
Distributed Systems and Recent Innovations: Challenges and Benefits

Krishna Nadiminti, Marcos Dias de Assunção, and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
http://www.gridbus.org

1. Introduction

The World Wide Web is used by millions of people everyday for various purposes
including email, reading news, downloading music, online shopping or simply accessing
information about anything. Using a standard web browser, the user can access
information stored on Web servers situated anywhere on the globe. This gives the
illusion that all this information is situated locally on the user’s computer. In reality, the
Web represents a huge distributed system that appears as a single resource to the user
available at the click of a button.

There are several definitions and view points on what distributed systems are. Coulouris
defines a distributed system as “a system in which hardware or software components
located at networked computers communicate and coordinate their actions only by
message passing” [1]; and Tanenbaum defines it as “A collection of independent
computers that appear to the users of the system as a single computer” [2]. Leslie
Lamport – a famous researcher on timing, message ordering, and clock synchronization
in distributed systems once said that “A distributed system is one on which I cannot get
any work done because some machine I have never heard of has crashed“ reflecting on
the huge number of challenges faced by distributed system designers. Despite these
challenges, the benefits of distributed systems and applications are many, making it
worthwhile to pursue.

Various types of distributed systems and applications have been developed and are
being used extensively in the real world. In this article, we present the main
characteristics of distributed systems and look at some of the challenges that are faced
by designers and implementers of such systems, and also introduce an example
distributed system.

2. Main Features and Benefits of a Distributed System

A common misconception among people when discussing distributed systems is that it is
just another name for a network of computers. However, this overlooks an important
distinction. A distributed system is built on top of a network and tries to hide the
existence of multiple autonomous computers. It appears as a single entity providing the
user with whatever services are required. A network is a medium for interconnecting
entities (such as computers and devices) enabling the exchange of messages based on
well-known protocols between these entities, which are explicitly addressable (using an
IP address, for example).

There are various types of distributed systems, such as Clusters [3], Grids [4], P2P
(Peer-to-Peer) networks [5], distributed storage systems and so on. A cluster is a

dedicated group of interconnected computers that appears as a single super-computer,
generally used in high performance scientific engineering and business applications. A
grid is a type of distributed system that enables coordinated sharing and aggregation of
distributed, autonomous, heterogeneous resources based on users’ QoS (Quality of
Service) requirements. Grids are commonly used to support applications emerging in the
areas of e-Science and e-Business, which commonly involve geographically distributed
communities of people who engage in collaborative activities to solve large scale
problems and require sharing of various resources such as computers, data,
applications and scientific instruments. P2P networks are decentralised distributed
systems, which enable applications such as file-sharing, instant messaging, online multi-
user gaming and content distribution over public networks. Distributed storage systems
such as NFS (Network File System) provide users with a unified view of data stored on
different file systems and computers which may be on the same or different networks.

The main features of a distributed system include [1] [2]:

• Functional Separation
Based on the functionality/services provided, capability and purpose of each
entity in the system.

• Inherent distribution
Entities such as information, people, and systems are inherently distributed. For
example, different information is created and maintained by different people. This
information could be generated, stored, analysed and used by different systems
or applications which may or may not be aware of the existence of the other
entities in the system.

• Reliability
Long term data preservation and backup (replication) at different locations.

• Scalability
Addition of more resources to increase performance or availability.

• Economy
Sharing of resources by many entities to help reduce the cost of ownership.

As a consequence of these features, the various entities in a distributed system can
operate concurrently and possibly autonomously. Tasks are carried out independently
and actions are co-ordinated at well-defined stages by exchanging messages. Also,
entities are heterogenous, and failures are independent. Generally, there is no single
process, or entity, that has the knowledge of the entire state of the system.

Various kinds of distributed systems operate today, each aimed at solving different kinds
of problems. The challenges faced in building a distributed system vary depending on
the requirements of the system. In general, however, most systems will need to handle
the following issues [1] [2]:

• Heterogeneity
Various entities in the system must be able to interoperate with one another,
despite differences in hardware architectures, operating systems, communication
protocols, programming languages, software interfaces, security models, and
data formats.

• Transparency
The entire system should appear as a single unit and the complexity and
interactions between the components should be typically hidden from the end
user.

• Fault tolerance and failure management
Failure of one or more components should not bring down the entire system, and
should be isolated.

• Scalability
The system should work efficiently with increasing number of users and addition
of a resource should enhance the performance of the system.

• Concurrency
Shared access to resources should be made possible.

• Openness and Extensibility
Interfaces should be cleanly separated and publicly available to enable easy
extensions to existing components and add new components.

• Migration and load balancing
Allow the movement of tasks within a system without affecting the operation of
users or applications, and distribute load among available resources for
improving performance.

• Security
Access to resources should be secured to ensure only known users are able to
perform allowed operations.

Several software companies and research institutions have developed distributed
computing technologies that support some or all of the features described above.

3. Distributed Computing Technologies in Practice

Over the years, technologies such as CORBA and DCOM have provided the means to
build distributed component-based systems. Such technologies allow systems to
interoperate at the component level, by providing a software layer and protocols that
offer the interoperability needed for components developed in different programming
languages to exchange messages. However, such technologies present scalability
issues when applied to, for instance, the Internet and some restrict the developer to a
specific programming language. Hence, approaches based on Web protocols and XML
(eXtensible Markup Language) have been proposed to allow interoperable distributed
systems irrespective the programming language in which they are developed.

Web Services are based on XML and provide a means to develop distributed systems
that follow a Service Oriented Architecture (SOA). Services are described in an XML-
based dialect (WSDL). In a similar fashion, the request and reply messages exchanged
in such systems are formatted according to the Simple Object Access Protocol (SOAP).
SOAP messages can be encoded and transmitted by using Web protocols such as the
Hypertext Transfer Protocol (HTTP). Various industrial technologies and application
platforms such as .NET from Microsoft, J2EE from Sun, WehSphere from IBM are
targeted at supporting the development of applications based on Web Services.

Along with Web Services, Grid computing is another emerging paradigm for creating
wide-area distributed applications. Web Services are foundation technologies that can
be used in building many types of distributed systems and applications including Grid
systems. Web Services are in the core of the current implementations of Grid
technologies such as Globus from Argonne National Laboratory in USA and the Gridbus
from the University of Melbourne, Australia. Grid computing scales from an
enterprise/organisation to a global level. Global Grids are established over the public

Internet infrastructure, and are characterized by a global presence, comprise of highly
heterogeneous resources, present sophisticated security mechanisms, focus on single
sign-on and are mostly batch-job oriented.

To enable global Grids, one requirement is that current enterprise and campus Grids are
able to interoperate. Enterprise and campus Grids consist of resources spread across an
enterprise and provide services to users within that organisation and are managed by a
single administrative domain. Such Grids are more concerned with cycle stealing from
unused desktops and use virtualization of resources in order to provide better means to
manage and utilize them within an enterprise. For example, Oracle 10g uses a
virtualization approach to split data storage from the database transaction and process
layer. However, scalability and the design of security mechanisms are not as difficult as
they are for global Grids.

4. Alchemi: An example distributed system

In a typical corporate or academic environment there are many resources which are
generally under-utilised for long periods of time. A “resource” in this context means any
entity that could be used to fulfil any user requirement; this includes compute power
(CPU), data storage, applications, and services. An enterprise grid is a distributed
system that dynamically aggregates and co-ordinates various resources within an
organisation and improves their utilisation such that there is an overall increase in
productivity for the users and processes. These benefits ultimately result in huge cost
savings for the business, since they will not need to purchase expensive equipment for
the purpose of running their high performance applications.

The desirable features of an enterprise grid system are:

• Enabling efficient and optimal resource usage.

• Sharing of inter-organisational resources.

• Secure authentication and authorization of users.

• Security of stored data and programs.

• Secure communication.

• Centralised / semi-centralised control.

• Auditing.

• Enforcement of Quality of Service (QoS) and Service Level Agreements (SLA).

• Interoperability of different grids (and hence: the basis on open-standards).

• Support for transactional processes.

Alchemi [6] is an Enterprise Grid computing framework developed by researchers at the
GRIDS Lab, in the Computer Science and Software Engineering Department at the
University of Melbourne, Australia. It allows the user to aggregate the computing power
of networked machines into a virtual supercomputer and develop applications to run on
the Grid with no additional investment and no discernible impact on users.
The main features offered by the Alchemi framework are:

• Virtualization of compute resources across the LAN / Internet.

• Ease of deployment and management.

• Object-oriented "Grid thread" programming model for grid application
development.

• File-based "Grid job" model for grid-enabling legacy applications.

• Web services interface for interoperability with other grid middleware.

• Open-source .Net based, simple installation using Windows installers.

Alchemi Grids follow the master-slave architecture, with the additional capability of
connecting multiple masters in a hierarchical or peer-to-peer fashion to provide
scalability of the system. An Alchemi grid has three types of components namely the
Manager, the Executor, and the User Application itself.

The Manager node is the master / controller whose main function is to service the user
requests for workload distribution. It receives a user request, authenticates the user, and
distributes the workload across the various Executors that are connected to it. The
Executor node is the one which actually performs the computation. Alchemi uses role-
based security to authenticate users and authorize execution. A simple grid is created by
installing Executors on each machine that is to be part of the grid and linking them to a
central Manager component.

More information about Alchemi can be found at http://www.alchemi.net/

Conclusion

As we have noted thus far, distributed systems have been an important part of peoples’
lives as a result of innovations in the recent past in the area of Web-based applications,
and will continue to make a serious impact in the future. Emerging technologies such as
Grids will drive the next wave of innovation enabling the creation of applications that
deliver IT as the 5th utility after water, electricity, gas, and the telephone. In conclusion,
distributed computing is a very broad area with vast potential to improve efficiency of
business processes and quality of life!

References

1. G. Couloris, J. Dollimore, and T. Kinberg, Distributed Systems - Concepts
and Design, 4th Edition, Addison-Wesley, Pearson Education, UK, 2001.

2. A. Tanenbaum and M. Van Steen, Distributed Systems: Principles and Paradigms,
Prentice Hall, Pearson Education, USA, 2002.

3. R. Buyya (editor), High Performance Cluster Computing, Prentice Hall, USA, 1999.

4. I. Foster and C. Kesselman (editors), The Grid: Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

5. R. Subramanian and B. Goodman (editors), Peer-to-Peer Computing: Evolution of a
Disruptive Technology, Idea Group Inc., Hershey, PA, USA, 2005.

6. A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, Peer-to-Peer Grid Computing and a
.NET-based Alchemi Framework, In High Performance Computing: Paradigm and
Infrastructure, L Yang and M. Guo (eds), Wiley Press, New Jersey, USA, June 2005.

