
 Gridbus Workflow Enactment Engine

Jia Yu and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Email: {jiayu, raj@}csse.unimelb.edu.au

1. Introduction

With the advent of Grid technologies, scientists and engineers are building

complex and sophisticated applications to manage and process large data sets, and

execute scientific experiments on distributed Grid resources [33]. Building complex

workflows requires means for composing and executing distributed applications. A

workflow expresses an automation of procedures wherein files and data are passed

between procedures applications according to a defined set of rules, to achieve an

overall goal [13]. A workflow management system defines, manages and executes

workflows on computing resources. The use of the workflow paradigm for application

composition on Grids offers several advantages [22] such as:

• Ability to build dynamic applications and orchestrate the use of distributed

resources.

• Utilization of resources that are located in a suitable domain to increase

throughput or reduce execution costs.

• Execution spanning multiple administrative domains to obtain specific

processing capabilities.

• Integration of multiple teams involved in managing different parts of the

experiment workflow – thus promoting inter-organizational collaborations.

Executing a Grid workflow application is a complex endeavor. Workflow tasks

are expected to be executed on heterogeneous resources which may be geographically

distributed. Different resources may be involved in the execution of one workflow.

For example, in a scientific experiment, one needs to acquire data from an instrument,

and analyze it on resources owned by other organizations, in sequence or in parallel

with other tasks. Therefore, discovery and selection of resources for executing

workflow tasks could be quite complicated. In addition, a large number of tasks may

be required to be executed and monitored in parallel and the location of intermediate

data may be known only at run-time.

This chapter presents a workflow enactment engine developed as part of the

Gridbus Project at the University of Melbourne, Australia [4]. It utilizes tuple spaces

to provide an event-driven mechanism for workflow execution entities. The benefits

of this design include the ease of deployment for various strategies of resource

selection and allocation, and supporting complex control and data dependencies of

tasks with scientific workflows.

2. Architecture

The primary components of the Workflow Enactment Engine (WFEE) [31] and their

relationship with other services in the Grid infrastructure are shown in Figure 1.

Workflow applications, such as scientific application portals, submit task definitions

along with their dependencies, expressed in a workflow language, as well as

associated QoS requirements to WFEE. WFEE schedules tasks through Grid

middleware on the Grid resources.

Figure 1: Architecture of WFEE.

DatabaseDatabase

Workflow Submission Handler

Workflow Language Parser

Tasks Parameters Dependencies

Resource Discovery

Dispatcher Data Movement

GMD

Replica

Catalog

Gridbus Broker Globus Web services HTTP GridFTP

Data tra
nsfe

r

Workflow Planner Application Composition …… Scientific Portal

Workflow

Enactment Engine

Workflow description & QoS

Info Service

MDS

Workflow Scheduler

DatabaseDatabase

Workflow Submission HandlerWorkflow Submission Handler

Workflow Language ParserWorkflow Language Parser

Tasks Parameters Dependencies

Resource DiscoveryResource Discovery

DispatcherDispatcher Data MovementData Movement

GMD

Replica

Catalog

Gridbus Broker Globus Web services HTTP GridFTP

Data tra
nsfe

r

Workflow Planner Application Composition …… Scientific Portal

Workflow

Enactment Engine

Workflow description & QoS

Info Service

MDS

Workflow SchedulerWorkflow Scheduler

The key components of WFEE are: workflow submission, workflow language

parser, resource discovery, dispatcher, data movement and workflow scheduler.

� Workflow submission accepts workflow enactment requests from planner level

applications.

� Workflow language parser converts workflow description from XML format into

Java objects, Task, Parameter and DataConstraint (workflow dependency) which

can be accessed by workflow scheduler.

� Resource discovery is carried out by querying Grid information services such as

Globus MDS [12], directory service and replica catalogs, to locate suitable

resources for the tasks.

� Dispatcher is used to access middleware. Resources may be Grid-enabled by

different middleware such as Globus [12] or Web services [3]. WFEE had been

designed to support different middleware by creating dispatchers for each

middleware to support interaction with resources.

� Data movement system enables data transfer between Grid nodes by using HTTP

and GridFTP [2] protocols.

� Workflow executor is the central component in WFEE. It interacts with resource

discovery to find suitable Grid resources at run time; it locates a task on resources

by using the dispatcher component; it controls input data transfer between task

execution nodes through data movement.

3 Workflow Execution Management

The workflow execution is managed using a decentralized architecture. Instead of a

central scheduler for handling whole workflow execution, a task manager is created

for handling the processing of a task or a group of tasks, including resource discovery

and allocation, task dispatcher and failure processing. Different scheduling strategies

can be deployed in different Task Managers (TMs) for resource selection, QoS

negotiation and data transmission optimization. The lifetimes of TMs, as well as the

whole workflow execution, are controlled by a Workflow Coordinator (WCO).

As shown in Figure 2, dedicated TMs are created by WCO for each task group.

Each TM has its own monitor which is responsible for monitoring the health of the

task execution on the remote node. Every TM maintains a resource group which is a

set of resources that provides services required for the execution of an assigned task.

TMs and WCO communicate through an Event Service Server (ESS).

Figure 2: Execution management.

3.1 Communication Approach

A communication approach is needed for task managers. On one hand, every task

manager is an independent thread of execution and they can be run in parallel. On the

other hand, the behavior of each task manager may depend on the processing status of

other task managers according to the task dependencies. For example, a task manager

should not execute the task on a remote node if the input generated by its parent tasks

is not available for any reason.

In addition, in a workflow, a task may have more than one input that comes from

different tasks. Furthermore, the output of these tasks may also be required by other

task managers as well. Hence the communication model between the task managers is

not just one-to-one or one-to-many, but it could be many-to-many depending on task

dependencies of the workflow.

Given this motivation, an event-driven mechanism with subscription-notification

model has been developed to control and manage execution activities. In the system,

the behaviors of task managers and workflow coordinator are driven by events. A task

manager is not required to handle communication with others and only generates

events according to a task’s processing status. At the same time, the task managers

take actions only depending on the events occurred without concern for details of

other task managers. The benefit of this event-driven mechanism is that it provides

loosely-coupled control; hence the design and development of the system is very

flexible and additional components can be easily plugged in.

.

Figure 3: Event-driven mechanism.

The event notification is based on subscription-notification model. WCO and

TMs just subscribe to events of interest after activation, and then are informed

immediately when a subscribed event occurs. There are three basic types of events,

status events, output events and control events. Status events are sent by the TMs to

provide information on the status of task execution. Output events are sent by TMs to

announce the task output is ready along with the location of its storage. Control events

are used to send control messages, such as to pause and resume the execution, to task

managers

As illustrated in Figure 3, TMs inform each other and communicate with the

WCO through the ESS. For example, TMs put their task execution status (e.g.

executing, done, failure) into the ESS, which notifies the WCO. If the output of a task

is required by its child tasks, the task managers of the child tasks can subscribe to

output events of the task. Once the task generates the required output, an output event

is sent to the ESS, which notifies immediately, the child TMs that have subscripted to

the output event. A user can control and monitor the workflow execution by

subscribing to status events and sending control evens through a visual user interface.

3.2 State Transition

The state transition of WCO is illustrated in Figure 4. WCO registers with the ESS

and start TMs of first level tasks, and then monitors activated TMs. Upon receiving

execution status from a TM, WCO starts the TMs of its child tasks. If the WCO

receives a status done event, it checks whether other TMs are still running. If so,

WCO goes back to monitoring, otherwise it exits. If WCO receives a failed event

from a TM, it proceeds to failure processing, and then ends.

The state transition of TMs is illustrated in Figure 5. The TM registers events,

such as output events, status events, generated by its parent tasks and waits for the

events to occur; when an event occurs, the TM goes to the event processing state. If

all input data is available, it starts a new thread to process execution for a job;

otherwise, the TM goes back to wait state. A job is a unit of work that a TM sends to a

Grid node and one task may create more than one jobs. The job execution is started

from resource matching, in which a suitable resource is selected from the resource

group created by querying a directory service (see Section 4). If a suitable resource is

available, the TM submits a job to the resource and then monitors the status of job

execution on the remote resource. If the execution has failed, the TM goes back to

resource matching and selects an alternative resource and then submits the job to it. If

all parent tasks and execution jobs are completed, the TM ends.

Figure 4: State transition of WCO.

Figure 5: State transition of TM.

3.3 Interaction

The interactions between the WCO, TMs, ESS and remote resources are illustrated in

Figure 6. First, the WCO needs to register to the ESS and subscribe to task status

events. Then, the WCO activates task managers of first level tasks of which, in this

example, there is only one TM1. After TM1 finishes the preprocessing for the task

execution, it sends a message to ESS saying “I am executing the task”. ESS informs

the WCO and WCO activates TMs of the child tasks of TM1, namely TM2 and TM3,

in this example.

in
p

u
ts

 a
re

 r
e

a
d
y

p
a
re

n
ts a

re
 d

o
n
e

Figure 6: Interaction sequence diagram the WCO, TMs and ESS.

The inputs of the task managed by TM2 and TM3 rely on the output of the task of

TM1, so TM2 and TM3 register to ESS and listen to its output events. Once TM1

identifies a suitable resource, it submits task to that resource. As soon as TM1 knows

the output of the task, it informs TM2 and TM3 through ESS, saying “my output of

port No. x is ready and its location is xxxx”. If all input data for TM2 and TM3 are

ready, TM2 and TM3 reports execution status to ESS, and then proceeds to initialize

the execution of their tasks. After WCO receives the notification of the execution of

the tasks in TM2 and TM3, WCO will activate their child task managers, so that they

can prepare for task execution. This process will be continued until the end of

workflow execution.

4. Service Discovery

In a Grid environment, many services having same functionality and user interaction,

can be provided by different organizations. In addition, a service may be replicated

and deployed in many locations. From the user’s point of view, it is better to use a

service that offers a higher performance at a lower price. Therefore, a method is

required to allow users to find replicated services easily.

A directory service, called Grid Market Directory (GMD) [33], has been

developed to support service publication and discovery in a market-oriented Grid

environment. GMD is an infrastructure that allows (a) the creation of one or more

registries for service providers; (b) the service providers to register their

resources/application services that they wish to provide; (c) users such as workflow

engine to discover resources/services and their attributes (e.g., access price, location

and usage constraints) that meet their QoS requirements.

Figure 7 illustrates service publishing and discovery in a Grid environment

through GMD. Service providers’ first register with the GMD and publish their static

information such as location, service capability and access methods. A Grid user such

as the workflow engine can query GMD to find a suitable service. After that, the user

can also query and subscribe to the service provider directly to obtain more dynamic

information such as service execution status.

Figure 7: Service discovery using GMD.

A provider can provide their specialist applications for others to access remotely.

Figure 8 shows an application service schema. An application service provider may

also provide hosted machine information such as the host name and host public key

for remote secure access. Service providers also need to indicate middleware through

which Grid users can access the service.

Figure 8: Grid application service schema.

Grid Application Model (GAM) is developed for application identification. GAM

is a set of specifications and APIs for a Grid application. The GAM can be published

by service providers within the GMD, and the users can search GMD for services

conforming to a particular GAM. The applications with the same GAM name provide

the same function and API. In the case of the workflow system, if users do not specify

a particular service for a task in the workflow description, the scheduler uses the

GAM name associated with the executable of the task to query the GMD. The GMD

will return a list of services. These services are all able to execute the task.

5. Workflow Language

In order to allow users to describe tasks and their dependencies, a XML-based

workflow language (xWFL) has been defined. The workflow language provides the

means to build new applications by linking standalone applications.

Figure 9: Structure of workflow language.

Figure 9 shows the basic structure of the workflow language. It consists of two

parts: task definitions defined in <tasks>, data dependencies defined in <links> and

QoS constraints defined in <QoSconstraints>.

5.1 Tasks

The element <tasks> is a set of definitions of tasks that are to be executed. Figure 10

shows the schema of task definition. A task can be a single task or a parameter sweep

task. A parameter sweep task is able to process a set of parameters. The parameters

are defined in <paras>. The detailed design of parameter tasks is introduced in

Section 6. The element <executable> is used to define the information about the

application, input and output data of the task. The workflow language supports both

abstract and concrete workflows. The user or higher workflow planner can either

specify the location of a particular service providing a required application in

<service> or leave it to the engine to identify their providers dynamically at run-time.

The middleware of the application is identified through a service information file by

the GMD when dispatching tasks.

In the example that follows, task A executes dock.exe program on host

bellegrid.com in the directory /services and the executable dock has two input I/O

ports: port 0 (a file) and port 1 (a parameter value). The example shows task A only

has one output.

<task name= “A”>
<executable>
<name>dock</name>
<service>
 <hostname=“bellegrid.com” />
 <accesspoint value=“/services/dock.exe” />
</service>

 <input>
 <port num=0 type=“file” url=http://www.gridbus.org/dock.in

value=“dock.in”/>
 <port num=1 type=“msg” value=1/>

</input>
<output>

 <port num=2 type=“file” value=“dock.out”/>
</output>

</executable>
</task>

Figure 10: Schema of task definition.

5.2 Data Dependencies

A data link is used to specify the data flow between two tasks. The schema of the data

link is defined in Figure 9. Figure 11 shows the example of a data flow description.

The inputs of task B and task C rely on the output of A. The output of A needs to be

transferred to the node on which tasks B and C are executed. Input could be a file,

parameter value or data stream.

Figure 11: Flow diagram of task A, B, C and D.

6. Parameterization

Supporting parameterization in the workflow language is very important for scientific

applications. It enables scientists to perform experiments across a range of different

parameters without being concerned about the detailed workflow description. A

parameter defined in each task type is called a local parameter ; when it is defined for

the entire workflow, it is called a global parameter. As shown in Figure 9, multiple

parameters types such as single, range, file and enumeration are supported. An

example for a single parameter type and a range parameter type is given in Figure 12.

<paras>
 <para type= “single”>
 <name>X</name>
 <value type=integer>10</value>
 </para>
 <para type= “range”>
 <name>Y</name>
 <min>1</min>

<workflow>
<tasks>
<task name= “A”>

 …..
</task>
<task name= “B”>

…...
</task>

<task name= “C”>
……
</task>
<task name= “D”>
……
</task>
</tasks>
<links>
<link>
<from task=“A” port=2 />
<to task=“B” port=0 />
</link>
<link>
<from task=“A” port=2 />
<to task=“C” port=0 />
</link>
<link>
<from task=“B” port=1 />
<to task=“D” port=0 />
</link>
<link>
<from task=“C” port=2 />
<to task=“D” port=1 />
</link>
</links>
</workflow>

A

B C

D

file

other

 <max>20</max>
 <step>2</step>
 </para>
</paras>

Figure.12: Single parameter and range parameter.

Figure 13: Illustration of workflow parameters.

Among these parameter types, range and enumeration types are used to define

range or a list of parameter valued which the task is required to be executed. This type

of task is called as a parameter-sweep task [1] and is structured as a set of multiple

execution jobs, each of which is executed with a distinct set of parameters. Figure 13

illustrates parameter sweep tasks. Two inputs are required by task A and Task B; one

is a local parameter and the other is a global parameter. The local parameter of A is a

range type parameter while the local parameter of B is an enumeration type. At

execution time, the global parameter value is combined with each local parameter

value and generates 10 sub-jobs for task A and 3 sub-jobs for task B.

7. I/O Models

As shown in Figure 11, a task receives output data from its parent as its input through

a data link. However, for some tasks, more than one output could be generated by one

output port. For example, such a task could be a data collecting task that continues to

read information from a sensor device and generate corresponding output data or a

parameter-sweep task that generates multiple data based on various sets of parameters.

These outputs can be produced at different times. Some successor tasks may not

require to be processed until all these output data are generated. It can process the

y:min=1, max=20,
step=2

z=1,8,20

Task a

Input=file_$y
Input=$time_step

Task b

Input=$z
Input=$time_step

...

Local
Parameters

Local
Parameters

Task
Description

Task
Description

Ja1: (file_1,10)

Ja2: (file_3,10)

Ja3: (file_5,10)

Ja10: (file_19,10)

..
.

Workflow Definition

time_step:10
Global

Parameters

Jb1: (1,10)

Jb1: (3,10)

Jb1: (3,10)

output once it is available. However, ancestor tasks can process the output data

generated from a single parent differently, depending on their requirements.

Three I/O models have been developed in the workflow system to provide data-

handling capabilities. These models are: many-to-many, many-to-one and

synchronization. In Figure 13, there are two tasks: task A and task B. They are

connected by a data link. There are multiple sub-jobs in A and each job produces an

output. For the many-to-many model, task B starts to process data and generates an

output once there is an input available on the data link. As shown in Figure 14a, four

outputs generated by four sub-jobs of A are processed individually by four sub-jobs of

B. For the many-to-one model, task B starts to process data once there is an input

available, however, the result is calculated based on the result generated by earlier

sub-jobs. As shown in Figure 14b, sub-job B1 processes the output generated by sub-

job A1. Once the output of A2 is available, sub-job B2 is created and processes the

output of A2 based on the output generated by B1. For the synchronization model,

task B does not start processing until all the output is available on the data link. As

shown in Figure 14c, there is only one sub-job in task B and it processes all outputs

generated by sub-jobs of A at one time.

Figure 14: Input/output models.

8. Fault Handling

Two fault handling mechanism are developed in the system, retry submission and

critical task replication.

The retry submission mechanism reschedules a failed job onto a current available

resource, and also records the number of failed jobs for each resource. Once the failed

a) Many-to-Many b) Many-to-One c) Synchronization

job number exceeds a warning threshold, the scheduler decreases the number of jobs

submitted to these resources. If the number of failed jobs exceeds a critical threshold,

the scheduler terminates submission of jobs onto this resource.

The critical task replication mechanism replicates a task execution on more than

one resource. The result produced earliest is then used for the rest of the workflow.

This mechanism is designed to execute a long running task when there are multiple

spare resources.

9. Implementation

The WFEE has been implemented by leveraging the following key technologies: (1)

IBM TSpaces [30] for supporting subscription-notification based event exchange; (2)

Gridbus broker [28] for deploying and managing job execution on various

middleware; (3) XML parsing tools including JDOM [14]. The detailed class diagram

and event server implementation are presented as follows:

9.1 Design Diagram

The class design diagram of the WFEE is shown in Figure 15. XMLParsingToModel

parses XML formatted workflow description into Java objects which are instances of

class of Task, Port, DataConstraint. These objects are passed on to WorkflowModel.

WorkflowModelToDiGraph converts WorkflowModel into a directed graph

represented by class DiGraph which encompasses many GraphNode objects. An

instance of GraphNode contains a workflow task and the references of GraphNodes

of its parent and child tasks. WorkflowCoordinator creates and controls the

instantiation of TaskManager according to the graph node dependencies. Job class

represents a unit of work assigned to a Grid resource. Every job has a monitor

implemented by JobMonitor to monitor job execution status on the remote node. In

order to extend WFEE to support multiple Grid middleware, we abstract class

Resource and Dispatcher which provides interfaces that interact with Grid resources.

Thread

GT2Dispatcher

GT2Resrouce <<Abstract>>Dispatcher

JobMonitor

<<Abstract>>Resource

Job

WorkflowCoordinator

TaskManger

1..n1..n

1..n1..n
DiGraph

GraphNode

children : List

parents : List

1..n1..n

XMLPars ingToModel WorkflowModelToDiGraph

TaskPortDataConstraint

WorkflowModel

1..n1..n1..n1..n1..n1..n

Figure 15: Class diagram of WFEE.

9.2 Event Messages

We have utilized tuple spaces to exchange events. The tuple space model is originated

at Yale with the Linda system [6]. A tuple is simply a vector of typed values (Fields).

A tuple space is a collection of tuples that can be shared by multiple parties by using

operations such as read, write and delete. In our work, we have leveraged IBM’s

recent implementation of tuple spaces called TSpaces [30] to be the event server.

Table 1: Format of events.

There are three types of event tuples whose format is shown in Table 1, task

status event, output event and job status event. Task status event is sent by TMs and

WCO use it to control TMs activation. The first field is the ID of the task, the second

field is string “status” to indicate the type of tuple for the registration purposes, and

the third field gives the value of status.

Event name Field1 Field2 Field3 Tuple template for registration

task status

event

task No. “status” value new Tuple(new Field(String),

status, new Field(String))

output event task No. port No. value new Tuple(taskNo, portNo, new

Field(String))

job status event job No. task No. value new Tuple(new Field(String),

taskNo, new Field(String))

Child TMs need output events sent by the parent TMs to be informed if their

inputs are available. The events have three fields: the task ID is given in the first field,

the second field is port numbers, and the third field is the location of output.

One task can have multiple jobs. Job status events are sent by the job monitor.

Every job status event provides a job ID and its task ID with status value. TMs make

decisions according to the job events. For example, when a job has failed, the TM can

reschedule it on another resource in the resource group.

The tuple templates are used for subscribing to the corresponding event. For

example, task status events can be received by a tuple template with the second field

as a String called “status”.

10 A Case Study in fMRI Data Analysis

Magnetic Resonance Imaging (MRI) [18] uses radio waves and a strong magnetic

field to provide detailed images of internal organs and tissues. Functional MRI (fMRI)

[15] is a procedure that uses MRI to measure the signal changes in an active part of

the brain. fMRI is becoming a major diagnostic method for learning how a normal, or

a diseased brain is working. fMRI images obtained by scanning the brains of subjects

as they perform cognitive tasks. A typical study of fMRI data consist of multiple-

stage processes that begin with pre-processing of raw data and conclude with a

statistical analysis. Such analysis procedures often require upon hundreds or even

thousands of images [35].

10.1 Population-based Atlas Workflow

 Population-based atlas [27] creation is one of the major fMRI research activities.

These atlases combine anatomy imaging data from healthy and diseased populations.

These describe how the brain varies with age, gender, and demographics. They can be

used for identifying systematic effects on brain structure. For instance, they provide a

comprehensive approach for studying a particular subgroup, with a specific disease,

receiving different medications, or neuropsychiatric disorder. Population-based

atlases contain anatomical models from many subjects. They store population

templates and statistical maps to summarize features of the population. They also

average individual images together so that common features of the subgroup are

reinforced.

softmean

slicerX

slicerY

slicerZ

convert

convert

convert

parallel

processing

Sequential

processing

align_warp reslice

warp parameter sets

resliced images

atlas X slice

atlas Y slice

atlas Z slice

generate 2D atlas

atlas image

fMRI images of different subjects

Figure 16: Population-based atlas workflow.

Figure 16 shows a workflow that employs the Automated Image Registration

(AIR) [29] and FSL [23] suite for creating population-based brain atlases from high

resolution anatomical data. The stages of this workflow are follows:

a) The inputs to the workflow are a set of brain images which are 3D brain

scans of population with varying resolutions and a reference brain image.

For each brain image, align_warp adjusts the position and shape of each

image to match the reference brain. The output of each process is a warp

parameter set defining the spatial transformation to be performed.

b) For each warp parameter set, reslice creates a new version of the original

brain image according to the configuration parameters defined in the warp

parameter set. The output of each reslice procedure is a resliced image.

c) softmean averages all the resliced images into one single atlas image.

d) The averaged image is sliced using slicer to give a 2D atlas along a plane in

three dimension (x, y and z), taken through the centre of the 3D image. The

output is an atlas data set.

e) Finally, each atlas data set is converted into a graphical atlas image using

convert.

10.2 Experiment

Table 2: Applications configuration of Grid sites.

Node / Details Applications Location

Manjra.cs.mu.oz.au

AIR

FSL

Convert

University of Melbourne,

Australia

vgtest.vpac.org AIR VPAC, Australia

Vgdev.vpac.org AIR VPAC, Australia

Brecca-1.vpac.org AIR VPAC, Australia

Brecca-2.vpac.org AIR VPAC, Australia

karwendel.dps.uibk.ac.at FSL
University of Innsbruck,

Austria

uuuu.maekawa.is.uec.ac.jp FSL

University of Electro-

Communications,

Japan

walkure.maekawa.is.uec.ac.jp FSL

University of Electro-

Communications,

Japan

* AIR package includes software for executing the task

Table 3: Resource attributes.

Node / Details CPU

(type/#/GHz)
Middleware

manjra.cs.mu.oz.au 4/Intel Xeon/2.00GHz SSH/GT2

vgtest.vpac.org 1/Intel Xeon/3.20GHz SSH/GT4

ngdev.vpac.org 1/Intel Xeon/3.20GHz SSH/GT4

brecca-1.vpac.org Intel Xeon/4/2.80GHz SSH

brecca-2.vpac.org 4/Intel Xeon/2.80GHz SSH

karwendel.dps.uibk.ac.at 2/AMD Opteron 880/2.39 GHz SSH/SGE

uuuu.maekawa.is.uec.ac.jp 1/Intel Xeon/2.80 GHz SSH/GT4

Walkure.maekawa.is.uec.ac.jp 1/Intel Xeon/2.80 GHz SSH/GT4

The experiment was conducted using the testbed provided by the University of

Melbourne (Australia), Victorian Partnership for Advanced Computing (VPAC)

(Australia), University of Electro-Communications (Japan), and University of

Innsbruck (Austria). The configuration of all resources is listed in Table 2 and Table 3.

Table 2 shows the application software available on every resource. All application

software cannot be installed on every resource, due to their varied capability and

administration policy. The AIR application required for executing procedure

align_warp, reslice and softmean is installed on the sites of VPAC and the University

of Melbourne, while the FSL application required for executing procedure slicer is

installed on other sites. The Convert application required to execute procedure convert

is only available on the site of the University of Melbourne. Table 3 shows processor

cabability and supporting middleware of each resource.

In the first experiment, the impact of the number of Grid sites is investigated for

the various numbers of subjects. Figure 17 shows the total execution times using 1-5

Grid sites for generating atlas of 25, 50 and 100 subjects. The size of image file

associated with each subject is around 16 to 22 MB. We can see that the total

execution time increases as the number of subjects increases. Additionally, the larger

the number of Grid sites, the faster execution time is achieved. For example, the total

execution time of generating an atlas of 100 subjects using one Grid node is 95

minutes; however, it only takes 45 minutes using five Grid nodes. The speedup rate is

over 50%. It shows the performance of conducting fMRI data analysis can be

significantly improved by using the Grid.

Figure 18 shows the execution progress for processing 50 subjects. At the

beginning of the workflow execution, 50 align_warp jobs are generated for the first

step, and each job processes one subject image. Once a job in the step one is

completed, the task manager of the step two is notified by the output event of this job.

It then generates a new reslice job of the step two. Therefore, the number of waiting

jobs does not continuesly decrease when align_warp jobs are completed. In Figure 18,

we can obverse that the number of waiting jobs is remained around 50 until the 50

jobs of the step one are completed. All the results of the step two are processed once

by the softmean task, and the completion of softmean generates three slicer jobs to

produce 2D images along three dimensions. Therefore, there is only small number of

waiting jobs after 600 seconds.

Figure 17: Total execution times of processing 25, 50 and 100 subjects over various

Grid sites.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

N
u

m
b

e
r

o
f

Jo
b

s

Time (Seconds)

waiting
submitted
executing

completed

Figure 18: Execution progress for processing 50 subjects.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
in

s)

Number of Grid Sites

25 subjects
50 subjects

100 subjects

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200

N
u

m
b

e
r

o
f

E
x

e
c
u

ti
o
n

 J
o

b
s

Time (Seconds)

alignWarp
reslice

softmean
slicer

convert

Figure 19: Execution tasks for processing 50 subjects.

Figure 19 shows the number of jobs of each task running over the execution.

Available jobs of the step one and step two can be executed in parallel. However, the

jobs of the step one have a higher priority than those of the step two, when they are

compete for resources. As we can obverse the most execution jobs during 0-580

seconds are produced by alignWarp and only a few of the jobs of reslice were

executed.

Table 4: Detailed execution times of the tasks for processing 100 subjects.

Table 4 shows the start and end time for each task in the workflow for 100

subjects. The start time we measured is the time when the stage-in of input data to the

remote resource is started and the end time is the completion time of a task. As we can

see from Figure 16, there are multiple sub-tasks in task align_wrap and reslice. The

Task
Start Time

(min)

End Time

(min)

Duration

(min)

align_warp 0 22.82 22.82

reslice 2.65 28.50 25.85

softmean 28.92 43.08 14.17

sliceX 43.1 44.1 1

sliceY 43.1 44.13 1.03

sliceZ 43.1 44.07 0.97

convertX 44.4 44.72 0.32

convertY 44.42 44.75 0.33

convertZ 44.07 44.43 0.37

task reslice process was started after align_wrap process, once an output produced by

a sub-task of align_wrap was available. However, the task softmean is started to

process after all sub-tasks of align_wrap have been comeleted, because it requires all

results produced by the sub-task of align_wrap to generate a mean image.

Theoretically, after task softmean finishes, its child tasks should be submitted

immediately, however, there are some time intervals between the parent tasks’ end

time and child tasks’ start time. That gap can be attributed to the overhead of running

WFEE, including time involved in processing event notifications, resource discovery

and remote resource submission. However, compared to the running time of tasks,

this gap is insignificant and less than 2%.

11. Related Work

The workflow engine presented in this chapter is an independent workflow execution

system and takes advantage of various middleware services such as security, Grid

resource access, file movement and replica management services provided by the

Globus middleware [10][12], and multiple middleware dispatchers provided by the

Gridbus Broker.

Many efforts toward grid workflow management have been made. DAGMan [26]

was developed to schedule jobs to the Condor system in an order represented by a

DAG and to process them. With the integration of Chimera [11], Pegasus [7] map and

execute complex workflows based on full-ahead-planning. In Pegasus, a workflow

can be generated from metadata description of the desired data product using AI-

based planning technologies. The Taverna project [20] has developed a tool for the

composition and enactment of bioinformatics workflow for the life science

community. The tool provides a graphical user interface for the composition of

workflows. Other workflow projects in the Grid context include UNICORE [21],

ICENI [19], Karajan [17], Triana [24] and ASKLON [9].

Compared with the work listed above, the workflow engine provides a

decentralized scheduling system by using tuple spaces model, which facilitates

deployment of different scheduling strategies to each task. It also enables resources to

be discovered and negotiated at run-time.

A number of workflow languages [3][8][16] have been developed and most of

them focus on the composition of web services. However web services are not the

standard middleware used by the majority of today’s scientific domains [34]. The

workflow language proposed in this chapter is middleware independent and also

supports parameterization [1], which is important to scientific applications.

12. Summary

In this chapter, a workflow enactment engine is introduced to facilitate composition

and execution of workflows in a user-friendly manner. The engine supports different

Grid middleware as well as run-time service discovery. It is capable of linking

geographically distributed standalone applications and takes advantage of distributed

computational resources to achieve high throughput.

The event-driven and subscription-notification mechanisms developed using the

tuple spaces model make the workflow execution loosely-coupled and flexible.

Supporting parameterization in the workflow language allows users to easily define a

range and list of parameters for scientific experiments to generate a set of multiple

parallel execution jobs. The engine has been successfully applied to an fMRI analysis

application. The engine presented in this chapter facilitates users to build workflows

to solve their domain problems and provides a basic infrastructure to schedule

workflows in Grid environments.

References

[1] D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with

Nimrod/G: Killer Application for the Global Grid?. Proceedings of the 14th

International Parallel and Distributed Processing Symposium (IPDPS 2000), Cancun,

Mexico, IEEE CS Press, Los Alamitos, CA, USA, May 1-5, 2000.

[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. Nefedova, D. Quesnal, S. Tuecke. Data Management and Transfer in High

Performance Computational Grid Environments. Parallel Computing Journal,

28(5):749-771, May 2002.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weerawarana. Business Process

Execution Language for Web Services Version 1.1, 05 May 2003,

http://www-128.ibm.com/developerworks/library/ws-bpel/ [Feb 2005]

[4] R. Buyya and S. Venugopal. The Gridbus Toolkit for Service Oriented Grid and Utility

Computing: An Overview and Status Report. Proceedings of the First IEEE

International Workshop on Grid Economics and Business Models (GECON 2004,

ISBN 0-7803-8525-X, IEEE Press, New Jersey, USA), April 23, 2004, Seoul, Korea.

[5] J. Cardoso. Stochastic Workflow Reduction Algorithm. Technical Report, LSDIS Lab,

Department of Computer Science University of Georgia, 2002.

[6] N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM, 32:444-

458, April 1989.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi, M.

Livny. Pegasus: Mapping Scientific Workflow onto the Grid. Proceedings of the Across

Grids Conference 2004, Nicosia, Cyprus, 2004.

[8] T. Fahringer, S. Pllana, and A. Villazon. AGWL: Abstract Grid Workflow Language,

Proceedings of the International Conference on Computational Science, Programming

Paradigms for Grids and Meta-computing Systems. Krakow, Poland, Springer-Verlag,

Heidelberg, Germany, June 2004.

[9] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr, and H. L. Truong. ASKALON:

a tool set for cluster and Grid computing. Concurrency and Computation: Practice and

Experience, 17:143-169, Wiley InterScience, 2005.

[10] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,

International Journal of Supercomputer Applications, 11:115-128, 1997.

[11] I. Foster, J. Vöckler, M. Wilde, Y. Zhao. Chimera: A Virtural Data System for

Representing, Querying, and Automating Data Derivation. Proceedings of the 14
th

International Conference on Scientific and Statistical Database Management (SSDBM),

Edinburgh, Scotland, UK, July 24-26, 2002.

[12] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP

Internatiaonl Conference on Network and Parallel Computing, 2006.

[13] D. Hollinsworth. The Workflow Reference Model, Workflow Management Coalition,

TC00-1003, 1994.

[14] JDOM. http://www.jdom.org [December 2004]

[15] J. Van Horn. Online Availability of fMRI Results Images, Journal of Cognitive

Neuroscience, 15(6):769-770, 2003.

[16] S. Krishnan, P. Wagstrom, and G. v. Laszewski. GSFL: A Workflow Framework for

Grid Services, Argonne National Laboratory, Technical Report Preprint ANL/MCS-

P980-0802, Aug 2002.

[17] G. von Laszewski, M. Hategan. Java CoG Kit Karajan/GridAnt Workflow Guide.

Technical Report, Argonne National Laboratory, Argonne, IL, USA, 2005.

[18] J. Mattson and M. Simon. The Pioneers of NMR and Magnetic Resonance in Medicine:

The Story of MRI. Jericho & New York: Bar-Ilan University Press, 1996.

[19] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow

Enactment in ICENI. Proceedings of the UK e-Science All Hands Meeting, Nottingham,

UK, IOP Publishing Ltd, Bristol, UK, Sep. 2004; 894-900.

[20] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver and

K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and

enactment of bioinformatics workflows. Bioinformatics, 20(17):3045-3054, Oxford

University Press, London, UK, 2004.

[21] M. Romberg, The UNICORE Architecture Seamless Access to Distributed Resources,

Proceedings of the 8th IEEE International Symposium on High Performance

Computing, Redondo Beach, CA, USA, 1999, pp. 287-293.

[22] D P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. Performance-aware

Workflow Management for Grid Computing. The Computer Journal, Oxford

University Press, London, UK, 2004.

[23] S. Smith, P. Bannister, C. Beckmann, M. Brady, S. Clare, D. Flitney, P. Hansen,

M. Jenkinson, D. Leibovici, B. Ripley, M Woolrich, and Y. Zhang. FSL: New tools for

functional and structural brain image analysis. Proceedings of the 7
th International

Conference on Functional Mapping of the Human Brain, June 10-14, 2001, Brighton,

UK.

[24] I. Taylor, M. Shields, and I. Wang. Resource Management of Triana P2P Services. Grid

Resource Management, Kluwer, Netherlands, June 2003.

[25] I. Tayler, E. Deelman, D. Gannon, M. Shields (Editors). Workflows for E-science:

Scientific Workflows for Grids, Springer-Verlag London Ltd, London, UK, Dec 2006.

[26] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. Grid Computing:

Making the Global Infrastructure a Reality, John Wiley & Sons, NJ, USA, 2003.

[27] P. Thompson, M. S. Mega, and A. W. Toga, Sub-Population Brain Atlases, Brain

Mapping: The Methods (2nd Edition), A. W. Toga and J. C. Mazziotta, Eds., 2002.

[28] S. Venugopal, R. Buyya and L. Winton. A Grid Service Broker for Scheduling e-

Science Applications on Global Data Grids. Concurrency and Computation: Practice

and Experience, 18(6): 685-699, Wiley Press, New York, USA, May 2006.

[29] R. P. Woods, S. R. Cherry, J. C. Mazziotta. Rapid automated algorithm for aligning and

reslicing PET images. Journal of Computer Assisted Tomography, 16:620-633, 1992.

[30] P. Wyckoff. TSpaces, IBM Systems Journal, 37, 1998.

[31] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using

Tuple Spaces. Proceedings of the 5th IEEE/ACM International Workshop on

Grid Computing (Grid 2004) , Nov. 8, 2004, Pittsburgh, USA.

[32] J. Yu, S. Venugopal, and R. Buyya. A Market-Oriented Grid Directory Service for

Publication and Discovery of Grid Service Providers and their Services. The Journal of

Supercomputing, 36(1): 17-31, ISSN: 0920-8542, Springer Science+Business Media,

Berlin, Germany, April 2006.

[33] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid

Computing. Journal of Grid Computing, 3(3-4): 71-200, Springer

Science+Business Media B.V., New York, USA, Sept. 2005.

[34] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and J. Dobson. Grid

Middleware Services for Virtual Data Discovery, Composition, and Integration,

Proceedings of the 2nd Workshop on Middleware for Grid Computing, Toronto,

Ontario, Canada, 2004.

[35] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde, A Notation and System for

Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data, ACM

SIGMOD Record, 34, September 2005.

