources. In this circumstance,
grid requests are welcome to use resources if they are
available. Nonetheless, grid requests should not delay
the execution of local requests.

)

Grid Request 2=

Resources
allocated to Grid
Local Requesl& —] request
Resources 4
allocated to Local

requests

7.~ Free Resource

Figure 1: A scenario that shows the contention be-
tween local and grid requests in InterGrid.

In InterGrid the resource provisioning is based
on the lease abstraction. A lease is an agreement
between resource provider and resource consumer
whereby the provider agrees to allocate resources to
the consumer according to the lease terms presented
by the consumer (Sotomayor et al. 2008, 2009). Vir-
tual Machine (VM) technology is a way to implement
lease-based resource provisioning (Sotomayor et al.
2009). The capabilities of VMs in getting suspended,
resumed, stopped, or even migrated (when there is
enough bandwidth) have been extensively studied and
have shown to be useful in resource provisioning with-
out major utilization loss (Chase et al. 2003, So-
tomayor et al. 2008, Zhao & Figueiredo 2007). In-
terGrid makes one lease for each user VM request.

In this paper, we solve the problem of contention
between local and grid requests in InterGrid. Given
the fact that local requests have more priority rather
than local requests we preempt grid leases in favor

of local requests. More specifically, we propose three
policies to determine an appropriate set of leases for
preemption. Finally, we make an appropriate decision
for the preempted lease.

The rest of this paper is organized as follows: In
Section 2, the problem we are investigating is dis-
cussed, then in Section 3 related research works are
introduced. Proposed policies are described in Sec-
tion 4 and detailed evaluations are mentioned in Sec-
tion 5. Finally, conclusion and future works are pro-
vided in Section 6.

2 Problem Statement

As mentioned earlier, local requests have higher pri-
ority than grid requests in InterGrid. The problem we
are dealing with in this paper is resource provisioning
for local requests when existing resources have been
allocated to grid requests and the rest of resources are
not adequate to serve the local requests. In this sit-
uation, one solution is to preempt some of the leases
allocated to grid users. However, there are some chal-
lenges in preempting leases.

The first challenge is that there are some restric-
tions in preempting leases. In fact, one difference be-
tween job-based resource provisioning and lease-based
resource provisioning is that jobs can be preempted
without notifying the user (job owner). Nevertheless,
this is not the case for leases (Grit et al. 2007). There-
fore, the first challenge is coming up with regulations
in the lease terms to make lease preemption possible.

Moreover, making a proper decision for a pre-
empted lease, given the characteristics of a resource
sharing environment such as InterGrid, is challenging.

Since lease preemption has some side-effects, the
second challenge we consider is how to minimize
these side-effects. These side-effects and the challenge
ahead are discussed over the next paragraphs.

In the case of job-based resource provisioning,
many distributed systems do not provide the ability
of preempting jobs (Snell et al. 2002). This is mainly
because the operating system has to provide the secu-
rity of not accessing files and data of the preempted
processes. Additionally, since the operating systems
mostly do not provide the checkpointing facilities, the
preempted jobs have to be killed, which is a waste
of resources (Snell et al. 2002). These problems are
obviated by leveraging VMs in lease-based resource
provisioning (Sotomayor et al. 2008). However, pre-
empting leases and subsequently VMs is not free of
cost and imposes time overhead to the system which
is one of the side-effects of preemption.

Since the next time-slots are already reserved for
other requests, preempting leases and allocating to
new requests can potentially affect these reservations.
Re-scheduling preempted leases and affected reserva-
tions are also side-effects of preempting leases. Pre-
empting leases also makes grid users wait for a longer
time to get their leases completed.

By getting lease preemption possible in an RP,
there is a possibility that several leases have to be
preempted to make sufficient vacant resources for a
local request. Therefore, there are potentially several
sets of candidate leases that can be preempted. In
this paper each set of the candidate leases is termed
a Candidate Set. However, selecting different candi-
date sets affects the amount of imposed overhead as
well as the number of grid users who get affected by
preemption.

These issues bring another challenge into the pic-
ture. The challenge is choosing the optimal candidate
set for preemption in a way that minimizes the side-
effects of preempting leases.

In summary, there are two main challenges ahead:

1. How to make lease preemption possible and what
are the potential decisions for preempted leases?

2. Which candidate set is a better choice for pre-
emption? (Preemption policy)

3. We evaluate the impact of the proposed policies
upon key performance metrics in a simulation
environment.

Formal definition of the problem can be stated as
follows:

e [;: Lease 1.
e R;: Local request j

o 7(L;) € {gridCancelable, gridSuspendable,
gridMigratable, grid N on Preemptable,
local Non Preemptable}

e v(z;): Number of VMs in the lease/request i.
e h(L;): Overhead of preempting lease i.

e p(L;): Category of lease i (local or grid) and
defined as follows:

_J 1 if grid request
p(Li) = { 0 if local request

According to the above definitions, candidate set m
for allocating request I2; can be presented as follows:

N,
Con + {YL: | p(Li) = 1 & o(R;) <

%

3

Il
-

where NN, is the number of leases involved in candi-
date set C),. If there are S candidate sets, then all
candidate sets can be peresented as:

A {Cn|0<m<S—1} 2)

Finally, a preemption policy can be presented as a
function that selects an appropriate candidate set out
of all candidate sets (i.e., policy(A) = Cp,).

We believe that in an RP with many nodes and
requests, selecting a proper candidate set for pre-
emption is crucial and leads to significant reduction
in preemption overhead time and increases user sat-
isfaction. Although the problem we are investigat-
ing in this paper is in InterGrid context, it could be
also applied to other lease-based Grid/Cloud resource
providers where requests with higher priority (such as
local or organisational requests) coexist with other re-
quests.

3 Related Work

Although preemption was not extensively studied in
distributed computing previously (Snell et al. 2002),
recently many researches have been undertaken in the
area.

Haizea (Sotomayor et al. 2008) is a lease scheduler
which schedules advanced reservation and best effort
leases. Haizea preempts best effort leases in favor of
advance reservation requests. In case of preempting a
lease, Haizea just considers the preemptability of the
lease. In other words, when there are several candi-
date sets to be preempted, Haizea does not have any
specific policy to determine which candidate set is a
better choice for preemption. In contrast, we propose
and compare policies that determine which candidate
set is a better choice for preemption. In Haizea, pre-
empted leases are suspended and put in the queue to

be resumed in another available time-slot later. How-
ever, we consider a diversity of leases (Cancelable,
Suspendable, Migratable, and non-preemptable) that
gives the scheduler more options than just suspend-
ing the lease. Sotomayor et al. (Sotomayor et al.
2008, 2009) have directly mentioned that lease re-
quests should be categorized and decided based on
user-provided priorities. Therefore, our work can be
considered as complementary for the research under-
taken by Sotomayor et al..

In another research undertaken by Sotomayor et
al. (Sotomayor et al. 2009), the overhead time im-
posed by preempting a lease (suspending and resum-
ing a VM) is estimated. We use the same model
to consider the overhead in our evaluations. This
overhead should be taken into consideration in lease
scheduling where some leases should be preempted in
favor of other requests. The proposed model is based
on the amount of memory that should be de-allocated,
number of VMs mapped to each physical node, local
or global memory used for allocating VMs, and the
delay related to commands being enacted. In evalua-
tion of the proposed preempting policies, we consider
the overhead involved in preempting leases based on
this model.

Walters et al. (Walters et al. 2008) introduced a
preemption-based scheduling policy for batch and in-
teractive jobs inside a cluster. In this work batch
jobs are preempted in favor of interactive jobs. The
authors introduce different challenges in preempting
jobs including selecting a proper job to be preempted,
how to checkpoint the preempted job, how to pro-
vision VMs, and how to resume the preempted job.
Their preemption policy is based on weighted sum-
mation of several factors such as the time spent in
the queue.

One difference of our work with Walters et al. is
that our preemption policy is based on lease based re-
source provisioning, while Walter’s research is based
on job. Moreover, Walters et al. do not consider the
circumstance that several jobs should be preempted
to make room for the higher priority jobs. Another
difference is that Walters et al. do not consider the
impact of preemption on reservations in the queue.
By contrast, our work considers both the running
leases as well as reservations in the queue.

Kettimuthu et al. (Kettimuthu et al. 2005) focused
on the impact of preempting parallel jobs in super-
computers for improving the average and worst case
slow down of jobs. The authors also suggested a pre-
emption policy, which is called Selective Suspension,
where an idle job can preempt a running job if the
suspension factor is adequately more than running
job.

However, the authors do not specify which job
should be preempted instead they decide when to do
the preemption. The proposed policy is starvation
free since it operates based on the response ratio of
jobs.

Isard et al. (Isard et al. 2009) investigate the prob-
lem of optimal scheduling for data intensive appli-
cations such as Map-Reduce (Isard et al. 2009) on
the clusters that computing and storage resources are
close together. This work provides an example of
Cancelable leases that can be terminated without any
notification to the job owner. Achieving the optimal
resource allocation, they propose a scheduling policy
that preempts the currently running job in order to
maintain data locality for a new job. Although the
scheduling policy is based on job preemption, the au-
thors do not discuss which job is selected to be pre-
empted amongst several candidates.

Snell et al. (Snell et al. 2002) consider the impact
of preemption on backfilling scheduling. They pro-
vide policies to select the set of jobs for preemption

in a way that the jobs with higher priority jobs are
satisfied and at the same time the utilization of re-
sources increase. In this work the preempted job is
restarted and rescheduled in the next available time-
slot. Our work is different with Snell et al. from
several aspects. Firstly, since we consider lease based
resource provisioning, there are more choices for the
preempted lease (such as suspended, migrated, etc).
Secondly, Snell et al. recognize the best set of running
jobs for preemption. However, in our contribution the
preemption policy considers the best candidate set as
well as the impact of preempting on the reservations
made for the leases in the queue. The third difference
is that Snell et al. does not consider the overhead
of preempting jobs. In fact, by killing the preempted
jobs they reduced the overhead to zero. Nonetheless,
the computational power is wasted in that case.

4 Proposed Solution

4.1 Introducing Different Lease Types

To tackle challenges mentioned in Section 2, we
should first make the preemption possible in lease
terms agreed between resource provider and con-
sumer. For that purpose, we introduce different re-
quest types in InterGrid. After reservation is done
for a request, the “request type” is mapped to “lease
type”.

At the moment, a request issued by a user in In-
terGrid is composed of the following characteristics:

e Virtual Machine (VM) name needed by the user.
e Number of VMs needed.

e Ready time: the time that requested VMs should
be ready.

e Wall time: duration of the lease.

Deadline: the time that serving the request must
be finished.

We extend the InterGrid request by adding the “re-
quest type” to it.

Considering the characteristics of a resource shar-
ing environment, proposed request (lease) types give
more choices to the scheduler rather than just sus-
pending and rescheduling the preempted leases (So-
tomayor et al. 2008). Based on the lease type, the
scheduler determines how to schedule the lease and
what to be done with a preempted lease.

Different request types we consider for requests
in InterGrid are broadly classified as best effort and
deadline constraint requests. More details of different
request types are as follows:

e Best Effort-Cancelable: these requests can be
scheduled at any time after their ready time.
Leases of such type can be canceled without no-
tifying the lease owner. Cancelable leases neither
guarantee the deadline nor the wall time of the
lease. Such leases are suitable for map-reduce-
like requests (Isard et al. 2009). Spot instances in

Amazon EC2! are also another example of Can-
celable leases. Cancelable leases impose the min-
imum overhead time at the time of preemption.
This overhead is related to the time needed to
terminate VMs allocated to the lease.

e Best Effort-Suspendable: leases of this type can
be suspended at any time but should be resumed
later. This type of lease guarantees the wall
time of the lease but not in a specific deadline.

Lhttp://aws.amazon.com/ec2/spot-instances

Suspendable leases are flexible in start time and
they can be scheduled at any time after their
ready time. In the case of preemption, these
leases should be rescheduled to find another free
time-slot for the remainder of their execution.
The overhead time of preempting a Suspendable
lease is sum of the time needed to suspend a
VM, reschedule the lease, and resume it later.
Suspendable leases are suitable for Bag-of-task
(BOT) and Parameter Sweep type of applica-
tions (Buyya et al. 2005).

e Restartable (Redirectable): In this case the pre-
empted lease can be canceled and restarted in an-
other Grid later on. In InterGrid IGGs can redi-
rect requests to other Grids through peering ad-
justments (De Assungéo et al. 2008). Restartable
requests can be either best-effort or deadline-
constraint. In the former case, the wall time of
the request and in the latter both wall time and
deadline of grid request is gauranteed. However,
we do not consider this type of grid leases in our
preemption policies and leave this choice for the
future work.

e Deadline Constraint-Migratable: These leases
guarantee both the wall time and deadline of the
lease. However, there is no guarantee that they
will be run on a specific resource(s). In other
words, there is always a chance for the lease to
be preempted but it will be resumed and finished
before its deadline, either on the same resource
or on another resource. Nonetheless, migrating
VMs involves VM transferring overhead. One so-
lution to mitigate this overhead is migrating to
another RP inside the same Grid of InterGrid
which has a high bandwidth connection. Multi-
ple reservation is also a conceivable strategy to
serve such kind of leases (Sotomayor et al. 2008).
We leave the details of migration issues involved
as a future work. Migratable requests are needed
by steerable applications (Costanzo et al. 2009).
In these applications, which are already imple-
mented in InterGrid, the workload can be mi-
grated to more powerful sites to meet user con-
straints such as deadline (Costanzo et al. 2009).

e Deadline Constraint-Non-Preemptable: The
leases associated with such requests cannot be
preempted at all. These leases guarantee both
deadline and wall time without being preempted
during the lease. This type of lease is useful for
critical tasks in workflows where some tasks have
to start and finish at exact times to prevent de-
laying the execution of the workflow (Kwok &
Ahmad 1996).

We assume that local requests are all deadline con-
straint non-preemptable. However, grid users can
send all request types mentioned above. Different
lease types correspond to different prices. Thus, users
are motivated to associate their requests to different
request types. Unarguably, the more flexible request
type the less expensive the lease. However, we leave
the market-oriented implications of the lease-based
scheduling as a future work.

4.2 Preemption Policies

In this section we discuss policies for choosing the
best candidate set for preemption.

As mentioned earlier, the scheduler in this system
faces with two types of requests: grid requests and
local requests.

If the scheduler receives a non-preemptable or Mi-
gratable grid request, the scheduler must determine

whether there are adequate free resources available
for the requested wall time from the requested start
time. If the request is found not to be possible, it will
be rejected. Nonetheless, there is more flexibility for
Suspendable and Cancelable requests. In fact, since
such requests are not restricted to any specific dead-
line, the scheduler tries to find a vacant place for the
requested wall time in any available time-slot.

If the scheduler cannot find any vacant resource for
a local request, then the scheduler tries to make room
for the local request by preempting the Suspendable,
Cancelable, and/or Migratable leases that coincide
with the local request’s needed interval. Thus, leases
that their preemption makes enough space for the lo-
cal request are selected and form all candidate sets.
Each candidate set contains a set of leases that their
preemption makes enough space for an incoming lo-
cal request. However, if resources are occupied by
non-preemptable grid leases or leases from other lo-
cal requests, then the local request inevitably gets
rejected. Preemption policy in this situation deter-
mines the proper candidate set for preemption.

Choosing different candidate sets affects the num-
ber of VMs to be preempted, which turns out to
present different time overheads. On the other hand,
selecting different candidate sets leads to a different
number of leases to be preempted, which adds more
waiting time and, consequently, more grid user dis-
satisfaction.

We propose three preemption policies that result
in different candidate sets to be preempted. They
lead to a different amount of time overhead and a dif-
ferent number of leases to get preempted. One pol-
icy focuses on system centric criteria by trying to in-
crease resource utilization. The second policy focuses
on user centric criteria and tries to preempt fewer
leases to make more user satisfaction. The third pol-
icy makes a trade-off between resource utilization and
user satisfaction.

4.2.1 Minimum Overhead Policy (MOV)

As a system centric policy, this policy aims at max-
imizing resource utilization. Therefore, this policy
tries to minimize the time overhead imposed to the
underlying system by preempting a candidate set that
leads to the minimum overhead. For this purpose the
total overhead imposed to the system by each candi-
date set is calculated and a set with minimum over-
head is selected. According to the notation we defined
in Section 2, MOV policy can be presented based on
Equation 3.

MOV (4) = min{h(C,n)) ®)

The overhead time imposed by each candidate set
varies based on the type of leases involved in that
candidate set (Sotomayor et al. 2009). For Cancelable
leases the overhead is the time needed to terminate
the lease and shut down its VM(s). This time is usu-
ally much lower than the time needed for Suspending
or Migrating leases (Sotomayor et al. 2009).

The overhead imposed by preempting a Suspend-
able lease includes the time needed to suspend and re-
sume VM(s) plus a time for re-scheduling the remain-
ing time of the lease. The estimation of these times
has been carried out by Sotomayor et al. (Sotomayor
et al. 2009). We use the same method to work out
the overhead time imposed by preempting Suspend-
able leases. Therefore, the overhead of suspension is
ts = M and resumption time is ¢, = . Where
mem is the amount of VM memory, s is the rate of
suspending megabytes of VM memory per second,

and r is the rate of re-allocating megabytes of VM
memory per second (Sotomayor et al. 2009). Pre-
empting a Migratable lease enforces VM(s) transfer-
ring overhead in addition to the overheads mentioned
for Suspendable leases (Zhao & Figueiredo 2007).

Since we consider a global file system, if there are
several VMs in a lease (i.e., K), then the preemption
oveﬂ;ead time is multiplied by K (Sotomayor et al.
2009).

4.2.2 Minimum Leases
(MLIP)

Users do not like that their leases get affected by
preemption. In fact, preempting leases makes longer
waiting times for Suspendable and Migratable leases
to get completed. In the case of Cancelable leases,
preempting the lease results in terminating the lease.
Therefore, as a user centric policy, MLIP tries to sat-
isfy more users by preempting fewer leases.

In this policy a candidate set that contains mini-
mum number of leases is selected from all the candi-
date sets. MLIP disregards the type of leases involved
in a candidate set during decision making. Based on
the notation introduced in Section 2, MLIP can be
presented according to Equation 4.

Involved Policy

MLIP(4) = min{|Cyn]} (4)

where |Cy,| gives the number of leases involved (car-
dinality) in each candidate set C,,.

4.2.3 Minimum Overhead Minimum Lease
Policy (MOML)

The two proposed policies mentioned earlier aim to
either improve resource utilization (as a system cen-
tric criterion) or minimize the number of preempted
leases (as a user centric criteria). However, in MOML
we propose an approach that can fulfill both system
and user centric criteria at the same time. This pol-
icy is depicted in Figure 2 and elaborated in Algo-
rithm 1. In fact, MOML is a balance between MOV,
which minimizes the imposed overhead, and MLIP,
which attempts to minimize the number of requests
affected by preemption.

L1
[mmmm) { =1

3
?
&
[
o
a8
=3
o
E]

Candidate Sets

Figure 2: Pre-selection and final selection steps of
MOML policy.

According to Figure 2 and Algorithm 1, in MOML
the selection of a candidate set is carried out in two
steps. In the first step (pre-selection) all candidate
sets which have a total overhead less than a cer-
tain threshold («) are pre-selected for the second step
(lines 5 to 8 in Algorithm 1). The first step increases
the tolerance of acceptable overhead in comparing
with MOV. In the second step, to have fewer leases
affected, a candidate set that contains minimum num-
ber of leases is selected(lines 9 to 11 in Algorithm 1).

Selecting a proper value for o determines the be-
haviour of MOML policy. More specifically, if the

a — 0o, then MOML behaves the same as MLIP. On
the other hand, if @ — 0, then MOML behaves the
same as MOV. Thus, to keep the trade-off between
MOV and MLIP, we consider « as the median value
of the overheads (lines 1, 2, and 4 in Algorithm 1).
By choosing a = median we ensure that just half
of the candidate sets that have lower overheads are
considered in the second step for having a minimum
number of leases.

Algorithm 1: MOML Preemption Policy.

Input: Candidate Sets
Output: Selected Candidate Set
1 foreach candidateSet € Candidate Sets do
2 L Overheads.Add(getOverhead (candidateSet));

3 min <« oo;
4 o — getMedian(Quverheads);
5 foreach candidateSet € Candidate Sets do

6 ovhd «— get0Overhead (candidateSet);
7 NoLeases <+ Cardinality(candidateSet);
8 if ovhd < o then
9 if NoLeases < min then
10 selected «— candidateSet;
11 min «— NoLeases;

5 Performance Evaluation

In this section we discuss different performance met-
rics considered, the scenario in which the experiments
are carried out, and experimental results obtained
from simulation.

5.1 Performance Metrics

Introducing different types of leases along with pre-
emption policy are expected to affect different param-
eters, which are described over the next subsections.

5.1.1 Local and Grid Request Rejection Rate

The initial goal of this research is serving more lo-
cal requests by preempting resources from grid leases.
Therefore, as a result of our research, it is interest-
ing for us to find out how efficient these preemption
policies are in terms of serving more local requests.

The “local request rejection rate” is the fraction of
local requests which are rejected, possibly because of
allocating resources to non-preemptable grid requests
or other local requests.

Additionally, we are interested to see if decreasing
local request rejection rate comes with the cost of
rejecting more grid requests. Grid Request Rejection
Rate describes this metric and shows the percentage
of grid requests that are rejected. The ideal case is
that local request rejection rate is reduced without
increasing the grid request rejection rate.

5.1.2 Resource Utilization

Time overhead is a side-effect of preempting leases
that results in resource under-utilization. Therefore,
we are interested to see how different preemption poli-
cies affect the resource utilization.

Resource utilization is defined according to the
Equation 5.

computationTime

Utilization = x100 (5)

totalTime

Table 1: Detailed specifications of the generated workloads. |BE| stands for the number of best effort grid
requests, |DC| stands for the number of deadline constraint grid requests, and |Local| stands for the number

of local request.

Modified Parameter Distribution Other Constant Parameters
Average No. VMs Two-stage uniform | [BE] =1000, [DC] =1000,
Local| =1000
No. BE Requests Uniform Average No. VMs=4, [DC] = 2000 —
|BE|, |Local] =1000
No. DC Requests Uniform Average No. VMs=4, [BE] = 2000 —
|DC|, |Local| =330
No. Local Requests Uniform Average No. VMs=4, |[BE| = [DC| =
(total Request — local) /2
Where: e different number of deadline constraint grid
requests (including Migratable and Non-
Al Preemptable).
computationTime = Z v(l;)-d(l;) (6) .
p e different number of local requests.

Where |A| is the number of leases, v(l;) is the number
of VMs in lease [;, d(l;) is the wall time of lease I;.

5.1.3 Number of Lease Preemption

Preempting grid leases has different impacts on dif-
ferent lease types. For Suspendable and Migrat-
able leases, preemption leads to increasing comple-
tion time. For Cancelable leases preemption results
in terminating that lease. Since users of different lease
types have distinct expectation from the system, it is
not easy to propose a common criterion to measure
user satisfaction. For instance, owners of Migratable
leases expect to get their accepted and meet the dead-
line while owners of Suspendable leases like to have
short waiting times. Nonetheless, in all types of leases
grid users suffer from lease preemption. Therefore, to
have a generic metric to measure the user satisfaction,
we are interested to see the total number of preemp-
tions resulted by different policies.

5.2 Experimental Setup

We used a discrete event simulator to evaluate
the performance of the preemption policies. These
preemption policies are implemented in the con-
text of InterGrid. In the experiments conducted,
Lublin99 (Lublin & Feitelson 2001) has been config-
ured to generate 3000 parallel jobs.

Lublin99 is the workload model based on the San
Diego Super Computer (SDSC) Blue Horizon ma-
chine. Job traces collected from this supercomputer
are publicly available and have been studied exten-
sively in the past.

We consider a cluster with 32 nodes as an RP. We
assume all nodes of the RP as single core with one
VM. The maximum number of VM(s) in generated
requests is also 32.

We consider each VM of 1024 MB and a 100
Mbps network bandwidth. Hence, according to Sec-
tion 4.2.1, in our experiments, suspension time ()
and resumption time (¢,) are 161 and 126 seconds re-
spectively. The time overhead for migrating a VM
with similar configuration is 160 seconds (Zhao &
Figueiredo 2007).

We intend to study the behavior of different poli-
cies when they face workloads with different charac-
teristics. More specifically, we study situations where
workloads have:

o different number of VMs needed.

e different number of best effort grid requests (in-
cluding Cancelable and Suspendable).

Each experiment is carried out on each of these work-
loads separately. To generate these workloads, we
modify parameters of Lublin99’s model. The way
these workloads are generated and other detailed
specifications of these workloads are described in Ta-
ble 1.

5.3 Experimental Results
5.3.1 Local and Grid Request Rejection Rate

The primary goal of this paper is to show the im-
pact of preempting grid leases to allocated resources
to local requests. In Table 2, the mean difference of
decrease in local requests rejection rate is reported
along with a 95% confidence interval of the differ-
ence. We report the difference between rejection rate
in two situations; First, when no preemption policy is
used and second, when MOML is used as a preemp-
tion policy. Since all proposed preemption policies
resulted in similar local and grid rejection rate we
have just reported the result for MOML. We use a
T-test to work out the mean difference between these
two policies. To perform the T-test we have ensured
that the distribution of difference is normal.

According to Table 2, local request rejection
rate has statistically and practically significantly de-
creased by applying preemption in all cases. More
importantly, this reduction in local request rejection
rate has not been with the cost of rejecting more grid
requests. Based on Table 2, it can be noted that in
all experiments grid request rejection rate does not
change significantly.

Based on this experiment, the maximum decrease
in local request rejection rate occurs when the per-
centage of best effort grid requests is higher (second
row in Table 2). In this circumstance, more local
requests can be accommodated by preempting these
best effort leases.

5.3.2 Resource Utilization

In this experiment we measure the resources utiliza-
tion when different preemption policies are applied.
As illustrated in all sub-figures of Figure 3, we explore
the impact of altering workload parameters pointed
out in Table 1 on resource utilization when different
preemption policies are applied.

This experiment indicates that resource utilization
increases almost linearly by increasing the average
number of VMs in requests (Figure 3(a)). Although
preempting best effort leases make some overhead,
we can see in Figure 3(b) that increasing the number
of best effort requests improves resource utilization;

Table 2: Mean difference and 95% confidence interval (CI) of decrease in local requests rejection rate and grid
requests rejection rate as a result of applying preempting leases in an RP of InterGrid.

Modified Parameter Mean Decrease in Lo- | CI of Decrease in Local | Change in Grid Requests
cal Requests Rejection | Requests Rejection Rate | Rejection Rate
Rate
Average No. of VMs 55.1% (47.2,62.9), P-Value<0.001 Equal
Percentage of BE Grid Re- | 72.0% (51.1,92.8), P-Value=0.001 Not statistically significant,
quests P-Value=0.6
Percentage of DC Grid | 54.3% (35.0,73.7), P-Value=0.001 Not statistically significant,
Requests P-Value=0.3
Percentage of Local Re- | 58.2% (40.3,75.9), P-Value<0.001 Not statistically significant,
quests P-Value=0.6
Policy 50.01 Policy
704 —— MUP —— MuP
_____ MOML 47.54 --=-- MOML|
MOV MoV
< < 45.0
& 659 g
5 § 425
g g
£ 604 £ 40,0/
=) =]
37.51
55
35.0
6 8 0 12 14 16 18 10 20 30 40 50
Average No of VMs Best Effort Grid Request (%)
(a) (b)
484 Policy
—— MLIP 55| Policy
_____ MOML —— MLIP
46 Mov | | |] e MOML
MOV
A ~ 504
g 44/ s
5 £
:._‘é ol '_E 45-
: =
40-
40-
38 B ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 O e oy °
Deadline Constraint Grid Request (%) ocal Requests (%)

()

(d)

Figure 3: Resource utilization results from different policies. This experiment was carried out by modifying
(a) the average number of VMs, (b) the percentage of best effort grid requests, (¢) the percentage of deadline
constraint grid requests, and (d) the number of local requests.

however, after a certain percent (best effort>20%)
resource utilization does not fluctuate significantly
in different policies. The reason is that, allocating
other (unused) time-slots to the preempted leases re-
sult in less resource fragmentation and therefore re-
source utilization does not decrease by increasing the
percentage of the grids best effort requests.

In Figure 3(c), we can see that resource utiliza-
tion increases by increasing the percentage of dead-
line constraint requests in all policies. However, there
is a sharp decrease (from around 45% down to 38%)
when 40% of requests are deadline constraint. In fact,
in this point there are many best effort and dead-
line constraint requests in the system at the same
time. Hence, more preemption occurs and subse-
quently more overhead is imposed to the system. We
can conclude that the system would result in mini-
mum utilization when 40% of requests are deadline
constraint and the rest are best effort.

By increasing the number of local requests the
number of preemption and subsequently the amount
of overhead increases. Therefore, as we can see in

Figure 3(d), by increasing the number of local re-
quests, resource utilization decreases almost linearly
in all policies.

In all sub-figures of Figure 3 it can be observed
that MOV result in better utilization comparing with
the other policies. However, in a few points (e.g., 40
in Figure 3(b)), MOV has slightly less utilization than
MOML. This happens mainly because of the resource
fragments that occur at scheduling time which leads
to resource under-utilization. Sub-figures of Figure 3
also demonstrates that resource utilization MOML
lies between MLIP and MOV.

5.3.3 Number of Lease Preemptions

In this experiment we investigate the number of grid
leases that get preempted by applying different pre-
emption policies.

From Figure 4(a) we can infer that, in general,
larger leases (i.e. leases with more number of VMs)
lead to fewer of preemptions. In fact, in this situation
fewer of leases are needed to be preempted to make

| Policy
900 —— MLIP
————— MOML
800 MOV
c
2 7004
=
o
£
0 600
o
)
Z 500
400
3007 T T T T T T T
6 8 10 12 14 16 18
Average No of VMs
(a)
1100 Policy
—— MLIP
10001 _ " et e el e MOML
MoV
900
c
L
B 800
£
1]
£ 700,
)
Z 600
500)
v
4007 T T T T T
10 20 30 40 50
Deadline Constraint Grid Request (%)

(c)

No Preemption

900+

10 20 30 40 50
Best Effort Grid Request (%)

1500

1250+

1000+

No Preemption

750+

500+

20 30 40 50 60 70
Local Requests (%)

(d)

Figure 4: Number of lease preemption resulted from different policies by changing (a) the average number of
VMs, (b) percentage of best effort grid requests, (c) percentage of deadline constraint grid requests, and (d)

the number of local requests.

room for incoming local requests.

Figure 4(b) shows that by increasing the num-
ber of best effort grid requests the number of pre-
emptions increases almost linearly. For a lower per-
centage of best effort grid requests (percentage best
effort<30%), MOML behaves similar to MOV, how-
ever, after that point MOML approaches to MLIP.
The reason is that when the number of Suspendable
leases is high, the likelihood of having a candidate set
with minimum number of leases and not large overall
overhead is high. Thus, MOML and MLIP approach
each other.

In Figure 4(c), the number of preemptions does
not vary significantly when the percentage of deadline
constraint grid requests is increased. However, when
the percentage of deadline constraint grid requests ex-
ceeds 40% the number of preemptions drops sharply
(from around 1000 to 500). In fact, best effort grid
requests result in an excessive number of preemptions
and therefore, when the proportion of deadline con-
straint requests increases, the number of preemptions
decrease significantly.

Figure 4(d) demonstrates that the number of pre-
emptions increases by increasing the number of local
requests in all policies almost linearly.

As illustrated in all sub-figures of Figure 4, most
of the time MLIP results in a minimum number of
preemptions and MOML operates between MLIP and
MOV. The only exceptions are in points 7, 8 of Fig-
ure 4(a) where MLIP makes more preemptions rather
than MOV and MOML. We believe that on these
points MLIP has preempted some leases which had
short wall times. Therefore, after preemption they are
allocated in a close time-slot and again these leases
are preempted by MLIP.

6 Conclusion and Future Work

In this research we explored how local requests of an
RP can get access to occupied resources in InterGrid.
For this purpose we leveraged preempting grid leases
in favor of local requests. We proposed different types
of leases plus different policies to decide which lease(s)
are better choices for preemption. More specifically,
we investigated three policies for lease preemption.
MOV as a policy that improves system utilization,
MLIP that results in fewer preemption and increasing
user satisfaction, and MOML which makes a trade-off
between resource utilization and user satisfaction.

We observed that preempting leases substantially
decrease the rejection of local requests (up to 72%
with 95% CI:(51.1,92.8)) without increasing grid re-
quests rejection rate. These results are the same for
all proposed preemption policies. We also noticed
that MOV performs better in terms of resource uti-
lization in comparing with other policies. On the
other hand, MLIP is a better policy in the sense that
it preempts fewer leases and therefore causes more
user satisfaction. MOML is a policy which satisfies
both resource utilization and the user at the same
time.

Although the problem we are investigating in this
paper is in InterGrid context, it could be also applied
to other lease-based Grid/Cloud resource providers
where requests with higher priority (such as local or
organisational requests) coexist with other requests.

In the future, we plan to extend the current work
by considering circumstances where there is a depen-
dency between leases. Furthermore, we are interested
in scenarios where local requests are also from differ-
ent ‘;ypes (e.g. local Suspendable and local Migrat-
able).

References

Buyya, R., Murshed, M. M., Abramson, D. & Venu-
gopal, S. (2005), ‘Scheduling parameter sweep ap-
plications on global grids: a deadline and bud-
get constrained cost-time optimization algorithm’,
Softw., Pract. Exper. 35(5), 491-512.

Chase, J. S., Irwin, D. E., Grit, L. E., Moore, J. D. &
Sprenkle, S. E. (2003), Dynamic virtual clusters in
a grid site manager, in ‘Proceedings of the 12th
IEEE International Symposium on High Perfor-
mance Distributed Computing’, Washington, DC,
USA, pp. 90-98.

Costanzo, A. d., Jin, C., Varela, C. A. & Buyya, R.
(2009), Enabling computational steering with an
asynchronous-iterative computation framework, in
‘E-SCIENCE ’09: Proceedings of the 2009 Fifth
IEEE International Conference on e-Science’, IEEE
Computer Society, Washington, DC, USA, pp. 255—
262.

De Assungao, M., Buyya, R. & Venugopal, S. (2008),
‘InterGrid: A case for internetworking islands of
Grids’, Concurrency and Computation: Practice
and Ezperience 20(8), 997-1024.

Grit, L., Ramakrishnan, L. & Chase, J. (2007), On
the duality of jobs and leases, Technical Report
(CS-2007-00, Duke University, Department of Com-
puter Science.

Isard, M., Prabhakaran, V., Currey, J., Wieder, U.,
Talwar, K. & Goldberg, A. (2009), Quincy: fair
scheduling for distributed computing clusters, in
‘Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles (SOSP)’,
ACM, pp. 261-276.

Kettimuthu, R., Subramani, V., Srinivasan, S.,
Gopalsamy, T., Panda, D. K. & Sadayappan, P.
(2005), ‘Selective preemption strategies for parallel
job scheduling’, IJHPCN 3(2/3), 122-152.

Kwok, Y.-K. & Ahmad, 1. (1996), ‘Dynamic critical-
path scheduling: An effective technique for allocat-
ing task graphs to multiprocessors’, IEEE Trans.
Parallel Distrib. Syst. 7(5), 506-521.

Lublin, U. & Feitelson, D. G. (2001), ‘The workload
on parallel supercomputers: Modeling the charac-
teristics of rigid jobs’, Journal of Parallel and Dis-
tributed Computing 63, 1105-1122.

Snell, Q., Clement, M. J. & Jackson, D. B.
(2002), Preemption based backfill, in ‘Job Schedul-
ing Strategies for Parallel Processing (JSSPP)’,
Springer, pp. 24-37.

Sotomayor, B., Keahey, K. & Foster, I. (2008),
Combining batch execution and leasing using vir-
tual machines, in ‘Proceedings of the 17th In-
ternational Symposium on High Performance Dis-
tributed Computing’, ACM, New York, NY, USA,
pp. 87-96.

Sotomayor, B., Montero, R. S., Llorente, I. M. & Fos-
ter, I. (2009), Resource leasing and the art of sus-
pending virtual machines, in ‘Proceedings of the
11th IEEE International Conference on High Per-
formance Computing and Communications’, Wash-
ington, DC, USA, pp. 59-68.

Walters, J., Bantwal, B. & Chaudhary, V. (2008),
‘Enabling interactive jobs in virtualized data cen-
ters’, Cloud Computing and Applications pp. 21-26.

Zhao, M. & Figueiredo, R. (2007), Experimental
study of virtual machine migration in support of
reservation of cluster resources, in ‘Proceedings
of the 3rd International Workshop on Virtualiza-
tion Technology in Distributed Computing’, ACM,
pp. 5-11.

