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1.  Introduction 

With the advent of Grid technologies, scientists and engineers are building 

complex and sophisticated applications to manage and process large data sets, and 

execute scientific experiments on distributed Grid resources [33]. Building complex 

workflows requires means for composing and executing distributed applications. A 

workflow expresses an automation of procedures wherein files and data are passed 

between procedures applications according to a defined set of rules, to achieve an 

overall goal [13]. A workflow management system defines, manages and executes 

workflows on computing resources. The use of the workflow paradigm for application 

composition on Grids offers several advantages [22] such as:  

• Ability to build dynamic applications and orchestrate the use of distributed 

resources. 

• Utilization of resources that are located in a suitable domain to increase 

throughput or reduce execution costs.  

• Execution spanning multiple administrative domains to obtain specific 

processing capabilities.  

• Integration of multiple teams involved in managing different parts of the 

experiment workflow – thus promoting inter-organizational collaborations. 

 

Executing a Grid workflow application is a complex endeavor. Workflow tasks 

are expected to be executed on heterogeneous resources which may be geographically 

distributed. Different resources may be involved in the execution of one workflow. 

For example, in a scientific experiment, one needs to acquire data from an instrument, 

and analyze it on resources owned by other organizations, in sequence or in parallel 

with other tasks. Therefore, discovery and selection of resources for executing 



workflow tasks could be quite complicated. In addition, a large number of tasks may 

be required to be executed and monitored in parallel and the location of intermediate 

data may be known only at run-time.  

This chapter presents a workflow enactment engine developed as part of the 

Gridbus Project at the University of Melbourne, Australia [4]. It utilizes tuple spaces 

to provide an event-driven mechanism for workflow execution entities. The benefits 

of this design include the ease of deployment for various strategies of resource 

selection and allocation, and supporting complex control and data dependencies of 

tasks with scientific workflows.  

 

2. Architecture  

The primary components of the Workflow Enactment Engine (WFEE) [31] and their 

relationship with other services in the Grid infrastructure are shown in Figure 1. 

Workflow applications, such as scientific application portals, submit task definitions 

along with their dependencies, expressed in a workflow language, as well as 

associated QoS requirements to WFEE. WFEE schedules tasks through Grid 

middleware on the Grid resources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of WFEE. 
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The key components of WFEE are: workflow submission, workflow language 

parser, resource discovery, dispatcher, data movement and workflow scheduler.  

� Workflow submission accepts workflow enactment requests from planner level 

applications.  

� Workflow language parser converts workflow description from XML format into 

Java objects, Task, Parameter and DataConstraint (workflow dependency) which 

can be accessed by workflow scheduler.  

� Resource discovery is carried out by querying Grid information services such as 

Globus MDS [12], directory service and replica catalogs, to locate suitable 

resources for the tasks.  

� Dispatcher is used to access middleware. Resources may be Grid-enabled by 

different middleware such as Globus [12] or Web services [3]. WFEE had been 

designed to support different middleware by creating dispatchers for each 

middleware to support interaction with resources.   

� Data movement system enables data transfer between Grid nodes by using HTTP 

and GridFTP [2] protocols.  

� Workflow executor is the central component in WFEE. It interacts with resource 

discovery to find suitable Grid resources at run time; it locates a task on resources 

by using the dispatcher component; it controls input data transfer between task 

execution nodes through data movement.  

3 Workflow Execution Management  

The workflow execution is managed using a decentralized architecture. Instead of a 

central scheduler for handling whole workflow execution, a task manager is created 

for handling the processing of a task or a group of tasks, including resource discovery 

and allocation, task dispatcher and failure processing. Different scheduling strategies 

can be deployed in different Task Managers (TMs) for resource selection, QoS 

negotiation and data transmission optimization. The lifetimes of TMs, as well as the 

whole workflow execution, are controlled by a Workflow Coordinator (WCO).  

As shown in Figure 2, dedicated TMs are created by WCO for each task group. 

Each TM has its own monitor which is responsible for monitoring the health of the 

task execution on the remote node. Every TM maintains a resource group which is a 



set of resources that provides services required for the execution of an assigned task. 

TMs and WCO communicate through an Event Service Server (ESS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Execution management. 

 

3.1 Communication Approach 

A communication approach is needed for task managers. On one hand, every task 

manager is an independent thread of execution and they can be run in parallel. On the 

other hand, the behavior of each task manager may depend on the processing status of 

other task managers according to the task dependencies. For example, a task manager 

should not execute the task on a remote node if the input generated by its parent tasks 

is not available for any reason.  

In addition, in a workflow, a task may have more than one input that comes from 

different tasks. Furthermore, the output of these tasks may also be required by other 

task managers as well. Hence the communication model between the task managers is 

not just one-to-one or one-to-many, but it could be many-to-many depending on task 

dependencies of the workflow.  

Given this motivation, an event-driven mechanism with subscription-notification 

model has been developed to control and manage execution activities. In the system, 

the behaviors of task managers and workflow coordinator are driven by events. A task 

manager is not required to handle communication with others and only generates 

events according to a task’s processing status. At the same time, the task managers 

take actions only depending on the events occurred without concern for details of 

other task managers. The benefit of this event-driven mechanism is that it provides 

 



loosely-coupled control; hence the design and development of the system is very 

flexible and additional components can be easily plugged in.  

.  

 

 
 

Figure 3: Event-driven mechanism. 

 

The event notification is based on subscription-notification model. WCO and 

TMs just subscribe to events of interest after activation, and then are informed 

immediately when a subscribed event occurs. There are three basic types of events, 

status events, output events and control events. Status events are sent by the TMs to 

provide information on the status of task execution. Output events are sent by TMs to 

announce the task output is ready along with the location of its storage. Control events 

are used to send control messages, such as to pause and resume the execution, to task 

managers 

As illustrated in Figure 3, TMs inform each other and communicate with the 

WCO through the ESS. For example, TMs put their task execution status (e.g. 

executing, done, failure) into the ESS, which notifies the WCO. If the output of a task 

is required by its child tasks, the task managers of the child tasks can subscribe to 

output events of the task. Once the task generates the required output, an output event 

is sent to the ESS, which notifies immediately, the child TMs that have subscripted to 

the output event. A user can control and monitor the workflow execution by 

subscribing to status events and sending control evens through a visual user interface.  



3.2 State Transition 

The state transition of WCO is illustrated in Figure 4. WCO registers with the ESS 

and start TMs of first level tasks, and then monitors activated TMs. Upon receiving 

execution status from a TM, WCO starts the TMs of its child tasks. If the WCO 

receives a status done event, it checks whether other TMs are still running. If so, 

WCO goes back to monitoring, otherwise it exits. If WCO receives a failed event 

from a TM, it proceeds to failure processing, and then ends.  

The state transition of TMs is illustrated in Figure 5. The TM registers events, 

such as output events, status events, generated by its parent tasks and waits for the 

events to occur; when an event occurs, the TM goes to the event processing state. If 

all input data is available, it starts a new thread to process execution for a job; 

otherwise, the TM goes back to wait state. A job is a unit of work that a TM sends to a 

Grid node and one task may create more than one jobs. The job execution is started 

from resource matching, in which a suitable resource is selected from the resource 

group created by querying a directory service (see Section 4). If a suitable resource is 

available, the TM submits a job to the resource and then monitors the status of job 

execution on the remote resource. If the execution has failed, the TM goes back to 

resource matching and selects an alternative resource and then submits the job to it. If 

all parent tasks and execution jobs are completed, the TM ends. 

Figure 4: State transition of WCO. 

 



Figure 5: State transition of TM. 

3.3 Interaction 

The interactions between the WCO, TMs, ESS and remote resources are illustrated in 

Figure 6. First, the WCO needs to register to the ESS and subscribe to task status 

events. Then, the WCO activates task managers of first level tasks of which, in this 

example, there is only one TM1. After TM1 finishes the preprocessing for the task 

execution, it sends a message to ESS saying “I am executing the task”. ESS informs 

the WCO and WCO activates TMs of the child tasks of TM1, namely TM2 and TM3, 

in this example.  
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Figure 6: Interaction sequence diagram the WCO, TMs and ESS. 

 

The inputs of the task managed by TM2 and TM3 rely on the output of the task of 

TM1, so TM2 and TM3 register to ESS and listen to its output events. Once TM1 

identifies a suitable resource, it submits task to that resource. As soon as TM1 knows 

the output of the task, it informs TM2 and TM3 through ESS, saying “my output of 

port No. x is ready and its location is xxxx”. If all input data for TM2 and TM3 are 

ready, TM2 and TM3 reports execution status to ESS, and then proceeds to initialize 

the execution of their tasks. After WCO receives the notification of the execution of 

the tasks in TM2 and TM3, WCO will activate their child task managers, so that they 

can prepare for task execution. This process will be continued until the end of 

workflow execution. 

 



4. Service Discovery  

In a Grid environment, many services having same functionality and user interaction, 

can be provided by different organizations. In addition, a service may be replicated 

and deployed in many locations. From the user’s point of view, it is better to use a 

service that offers a higher performance at a lower price. Therefore, a method is 

required to allow users to find replicated services easily.  

A directory service, called Grid Market Directory (GMD) [33], has been 

developed to support service publication and discovery in a market-oriented Grid 

environment. GMD is an infrastructure that allows (a) the creation of one or more 

registries for service providers; (b) the service providers to register their 

resources/application services that they wish to provide; (c) users such as workflow 

engine to discover resources/services and their attributes (e.g., access price, location 

and usage constraints) that meet their QoS requirements.  

Figure 7 illustrates service publishing and discovery in a Grid environment 

through GMD. Service providers’ first register with the GMD and publish their static 

information such as location, service capability and access methods. A Grid user such 

as the workflow engine can query GMD to find a suitable service. After that, the user 

can also query and subscribe to the service provider directly to obtain more dynamic 

information such as service execution status. 

 

 
 

Figure 7: Service discovery using GMD. 

A provider can provide their specialist applications for others to access remotely. 

Figure 8 shows an application service schema. An application service provider may 

also provide hosted machine information such as the host name and host public key 

for remote secure access. Service providers also need to indicate middleware through 

which Grid users can access the service.  



 

 

Figure 8: Grid application service schema. 

 

Grid Application Model (GAM) is developed for application identification. GAM 

is a set of specifications and APIs for a Grid application. The GAM can be published 

by service providers within the GMD, and the users can search GMD for services 

conforming to a particular GAM. The applications with the same GAM name provide 

the same function and API. In the case of the workflow system, if users do not specify 

a particular service for a task in the workflow description, the scheduler uses the 

GAM name associated with the executable of the task to query the GMD. The GMD 

will return a list of services. These services are all able to execute the task.  

 

 



5. Workflow Language 

In order to allow users to describe tasks and their dependencies, a XML-based 

workflow language (xWFL) has been defined. The workflow language provides the 

means to build new applications by linking standalone applications.  

 

 

 

 

 

 

 

 

 

Figure 9: Structure of workflow language. 

Figure 9 shows the basic structure of the workflow language. It consists of two 

parts: task definitions defined in <tasks>, data dependencies defined in <links> and 

QoS constraints defined in <QoSconstraints>.   

5.1 Tasks 

The element <tasks> is a set of definitions of tasks that are to be executed. Figure 10 

shows the schema of task definition. A task can be a single task or a parameter sweep 

task. A parameter sweep task is able to process a set of parameters. The parameters 

are defined in <paras>. The detailed design of parameter tasks is introduced in 

Section 6. The element <executable> is used to define the information about the 

application, input and output data of the task. The workflow language supports both 

abstract and concrete workflows. The user or higher workflow planner can either 

specify the location of a particular service providing a required application in 

<service> or leave it to the engine to identify their providers dynamically at run-time. 

The middleware of the application is identified through a service information file by 

the GMD when dispatching tasks.  

In the example that follows, task A executes dock.exe program on host 

bellegrid.com in the directory /services and the executable dock has two input I/O 

ports: port 0 (a file) and port 1 (a parameter value). The example shows task A only 

has one output.  



<task name= “A”> 
<executable>  
<name>dock</name> 
<service> 
   <hostname=“bellegrid.com” /> 
 <accesspoint value=“/services/dock.exe” /> 
</service> 

    <input> 
  <port num=0 type=“file” url=http://www.gridbus.org/dock.in 

value=“dock.in”/> 
   <port num=1 type=“msg” value=1/> 

</input> 
<output> 

   <port num=2 type=“file” value=“dock.out”/> 
</output> 

</executable> 
</task> 



 

Figure 10: Schema of task definition. 

5.2 Data Dependencies 

A data link is used to specify the data flow between two tasks. The schema of the data 

link is defined in Figure 9. Figure 11 shows the example of a data flow description. 

The inputs of task B and task C rely on the output of A. The output of A needs to be 

 



transferred to the node on which tasks B and C are executed. Input could be a file, 

parameter value or data stream.  

 

 

 

 

 

 

 

 

 

Figure 11: Flow diagram of task A, B, C and D. 

 

 

 

 

 

 

 

 

6. Parameterization 

Supporting parameterization in the workflow language is very important for scientific 

applications. It enables scientists to perform experiments across a range of different 

parameters without being concerned about the detailed workflow description. A 

parameter defined in each task type is called a local parameter ; when it is defined for 

the entire workflow, it is called a global parameter. As shown in Figure 9, multiple 

parameters types such as single, range, file and enumeration are supported. An 

example for a single parameter type and a range parameter type is given in Figure 12.   

 

<paras> 
 <para type= “single”> 
  <name>X</name> 
  <value type=integer>10</value> 
     </para> 
 <para type= “range”> 
  <name>Y</name> 
     <min>1</min>  

<workflow> 
<tasks> 
<task name= “A”> 

   ….. 
</task> 
<task name= “B”> 

…... 
</task> 

<task name= “C”> 
…… 
</task> 
<task name= “D”> 
…… 
</task> 
</tasks> 
<links> 
<link>  
<from task=“A” port=2 />   
<to task=“B” port=0 /> 
</link> 
<link>  
<from task=“A” port=2 /> 
<to task=“C” port=0 /> 
</link> 
<link> 
<from task=“B” port=1 /> 
<to task=“D” port=0 /> 
</link> 
<link>  
<from task=“C” port=2 /> 
<to task=“D” port=1 /> 
</link> 
</links> 
</workflow> 

A

B C

D

file

other

 



  <max>20</max> 
  <step>2</step> 
 </para> 
</paras> 

Figure.12: Single parameter and range parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Illustration of workflow parameters. 

 

Among these parameter types, range and enumeration types are used to define 

range or a list of parameter valued which the task is required to be executed. This type 

of task is called as a parameter-sweep task [1] and is structured as a set of multiple 

execution jobs, each of which is executed with a distinct set of parameters. Figure 13 

illustrates parameter sweep tasks. Two inputs are required by task A and Task B; one 

is a local parameter and the other is a global parameter. The local parameter of A is a 

range type parameter while the local parameter of B is an enumeration type. At 

execution time, the global parameter value is combined with each local parameter 

value and generates 10 sub-jobs for task A and 3 sub-jobs for task B.  

7. I/O Models 

As shown in Figure 11, a task receives output data from its parent as its input through 

a data link. However, for some tasks, more than one output could be generated by one 

output port. For example, such a task could be a data collecting task that continues to 

read information from a sensor device and generate corresponding output data or a 

parameter-sweep task that generates multiple data based on various sets of parameters. 

These outputs can be produced at different times. Some successor tasks may not 

require to be processed until all these output data are generated. It can process the 
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output once it is available. However, ancestor tasks can process the output data 

generated from a single parent differently, depending on their requirements. 

Three I/O models have been developed in the workflow system to provide data-

handling capabilities. These models are: many-to-many, many-to-one and 

synchronization. In Figure 13, there are two tasks: task A and task B. They are 

connected by a data link. There are multiple sub-jobs in A and each job produces an 

output. For the many-to-many model, task B starts to process data and generates an 

output once there is an input available on the data link. As shown in Figure 14a, four 

outputs generated by four sub-jobs of A are processed individually by four sub-jobs of 

B. For the many-to-one model, task B starts to process data once there is an input 

available, however, the result is calculated based on the result generated by earlier 

sub-jobs. As shown in Figure 14b, sub-job B1 processes the output generated by sub-

job A1. Once the output of A2 is available, sub-job B2 is created and processes the 

output of A2 based on the output generated by B1. For the synchronization model, 

task B does not start processing until all the output is available on the data link. As 

shown in Figure 14c, there is only one sub-job in task B and it processes all outputs 

generated by sub-jobs of A at one time.  

 

 

 

Figure 14: Input/output models. 

 

8. Fault Handling 

Two fault handling mechanism are developed in the system, retry submission and 

critical task replication. 

The retry submission mechanism reschedules a failed job onto a current available 

resource, and also records the number of failed jobs for each resource. Once the failed 

a) Many-to-Many b) Many-to-One c) Synchronization 



job number exceeds a warning threshold, the scheduler decreases the number of jobs 

submitted to these resources. If the number of failed jobs exceeds a critical threshold, 

the scheduler terminates submission of jobs onto this resource.  

The critical task replication mechanism replicates a task execution on more than 

one resource. The result produced earliest is then used for the rest of the workflow. 

This mechanism is designed to execute a long running task when there are multiple 

spare resources. 

9. Implementation 

The WFEE has been implemented by leveraging the following key technologies: (1) 

IBM TSpaces [30] for supporting subscription-notification based event exchange; (2) 

Gridbus broker [28] for deploying and managing job execution on various 

middleware; (3) XML parsing tools including JDOM [14]. The detailed class diagram 

and event server implementation are presented as follows: 

 

9.1 Design Diagram 

The class design diagram of the WFEE is shown in Figure 15. XMLParsingToModel 

parses XML formatted workflow description into Java objects which are instances of 

class of Task, Port, DataConstraint. These objects are passed on to WorkflowModel. 

WorkflowModelToDiGraph converts WorkflowModel into a directed graph 

represented by class DiGraph which encompasses many GraphNode objects. An 

instance of GraphNode contains a workflow task and the references of GraphNodes 

of its parent and child tasks. WorkflowCoordinator creates and controls the 

instantiation of TaskManager according to the graph node dependencies. Job class 

represents a unit of work assigned to a Grid resource. Every job has a monitor 

implemented by JobMonitor to monitor job execution status on the remote node. In 

order to extend WFEE to support multiple Grid middleware, we abstract class 

Resource and Dispatcher which provides interfaces that interact with Grid resources.  
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Figure 15: Class diagram of WFEE. 

9.2 Event Messages 

We have utilized tuple spaces to exchange events. The tuple space model is originated 

at Yale with the Linda system [6]. A tuple is simply a vector of typed values (Fields). 

A tuple space is a collection of tuples that can be shared by multiple parties by using 

operations such as read, write and delete. In our work, we have leveraged IBM’s 

recent implementation of tuple spaces called TSpaces [30] to be the event server. 

Table 1: Format of events. 

 

There are three types of event tuples whose format is shown in Table 1, task 

status event, output event and job status event. Task status event is sent by TMs and 

WCO use it to control TMs activation. The first field is the ID of the task, the second 

field is string “status” to indicate the type of tuple for the registration purposes, and 

the third field gives the value of status.  

Event name Field1 Field2 Field3 Tuple template for registration 

task status 

event 

task No. “status” value new Tuple(new Field(String), 

status, new Field(String)) 

output event task No. port No. value new Tuple(taskNo, portNo, new 

Field(String)) 

job status event job No.  task No. value new Tuple(new Field(String), 

taskNo, new Field(String)) 



Child TMs need output events sent by the parent TMs to be informed if their 

inputs are available. The events have three fields: the task ID is given in the first field, 

the second field is port numbers, and the third field is the location of output.  

One task can have multiple jobs. Job status events are sent by the job monitor. 

Every job status event provides a job ID and its task ID with status value. TMs make 

decisions according to the job events. For example, when a job has failed, the TM can 

reschedule it on another resource in the resource group. 

The tuple templates are used for subscribing to the corresponding event. For 

example, task status events can be received by a tuple template with the second field 

as a String called “status”.  

 

10 A Case Study in fMRI Data Analysis  

Magnetic Resonance Imaging (MRI) [18] uses radio waves and a strong magnetic 

field to provide detailed images of internal organs and tissues. Functional MRI (fMRI) 

[15] is a procedure that uses MRI to measure the signal changes in an active part of 

the brain. fMRI is becoming a major diagnostic method for learning how a normal, or 

a diseased brain is working. fMRI images obtained by scanning the brains of subjects 

as they perform cognitive tasks. A typical study of fMRI data consist of multiple-

stage processes that begin with pre-processing of raw data and conclude with a 

statistical analysis. Such analysis procedures often require upon hundreds or even 

thousands of images [35].  

 

10.1 Population-based Atlas Workflow 

 Population-based atlas [27] creation is one of the major fMRI research activities. 

These atlases combine anatomy imaging data from healthy and diseased populations. 

These describe how the brain varies with age, gender, and demographics. They can be 

used for identifying systematic effects on brain structure. For instance, they provide a 

comprehensive approach for studying a particular subgroup, with a specific disease, 

receiving different medications, or neuropsychiatric disorder. Population-based 

atlases contain anatomical models from many subjects. They store population 

templates and statistical maps to summarize features of the population. They also 



average individual images together so that common features of the subgroup are 

reinforced.  
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Figure 16: Population-based atlas workflow. 

 

Figure 16 shows a workflow that employs the Automated Image Registration 

(AIR) [29] and FSL [23] suite for creating population-based brain atlases from high 

resolution anatomical data. The stages of this workflow are follows: 

a) The inputs to the workflow are a set of brain images which are 3D brain 

scans of population with varying resolutions and a reference brain image. 

For each brain image, align_warp adjusts the position and shape of each 

image to match the reference brain. The output of each process is a warp 

parameter set defining the spatial transformation to be performed. 

b) For each warp parameter set, reslice creates a new version of the original 

brain image according to the configuration parameters defined in the warp 

parameter set. The output of each reslice procedure is a resliced image.  

c) softmean averages all the resliced images into one single atlas image. 

d) The averaged image is sliced using slicer to give a 2D atlas along a plane in 

three dimension (x, y and z), taken through the centre of the 3D image. The 

output is an atlas data set. 



e) Finally, each atlas data set is converted into a graphical atlas image using 

convert.  

 

10.2 Experiment 

Table 2: Applications configuration of Grid sites. 

Node / Details Applications Location 

Manjra.cs.mu.oz.au 

AIR 

FSL 

Convert 

University of Melbourne,  

Australia  

vgtest.vpac.org AIR VPAC, Australia  

Vgdev.vpac.org AIR VPAC, Australia 

Brecca-1.vpac.org AIR VPAC, Australia 

Brecca-2.vpac.org AIR VPAC, Australia 

karwendel.dps.uibk.ac.at FSL 
University of Innsbruck,  

Austria 

uuuu.maekawa.is.uec.ac.jp FSL 

University of Electro-

Communications, 

Japan 

walkure.maekawa.is.uec.ac.jp FSL 

University of Electro-

Communications, 

Japan 

* AIR package includes software for executing the task  

 

Table 3: Resource attributes. 

Node / Details CPU 

(type/#/GHz) 
Middleware 

manjra.cs.mu.oz.au 4/Intel Xeon/2.00GHz  SSH/GT2 

vgtest.vpac.org 1/Intel Xeon/3.20GHz SSH/GT4 

ngdev.vpac.org 1/Intel Xeon/3.20GHz SSH/GT4 

brecca-1.vpac.org Intel Xeon/4/2.80GHz SSH 

brecca-2.vpac.org 4/Intel Xeon/2.80GHz SSH 

karwendel.dps.uibk.ac.at 2/AMD Opteron 880/2.39 GHz SSH/SGE 

uuuu.maekawa.is.uec.ac.jp 1/Intel Xeon/2.80 GHz SSH/GT4 

Walkure.maekawa.is.uec.ac.jp 1/Intel Xeon/2.80 GHz SSH/GT4 

 



The experiment was conducted using the testbed provided by the University of 

Melbourne (Australia), Victorian Partnership for Advanced Computing (VPAC) 

(Australia), University of Electro-Communications (Japan), and University of 

Innsbruck (Austria). The configuration of all resources is listed in Table 2 and Table 3. 

Table 2 shows the application software available on every resource. All application 

software cannot be installed on every resource, due to their varied capability and 

administration policy. The AIR application required for executing procedure 

align_warp, reslice and softmean is installed on the sites of VPAC and the University 

of Melbourne, while the FSL application required for executing procedure slicer is 

installed on other sites. The Convert application required to execute procedure convert 

is only available on the site of the University of Melbourne. Table 3 shows processor 

cabability and supporting middleware of each resource.  

In the first experiment, the impact of the number of Grid sites is investigated for 

the various numbers of subjects. Figure 17 shows the total execution times using 1-5 

Grid sites for generating atlas of 25, 50 and 100 subjects. The size of image file 

associated with each subject is around 16 to 22 MB. We can see that the total 

execution time increases as the number of subjects increases. Additionally, the larger 

the number of Grid sites, the faster execution time is achieved. For example, the total 

execution time of generating an atlas of 100 subjects using one Grid node is 95 

minutes; however, it only takes 45 minutes using five Grid nodes. The speedup rate is 

over 50%. It shows the performance of conducting fMRI data analysis can be 

significantly improved by using the Grid.  

Figure 18 shows the execution progress for processing 50 subjects. At the 

beginning of the workflow execution, 50 align_warp jobs are generated for the first 

step, and each job processes one subject image. Once a job in the step one is 

completed, the task manager of the step two is notified by the output event of this job. 

It then generates a new reslice job of the step two. Therefore, the number of waiting 

jobs does not continuesly decrease when align_warp jobs are completed. In Figure 18, 

we can obverse that the number of waiting jobs is remained around 50 until the 50 

jobs of the step one are completed. All the results of the step two are processed once 

by the softmean task, and the completion of softmean generates three slicer jobs to 

produce 2D images along three dimensions. Therefore, there is only small number of 

waiting jobs after 600 seconds.  



 

 

 

 

 

 

 

 

 

 

 

Figure 17: Total execution times of processing 25, 50 and 100 subjects over various 

Grid sites. 
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Figure 18: Execution progress for processing 50 subjects. 
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Figure 19: Execution tasks for processing 50 subjects. 

 

Figure 19 shows the number of jobs of each task running over the execution. 

Available jobs of the step one and step two can be executed in parallel. However, the 

jobs of the step one have a higher priority than those of the step two, when they are 

compete for resources. As we can obverse the most execution jobs during 0-580 

seconds are produced by alignWarp and only a few of the jobs of reslice were 

executed.  

Table 4: Detailed execution times of the tasks for processing 100 subjects. 

 

 

 

 

 

 

 

 

 

Table 4 shows the start and end time for each task in the workflow for 100 

subjects. The start time we measured is the time when the stage-in of input data to the 

remote resource is started and the end time is the completion time of a task. As we can 

see from Figure 16, there are multiple sub-tasks in task align_wrap and reslice. The 

Task 
Start Time 

(min) 

End Time 

(min) 

Duration 

(min) 

align_warp 0 22.82 22.82 

reslice 2.65 28.50 25.85 

softmean 28.92 43.08 14.17 

sliceX 43.1 44.1 1 

sliceY 43.1 44.13 1.03 

sliceZ  43.1 44.07 0.97 

convertX 44.4 44.72 0.32 

convertY 44.42 44.75 0.33 

convertZ 44.07 44.43 0.37 



task reslice process was started after align_wrap process, once an output produced by 

a sub-task of align_wrap was available. However, the task softmean is started to 

process after all sub-tasks of align_wrap have been comeleted, because it requires all 

results produced by the sub-task of align_wrap to generate a mean image. 

Theoretically, after task softmean finishes, its child tasks should be submitted 

immediately, however, there are some time intervals between the parent tasks’ end 

time and child tasks’ start time. That gap can be attributed to the overhead of running 

WFEE, including time involved in processing event notifications, resource discovery 

and remote resource submission. However, compared to the running time of tasks, 

this gap is insignificant and less than 2%.  

 

11. Related Work 

The workflow engine presented in this chapter is an independent workflow execution 

system and takes advantage of various middleware services such as security, Grid 

resource access, file movement and replica management services provided by the 

Globus middleware [10][12], and multiple middleware dispatchers provided by the 

Gridbus Broker. 

Many efforts toward grid workflow management have been made. DAGMan [26] 

was developed to schedule jobs to the Condor system in an order represented by a 

DAG and to process them. With the integration of Chimera [11], Pegasus [7] map and 

execute complex workflows based on full-ahead-planning. In Pegasus, a workflow 

can be generated from metadata description of the desired data product using AI-

based planning technologies. The Taverna project [20] has developed a tool for the 

composition and enactment of bioinformatics workflow for the life science 

community. The tool provides a graphical user interface for the composition of 

workflows. Other workflow projects in the Grid context include UNICORE [21], 

ICENI [19], Karajan [17], Triana [24] and ASKLON [9].  

Compared with the work listed above, the workflow engine provides a 

decentralized scheduling system by using tuple spaces model, which facilitates 

deployment of different scheduling strategies to each task. It also enables resources to 

be discovered and negotiated at run-time.  

A number of workflow languages [3][8][16] have been developed and most of 

them focus on the composition of web services. However web services are not the 



standard middleware used by the majority of today’s scientific domains [34]. The 

workflow language proposed in this chapter is middleware independent and also 

supports parameterization [1], which is important to scientific applications.   

 

12. Summary  

In this chapter, a workflow enactment engine is introduced to facilitate composition 

and execution of workflows in a user-friendly manner. The engine supports different 

Grid middleware as well as run-time service discovery. It is capable of linking 

geographically distributed standalone applications and takes advantage of distributed 

computational resources to achieve high throughput. 

The event-driven and subscription-notification mechanisms developed using the 

tuple spaces model make the workflow execution loosely-coupled and flexible. 

Supporting parameterization in the workflow language allows users to easily define a 

range and list of parameters for scientific experiments to generate a set of multiple 

parallel execution jobs. The engine has been successfully applied to an fMRI analysis 

application. The engine presented in this chapter facilitates users to build workflows 

to solve their domain problems and provides a basic infrastructure to schedule 

workflows in Grid environments.  
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