
Using Proactive Fault-Tolerance Approach
to Enhance Cloud Service Reliability

Jialei Liu, Shangguang Wang , Senior Member, IEEE, Ao Zhou,

Sathish A. P. Kumar, Senior Member, IEEE, Fangchun Yang,

and Rajkumar Buyya , Fellow, IEEE

Abstract—The large-scale utilization of cloud computing services for hosting industrial/enterprise applications has led to the

emergence of cloud service reliability as an important issue for both cloud service providers and users. To enhance cloud service

reliability, two types of fault tolerance schemes, reactive and proactive, have been proposed. Existing schemes rarely consider the

problem of coordination among multiple virtual machines (VMs) that jointly complete a parallel application. Without VM coordination,

the parallel application execution results will be incorrect. To overcome this problem, we first propose an initial virtual cluster allocation

algorithm according to the VM characteristics to reduce the total network resource consumption and total energy consumption in the

data center. Then, we model CPU temperature to anticipate a deteriorating physical machine (PM). We migrate VMs from a detected

deteriorating PM to some optimal PMs. Finally, the selection of the optimal target PMs is modeled as an optimization problem that is

solved using an improved particle swarm optimization algorithm. We evaluate our approach against five related approaches in terms

of the overall transmission overhead, overall network resource consumption, and total execution time while executing a set of parallel

applications. Experimental results demonstrate the efficiency and effectiveness of our approach.

Index Terms—Cloud data center, cloud service reliability, fault tolerance (FT), particle swarm optimization (PSO), virtual cluster

Ç

1 INTRODUCTION

CLOUD computing is widely adopted in current profes-
sional and personal environments. It employs several

existing technologies and concepts, such as virtual servers
and data centers, and gives them a new perspective [1]. Fur-
thermore, it enables users and businesses to not only use
applications without installing them on their machines but
also access resources on any computer via the Internet [2].
With its pay-per-use business model for customers, cloud
computing shifts the capital investment risk for under- or
overprovisioning to cloud providers. Therefore, several
leading technology companies, such as Google, Amazon,
IBM, and Microsoft, operate large-scale cloud data centers
around the world. With the growing popularity of cloud

computing, modern cloud data centers are employing tens
of thousands of physical machines (PMs) networked via
hundreds of routers/switches that communicate and coor-
dinate to deliver highly reliable cloud computing services.
Although the failure probability of a single device/link
might be low [3], it is magnified across all the devices/links
hosted in a cloud data center owing to the problem of coor-
dination of PMs. Moreover, multiple fault sources (e.g., soft-
ware, human errors, and hardware) are the norm rather
than the exception [4]. Thus, downtime is common and seri-
ously affects the service level of cloud computing [5]. There-
fore, enhancing cloud service reliability is a critical issue
that requires immediate attention.

Over the past few years, numerous fault tolerance (FT)
approaches have been proposed to enhance cloud service
reliability [6], [7]. It is well known that FT consists of fault
detection, backup, and failure recovery, and nearly all FT
approaches are based on the use of redundancy. Currently,
two basic mechanisms, namely, replication and checkpoint-
ing, are widely adopted. In the replication mechanism, the
same task is synchronously or asynchronously handled on
several virtual machines (VMs) [8], [9], [10]. This mecha-
nism ensures that at least one replica is able to complete the
task on time. Nevertheless, because of its high implementa-
tion cost, the replication mechanism is more suitable for real
time or critical cloud services. The checkpointing mecha-
nism is categorized into two main types: independent
checkpoint mechanisms that only consider a whole applica-
tion to perform on a VM, and coordinated checkpoint mech-
anisms that consider multiple VMs (i.e., a virtual cluster) to
jointly execute parallel applications [11], [12], [13], [14], [15],
[16]. The two types of mechanisms periodically save the

� J. Liu is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing,
China and the Department of Computer Science and Information Engi-
neering, Anyang Institute of Technology, Anyang, China.
E-mail: liujialei@bupt.edu.cn.

� S. Wang, A. Zhou, and F. Yang are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China.
E-mail: {sgwang, aozhou, fcyang}@bupt.edu.cn.

� S.A.P. Kumar is with the Department of Computer Science and Informa-
tion Systems, Coastal Carolina University, Conway, SC 29528-6054.
E-mail: skumar@coastal.edu.

� R. Buyya is with Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, Department of Computing and Information Systems, The Uni-
versity of Melbourne, Melbourne, Vic. 3010, Australia.
E-mail: rbuyya@unimelb.edu.au.

Manuscript received 20 Sept. 2015; revised 15 Mar. 2016; accepted 29 Apr.
2016. Date of publication 13 May 2016; date of current version 5 Dec. 2018.
Recommended for acceptance by D. Lie.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2016.2567392

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018 1191

2168-7161� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:
mailto:

execution state of a running task as a checkpoint image
file. When downtime occurs, they can resume the task on a
different PM based on the last saved checkpoint image. In
other words, the task need not be restarted from the begin-
ning but only from the last saved state. Thus, checkpointing
can reduce lost time due to PM faults and improve cloud
service reliability.

Existing FT approaches can also be classified into two
other types: reactive schemes, which lead to temporal service
downtime or performance degradation, and proactive
schemes based on the failure prediction of the PM for the Xen
virtualization platform [17], [18], [19]. It is well known that
current FT techniques focus on reactive schemes to recover
from faults and generally rely on a checkpoint/restart mech-
anism. However, when the application behavior is highly
dynamic (e.g., social networks), reactive schemes can pro-
duce poor performance and may lead to low average utiliza-
tion of resources. In current systems, PM failures can often be
anticipated on the basis of deteriorating health status by
monitoring fan speed, CPU temperature, memory, and disk
error logs. Therefore, instead of a reactive FT scheme, a pro-
active scheme that adopts a PMmonitoring scheme to detect
a deteriorating PM can be used [18], [20]. This approach can
reduce checkpoint frequencies as fewer unanticipated fail-
ures are encountered, and it is complementary to reactive FT.
Reactive and proactive schemes often consider awhole paral-
lel application to execute on a VM. However, they rarely
consider a virtual cluster, which consists ofmultiple VMsdis-
tributed across PMs, to collectively execute distributed appli-
cations (e.g., client-server systems, parallel programs, and
transaction processing). Unfortunately, the failure of a single
VM usually causes a significant crash or fault in other related
parts of the virtual cluster. Therefore, it is important to deal
with this situation effectively and efficiently.

It is well known that a virtual cluster works in a coopera-
tive manner to process parallel applications, and intermedi-
ate results are transferred among them iteratively through
multiple stages. Moreover, the traffic generated by these
applications creates flows not only between VMs but also
into the Internet [21]. It often contributes a significant por-
tion of the running time of a parallel application, e.g., 26
percent of the jobs in a Facebook data center spend more
than 50 percent of their running times in transferring data
[22]. With the growing number of parallel applications
required to process big data in cloud data centers, cloud
data center traffic is increasing rapidly. Recently, Cisco pre-
dicted that the global cloud data center traffic will nearly tri-
ple from 2013 to 2018 with a combined annual growth rate
of 23 percent, i.e., from 3.1 ZB/year in 2013 to 8.6 ZB/year
in 2018 [23]. Therefore, in cloud data centers shared by
many parallel applications, the upper-level bandwidth
resources, especially the bandwidth resources of the core
layer, of the cloud data center network may become a bottle-
neck [24]. Furthermore, interference due to parallel applica-
tion traffic in the network could result in unpredictable
running times, which could adversely affect cloud service
reliability and lead to financial losses.

To overcome the upper-level bandwidth resource bottle-
necks and enhance cloud service reliability, this paper pro-
poses a proactive coordinated FT (PCFT) approach based
on particle swarm optimization (PSO) [25], which addresses

the proactive coordinated FT problem of a virtual cluster
with the objective of minimizing the overall transmission
overhead, overall network resource consumption, and total
execution time while executing a set of parallel applications.

The key contributions of our work can be summarized
as follows.

� First, we introduce a deteriorating PM modeling
problem, and then we propose a coordinated FT
problem of the VMs on the detected deteriorating
PM to search for some optimal target PMs for these
VMs.

� To solve the two above-mentioned problems, we
propose the PCFT approach, which is realized in two
steps: first, we introduce a PM fault prediction
model to proactively anticipate a deteriorating PM,
and then, we improve the PSO algorithm to solve the
coordinated FT problem.

� We set up a system model to evaluate the efficiency
and effectiveness of the proposed PSO-based PCFT
approach by comparing it with five other related
approaches in terms of overall transmission over-
head, overall network resource consumption, and
total execution time while executing a set of parallel
applications.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background and relatedwork. Section 3
describes the VM coordinated mechanism and the system
model of the proposed approach. Section 4 provides the tech-
nical details of the proposed approach. Section 5 discusses
the performance evaluation, including the experimental
parameter configuration, comparison results, and effects of
the experimental parameters. Finally, Section 6 concludes
this paper with recommendations for futurework.

2 BACKGROUND AND RELATED WORK

To enhance cloud service reliability, numerous FT
approaches have been proposed, which adopt the redundant
VM placement approach for multiple applications [17], [26],
[27]. The main concept underlying these approaches is to
ensure that all cloud services can be maintained while any k
PMs fail at the same time. Remus is a practical high-availabil-
ity service that enables a running system to transparently
continue execution on an alternate PM in the event of failure
with only a few seconds of downtime [17]. However, Remus
only provides an asynchronous VM replication mechanism
for an individual VM. Deng et al. proposed a novel offload-
ing system to design robust offloading decisions for mobile
cloud services. They design a trade-off FTmechanism for the
offloading system, which not only reinitiates lost commutat-
ing tasks, but also minimizes the extra execution time and
energy consumption caused by failures [28].

Moreover, in the cloud computing environment, in addi-
tion to ensuring cloud service reliability, cloud service FT
approaches should reduce resource consumption as much
as possible on the basis of the cloud data center characteris-
tics, for example, Wang et al. proposed a VM placement
method in national cloud data centers for the first time,
which provide a good solution for operating green and reli-
able national cloud data centers [29]. Because of the high
costs incurred by the replication mechanism, approaches

1192 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

based on it are suitable only for critical tasks. To overcome
this problem, notable approaches have been introduced to
identify the significant parts of a complex task in order to
reduce the implementation cost [9], [10], [30], [31]. These
notable approaches first calculate the significance value of
each subtask according to the invocation structures and fre-
quencies [9], [10], [30]. Then, they rank the subtasks on the
basis of the calculated significance values and determine
the redundancy of each subtask accordingly. Unlike the
fixed redundancy level approach, these approaches can
reduce the implementation cost by changing the redun-
dancy of a component when a failure occurs [8]. In spite of
the above-mentioned improvement, the implementation of
the replication mechanism remains a costly task. Thus, such
a mechanism is more suitable for real time or critical tasks.

Nevertheless, for some non-real-time large-scale tasks, a
widely used FT technique called checkpointing is relatively
more effective [32], [33]. In general, checkpointing is catego-
rized into the independent checkpoint mechanism [12], [13],
[18], [34] and the coordinated checkpoint mechanism [16],
[35], [36]. From the viewpoint of independent checkpoint-
ing, Nagarajan et al. proposed a proactive FT mechanism
that can anticipate a deteriorating PM through resource
monitoring, i.e., monitoring CPU temperature, memory, fan
speed, and disk logs, and migrate VMs on the deteriorating
PM to healthy PMs before the occurrence of any failure [18].
Recently, Liu et al. made a pioneering effort to proactively
measure and improve the imperfect cache mechanism of
current mobile cloud computing applications [37]. Overall,
the proactive FT mechanism is complementary to reactive
FT using full checkpoint schemes, because the checkpoint
frequencies can be reduced as fewer unanticipated failures
are encountered. Although a virtual cluster is considered
to collectively execute parallel applications, the migration
technique is adopted to enhance reliability. Dynamic
checkpointing strategies developed by investigating and
analyzing the independent checkpoint mechanism can sig-
nificantly reduce costs while improving reliability [34].
Goiri et al. presented a smart checkpoint infrastructure that
uses Another Union File System to differentiate read-only
parts from read-write parts of the virtual machine image for
virtualized service providers [12]. Although this approach
is an effective way to resume a task execution faster after a
node crash and to increase the FT of the system, it overlooks
the fact that the core switches are the bottleneck of the cloud
data center network. When the checkpoint images are
stored in central storage PMs, the checkpoint traffic may
congest the core switches, which affects the FT. To over-
come this problem, Zhou et al. proposed a cloud service
reliability enhancement approach for minimizing network
and storage resource usage in a cloud data center [13]. In
their approach, the identical parts of all VMs that provide
the same service are checkpointed once as the service check-
point image. Moreover, the remaining checkpoint images
only save the modified page. This approach not only guar-
antees cloud service reliability but also consumes less net-
work and storage resources than other approaches.

Although several checkpoint mechanisms have been
introduced, as discussed above, they rarely consider the
consistency of virtual clusters. To deal with this situation,
the coordinated checkpoint mechanism has been proposed
[16], [35], [36]. In order to minimize the performance loss
due to unexpected failures or unnecessary overhead of FT
mechanisms, Liu et al. proposed an optimal coordinated

checkpoint placement scheme to cope with different failure
distributions and a varying checkpoint interval [35]. This
scheme also considers optimality for both checkpoint over-
head and rollback time. Zhang et al. proposed VirtCFT, a
system-level coordinated distributed checkpointing FT sys-
tem that provides FT for a virtual cluster and recovers the
entire virtual cluster to the previous correct state when a
fault occurs by transparently taking incremental check-
points of VM images [16]. Considering that users’ individ-
ual requirements may vary considerably, Limrungsi et al.
proposed a novel scheme for providing reliability as a flexi-
ble on-demand service [36]. This scheme uses peer-to-peer
checkpointing and allows user reliability levels to be jointly
optimized by assessing users’ individual requirements and
total available resources in the cloud data center.

Although the proactive FT scheme and virtual clusters
have been widely adopted [21], [22], [24], they are rarely
used together to enhance the reliability of cloud data cen-
ters. Therefore, this paper proposes a CPU temperature
model for anticipating a deteriorating PM. In order to reallo-
cate the VMs on the detected deteriorating PM as compactly
as possible to other VMs in the same virtual cluster, the
PSO-based PCFT approach is introduced to identify some
optimal PMs for these VMs.

3 PRELIMINARIES AND SYSTEM MODEL

In order to make it easier to understand our approach, we
first introduce the basic knowledge of the VM coordinated
mechanism and then propose our system model.

3.1 VM Coordinated Mechanism
In this section, a VM coordinated mechanism (i.e., virtual
cluster) is designed to jointly process a set of parallel
applications (e.g., web applications), and each parallel
application includes multiple tasks. However, for ease of
understanding, a parallel application model (see Fig. 1) [38],
[39], which is considered to be a data-intensive application,
is proposed as our test case to measure the performance
of different approaches in terms of the overall network
resource consumption and total execution time. Each paral-
lel application consists of three tasks (t1, t2, and t3); t3 can-
not enter the execution stage until both t1 and t2 transfer
data to t3. Each task, which is executed by a VM, consists of
some computation and communication stages.

3.2 System Model

In this paper, the target system is an IaaS environment that
employs a fat-tree topology architecture (see Fig. 2) [40].
The advantage of using this topology is that all switches
are identical commodity Ethernet switches. Moreover,
this topology has the potential to deliver large bisection band-
width through rich path multiplicity for relieving the band-
width resource bottlenecks.

In the fat-tree topology architecture, there are n hetero-
geneous PMs, which have different resource capacities,
and three-level trees of switches. Each PM is characterized

Fig. 1. Parallel application model.

LIU ET AL.: USING PROACTIVE FAULT-TOLERANCE APPROACH TO ENHANCE CLOUD SERVICE RELIABILITY 1193

by the CPU performance defined in millions of instructions
per second (MIPS), amount of RAM, network bandwidth,
and disk storage. At any given time, a cloud data center usu-
ally serves many simultaneous users. Users submit their
requests for provisioning n heterogeneous VMs, which are
allocated to the PMs and characterized by requirements of
CPU performance, RAM, network bandwidth, and disk stor-
age. The length of each request is specified in millions of
instructions. The bottom layer is the edge layer; the switches
in this layer are edge switches that can attach to the network.
The link that connects an edge switch and a PM is an edge
link. All PMs physically connected to the same edge switch
form their own subnet. The middle layer is the aggregation
layer, and its switches are aggregation switches. The link
that connects a core switch and an aggregation switch is an
aggregation link. All PMs that share the same aggregation
switches are in the same pod. The top layer is the core tier,
and the switches in this layer are core switches. The link that
connects a core switch and an aggregation switch is a core
link. Because all traffic moving outside the cloud data center
should be routed through the core switch, the core link
becomes congested easily. Consequently, we should try to
reduce the network resource consumption of the core link.

In our PCFT approach, multiple VMs (i.e., a virtual clus-
ter) jointly complete a set of parallel applications. We choose
three VMs as a virtual cluster when creating the VMs. To ini-
tially allocate these VMs to the PMs,we design the Initial Vir-
tual Cluster Allocation algorithm (IVCA), which reduces the
resource consumption as much as possible. The pseudocode
of the IVCA approach is presented in Algorithm 1. When a
VM is allocated to a PM, IVCA first traverses all the PMs in
the cloud data center to identify all other VMs that are in the
same virtual cluster as the VM. If such VMs exist, the VM is
allocated to the same subnet or pod as the PM hosting such
VMs. Otherwise, it will be allocated such that the total energy
consumption of all PMs in the target system is minimized.
Thus, each VM is allocated to a PM that provides the least
increase in the network resource consumption and energy
consumption of all the PMs in the target system.

In general, tens of thousands of PMs and a multitenancy
model are employed in a production environment. There-
fore, downtime is common and seriously affects the service
level of cloud computing. Therefore, we focus on PM fault
features to anticipate a deteriorating PM. The deteriorating

PM is selected on the basis of the CPU temperature model,
which is introduced in Section 4.1. This model is used to
determine when the temperature exceeds the upper thresh-
old of the normal CPU temperature range (e.g., 68 �C) for the
duration in which the PM is considered to be deteriorating.
Then, the VM reallocation algorithm is adopted to reallocate
the VMs on the deteriorating PM to other healthy PMs.

Algorithm 1: Initial Virtual Cluster Allocation (IVCA)

1: Input: hostList, vmListOutput: allocation scheme of VMs
2: foreach vm in vmList do
3: minPower MAX
4: foreach host in hostList do
5: foreach vm1 of vmList in the host do
6: if vm1 and vm are in the same virtual cluster then
7: allocate vm1 to the same subnet or pod as the host
8: foreach host in hostList do
9: if host has sufficient resources for vm then
10: power energyFitness(globalBestList, hostList)
11: if power<minPower then
12: targetHost host
13: minPower power
14: if targetHost 6¼NULL then
15: allocate vm to targetHost
16: return allocation scheme of VMs

4 PROPOSED PCFT APPROACH

The health monitoring mechanism is adopted to guarantee
cloud service reliability in our approach (PCFT). The objec-
tive of the PCFT approach is to monitor and anticipate a
deteriorating PM. When there exists a deteriorating PM, our
approach will search for some optimal target PMs for the
VMs hosted on the deteriorating PM.

As shown in Fig. 3, the system architecture of our
approach consists of the following two modules.

� PM fault prediction: CPU temperature monitoring
and forecasting are essential for preventing PM shut-
downs due to overheating as well as for improving
the data center’s energy efficiency. The module has a
prediction functionality to monitor and anticipate a
deteriorating PM by limiting the CPU temperature
in the normal temperature range.

� Optimal target PM selection: When the deteriorating
PM is detected, the module searches for optimal
target PMs for the VMs on the deteriorating PM.
To search for these optimal target PMs and to exe-
cute a cloud service that consists of a set of parallel
applications, we design a VM coordinated mecha-
nism by selecting three VMs as a virtual cluster to

Fig. 2. Fat-tree topology architecture (the switches in the top (black),
middle (blue), and bottom (red) layers are the core, aggregation, and
edge switches, respectively).

Fig. 3. PCFT architecture.

1194 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

jointly execute a parallel application and model the
optimal target PM selection as a PSO-based optimi-
zation problem within constraints.

In the following sections, we will describe the details of
PM fault prediction, optimal target PM selection, and PSO-
based PM selection optimization.

4.1 PM Fault Prediction

Thermal performance is a critical metric in cloud data center
management, and sharp spikes in PM utilization may result
in disruptive downtimes due to generated hotspots. CPU
temperature is an approximately linear function of CPU uti-
lization without considering the effect of heat generated by
other PMs nearby [41]. Thus, we focus on PM fault features
to anticipate a deteriorating PM, and the deteriorating PM
is selected on the basis of CPU temperature. As the fault
metrics are extensible, we plan to study additional metrics
(fan speed and voltage, disk error logs, etc.) in the future.

CPU temperature monitoring and forecasting are essen-
tial for preventing PM shutdowns due to overheating as
well as for improving the data center’s energy efficiency.
Therefore, the simulated prediction function model for CPU
temperature in the data center is modeled as follows, and
the corresponding curve is shown in Fig. 4 [42], [43]:

fðtjA;v; ti; tiþ1Þ ¼
et 0 � t � ti
eti ti � t � tiþ1
A sin ðvt� vtiþ1Þ þ eti tiþ1 � t � tiþ2;

8
<

:

(1)

where i is the set of positive integers; the first subequa-
tionetsimulates the process of CPU temperature change
during computer boot; ti is a fixed value computed by

eti ¼ 35; eti is the CPU no-load temperature, which is always
set at 35�C; tiþ1 is a random value; tiþ2 is computed by
tiþ2 ¼ p=vþ tiþ1; A is the amplitude, which denotes the
peak maximum value of CPU temperature (usually lower
than 68�C); and v denotes the duration for which the CPU
executes the load. We can randomly adjust the value of A
and v to denote different CPU utilizations in different time
domains. We just need the first half cycle of the sinusoidal
function; its value can be computed by p=v.

4.2 Optimal Target PM Selection

4.2.1 Overall Transmission Overhead Model

In this paper, we mainly consider that VMs in a virtual
cluster coordinate jointly to execute a parallel application
(as shown in Fig. 1). The VMs in the same virtual cluster

communicate with each other. The network resource con-
sumption and execution time of a virtual cluster are directly
related to the transmission overhead between one VM and
other VMs in the same virtual cluster. This is because the
lower the transmission overhead, the lower is the communi-
cation overhead (e.g., communication time and network
resource consumption) when one VM communicates with
other VMs in the same virtual cluster. Thus, the overall
transmission overhead between VMs on the deteriorating
PM, which have been migrated to new PMs, and other VMs
in the same virtual cluster is modeled as follows:

totalTransOverhead ¼
Xm

i¼1

XV

k¼1
yik � ðbwkiþbwikÞ; (2)

wherem is the number of VMs on a deteriorating PM;V is the
number of VMs in a virtual cluster; bwik is the bandwidth
value from the ith VM on the deteriorating PM to the kth VM
in the same virtual cluster as the ith VM; and bwki is the band-
width value from the kth VM to the ith VM.Note that if the ith
VM (or the kth VM) is a data sender, the value of bwik (or bwki)
is assigned randomly [44], [45] in a certain range (e.g., [0, 500]
MB/s); otherwise, its value is 0. Further, yik is the transmis-
sion overhead between the ith VMmigrated to a new PM and
other VMs in the same virtual cluster as the ith VM.

4.2.2 Optimal Target PM Selection Model

In this section, we describe how to select the optimal target
PMs for the VMs on the deteriorating PM. The optimization
objective of the optimal target PM selection problem is to
minimize the overall transmission overhead while satisfy-
ing the resource requirements. Hence, the overall transmis-
sion overhead can be modeled as follows:

min
Xm

i¼1

XV

k¼1
yik � ðbwkiþbwikÞ: (3)

Such that
Xn

j¼1
xij ¼ 1; xij ¼ 0 or 1; (4)

XM

i¼1
rmem
i xij < cmem

j \
XM

i¼1
rcpui xij < ccpuj \

XM

i¼1
rbwi xij < cbwj ; (5)

X

j

Flowij �
X

l

Flowli

¼
1 if PMi is the deteriorating PM

0 otherwise

�1 if PMi is the candidate target PM;

8
><

>:

(6)

where n is the number of PMs in the cloud data center andM
is the number of VMs in the cloud data center. Equation (5)
shows that a VM can only be placed on one PM such that
xij ¼ 1 if the ith VM is run on the jth PM; otherwise, xij ¼ 0.
Equation (6) shows that the sum of the resource require-
ments of the VMs must be less than the PM’s idle resource

capacity. Further rbwi , rmem
i , and rcpui are the maximum net-

work bandwidth, memory, and CPU requirements of the ith

VM in an optimization period, respectively, and cbwj , cmem
j ,

and ccpuj are the network bandwidth, memory, and CPU idle

capacity of the jth PM, respectively.

Fig. 4. Corresponding curve of (1).

LIU ET AL.: USING PROACTIVE FAULT-TOLERANCE APPROACH TO ENHANCE CLOUD SERVICE RELIABILITY 1195

As the cloud data center consists of a large number of
PMs, the above-mentioned optimization problem is an NP-
hard problem. The problem of finding the optimal target
PMs is considered to be an optimization problem in which
the overall transmission overhead must be minimized while
satisfying all the constraints given by (4), (5), (6). Next, we
introduce an adaptive heuristic algorithm based on the
improved PSO algorithm to solve the optimization problem
of identifying the optimal target PMs.

4.3 PSO-Based PM Selection Optimization

PSO [25] is widely used to solve a variety of optimization
problems. First, it generates a group of random particles.
Each particle, which represents a feasible solution and
includes two parameters, i.e., velocity and position, flies in
the multidimension search space at a specified velocity
while referring to the best local position XLbesti and the best
global positionXgbest, and updates its velocity and position
to move the swarm toward the best solutions as follows:

V tþ1
i ¼ vV t

i þ c1r1ðXLbestiðtÞ �Xt
iÞ þ c2r2ðXgbestðtÞ �Xt

iÞ;
(7)

Xtþ1
i ¼ Xt

i þ V tþ1
i ; (8)

where V t
i , X

t
i , V

tþ1
i , and Xtþ1

i represent the velocity before
the update, the position before the update, the updated
velocity, and the updated position, respectively. The inertial
weight coefficient v, which linearly decreases from 0.9 to
0.4 through the search process, balances the local and global
search capabilities of the particles. The positive constants c1
and c2, which enable the particle to learn, are referred to as
cognitive learning factors, while r1 and r2 are random func-
tions in the range [0, 1].

Next, PSO is adopted to solve the PM selection optimiza-
tion problem. However, analysis of the specific characteris-
tics of the PM selection optimization problem shows that
the problem is a discrete optimization problem. If we want
to adopt PSO to search for the optimal target PMs for the
VMs hosted on the deteriorating PM, we must improve the
parameters and operators of the original PSO algorithm and
design the encoding scheme and fitness function.

Therefore, in the next section, we first introduce the
parameters and operators of the improved PSO algorithm
and then propose the encoding scheme and fitness function.

4.3.1 Parameters and Operators

Definition 1 (Subtraction operator). The subtraction opera-
tor is represented symbolically by �, and the difference between
two VM placement solutions is calculated by xt

j � xt
k; if the cor-

responding bit value of solution xt
j is equal to that of solution xtk,

then the corresponding bit value in the result is 1; otherwise, it is
0. For example, ð1; 1; 0; 1Þ � ð1; 0; 1; 1Þ ¼ ð1; 0; 0; 1Þ.

Definition 2 (Addition operator). The addition operator is
represented symbolically by �, which represents the particle
velocity update operation caused by its own velocity inertia,
local best position, and global best position in the process of par-
ticle updating. Thus, P1V

t
1 � P2V

t
2 � 	 	 	 	 	 	PnV

t
n denotes that

a particle updates its velocity using V t
1 with probability P1. . .

and V t
n with probability Pn. The probability value Pið

Pn
i¼1

Pi ¼ 1Þ is called the inertia weight coefficient; it can be calcu-
lated by (11) using the roulette wheel method. For example, 0.6
(1, 0, 0, 1) � 0.4(1, 0, 1, 0) ¼ (1, 0, #, #). The probability that
the value of the third bit is equal to 0 is 0.6, and the probability
that its value is equal to 1 is 0.4. Since the value of the third bit
is uncertain, it is denoted by . Since the uncertain bit value
influences the update of the particle velocity, its value is speci-
fied by the roulette wheel method.

Definition 3 (Multiplication operator). The multiplication
operator is represented symbolically by
, and the position
update operation of the current particle positionXt

i based on the

velocity vector V tþ1
k is denoted by Xt

i
 V tþ1
k . The computation

rule of
 is as follows: 1) if the corresponding bit value of the
velocity vector is 1, then the corresponding bit of the position
vector is not adjusted; 2) if the corresponding bit value of the
velocity vector is 0, then the corresponding bit of the position
vector will be re-evaluated and adjusted. For example, consider
(1, 0, 1, 1)
 (0, 1, 1, 0), where (1, 0, 1, 1) is the position vector
and (0, 1, 1, 0) is the velocity. The first and fourth bit values of
the velocity vector are all equal to 0, which indicates that the
status of the first and fourth server in the corresponding VM
placement solution should be re-evaluated and adjusted.

Finally, the three above-mentioned definitions are used to
improve the velocity updating and position updating equa-
tion of the traditional PSO [i.e., (7) and (8)] as follows,
respectively [46],

V tþ1
i ¼ P1V

t
i � P2ðXLbestiðtÞ �Xt

iÞ � P3ðXgbestðtÞ �Xt
iÞ; (9)

Xtþ1
i ¼ Xt

i
 V tþ1
i ; (10)

where n is the length of the particle code and is equal to the
number of PMs in a cloud data center, and Xt

i is an n-bit

vector ðxt
i1; x

t
i2; . . . ; x

t
inÞ that denotes the particle position of

a feasible VM allocation solution. The value of every bit in
the vectorXt

i is 0 or 1; the value is 0 if the corresponding PM

is turned off and 1 otherwise. Further, V t
i is an n-bit vector

ðvti1; vti2; . . . ; vtinÞ that denotes the particle velocity, which rep-
resents the adjustment decisions of the VM placement. To
enable VM placement such that it is an optimal solution, the
above-mentioned equations are used to guide the particle
position update operation. The value of every bit in the vec-
tor V t

i is 0 or 1; the value is 0 if the corresponding PM and its
VMsmust be adjusted, and 1 otherwise.

4.3.2 Encoding Scheme

To solve the VM reallocation problem on the deteriorating
PM, as shown in Fig. 5, we design a three-dimensional
encoding scheme based on the one-to-many mapping rela-
tionship between the PMs and the VMs.

As shown in Fig. 5, the second dimension of a particle is
an n-bit binary vector. Every bit in the vector is associated
with a PM in a cloud data center. If the PM is active in the

Fig. 5. Three-dimensional encoding scheme.

1196 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

current VM placement solution, the corresponding bit is 1;
otherwise, it is 0. The first and third dimensions of a particle
constitute a set of subsets that consist of the migrated VMs
and initial VMs, respectively. Note that migrated VMs come
from the deteriorating PM. Each VM subset is associated
with an active PM. For example, if the fifth bit value of the
second dimension of this particle is equal to 1, the fifth PM
in the cloud data center should be turned on. The third,
fourth, and eighth VMs should be placed onto the fifth PM,
and the eighth VM is migrated from the deteriorating PM.

4.3.3 Fitness Function

To jointly execute a set of parallel applications, the VMs on
the deteriorating PM and other VMs in the same virtual
cluster can consume a considerable amount of network
resources and a long execution time. Hence, we must mini-
mize the overall transmission overhead to reduce the net-
work resource consumption and the execution time. For
illustration purposes, every bit in the second dimension of
the particle is called the local position. The overall transmis-
sion overhead in an optimization period is called fitness,
which is denoted by ffitness and calculated as follows:

ffitness ¼
Xm

i¼1

XV

k¼1
yik � ðbwkiþbwikÞ: (11)

When the VMs on the deteriorating PM will be allocated
to other PMs in the cloud data center, our approach can
select an optimal allocation solution such that ffitness is
minimum.

5 PERFORMANCE EVALUATION

In this section, we evaluate the efficiency and effectiveness
of our approach through simulation experiments. Specifi-
cally, we compare our approach with five other approaches
in terms of the overall transmission overhead, overall net-
work resource consumption, and total execution time while
executing a set of parallel applications.

5.1 Simulation Setup

We extend FTCloudSim simulator [13], [47], which is based
on CloudSim [48], to simulate our experimental environ-
ment. All the experiments were conducted on a 16-port fat-
tree data center network with 64 core switches and 16 pods.
Each pod consisted of eight aggregation switches and eight
edge switches. Thus, there were 128 aggregation switches
and 128 edge switches in the cloud data center; each edge
switch could connect to eight PMs, and each PM could host
one or more VMs. In order to reflect the effect of VM reallo-
cation, we simulated a data center comprising 1024 hetero-
geneous PMs and 4,000 heterogeneous VMs. Each PM was
modeled to have a dual-core CPUwith performance equiva-
lent to 3,720 or 5,320 MIPS, 10 GB of RAM, 10 GB/s network
bandwidth, and 1 TB of storage [49]. Each VM required one
CPU core with a maximum of 360, 490, 540, 620, 720, 860, or
1,000 MIPS, 1 GB of RAM, 900 Mb/s network bandwidth,
and 1 GB of storage. The capacities of the core, aggregation,
and edge links were set as 10, 10, and 1 Gps, respectively.
The transfer delays of the aggregation, core, and edge
switches were 1, 1, and 2 s, respectively [50].

To assess the performance of the proposed approach
(PCFT), we compared it with five other algorithms, namely,
random first-fit (RFF), first-fit (FF), best-fit (BF), modified
best fit decreasing (MBFD) [51], and IVCA. In Section 3.2,
IVCA was proposed to initially allocate all VMs to the PMs
of the cloud data center. However, in this section, IVCA is
adopted to reallocate the VMs on the deteriorating PM to
other healthy PMs in the cloud data center for comparison
with four other approaches and PCFT.

In general, it is known that RFF, FF, and BF are three clas-
sical greedy approximation algorithms. When a deteriorat-
ing PM is detected, there may be multiple PM candidates
that satisfy the constraints. RFF randomly selects some PMs
to host the VMs on the deteriorating PM. FF always
migrates the VMs on the deteriorating PM to the PMs that
first meet the constraints. BF selects the PMs that achieve
minimum CPU utilization for the VMs on the deteriorating
PM. MBFD always moves the VMs on the deteriorating PM
to the optimal PMs that can achieve the minimum transmis-
sion overhead and energy consumption.

All the above-mentioned approaches are evaluated by
the following performance metrics:

� Overall transmission overhead: The overall transmis-
sion overhead between the VMs on the deteriorating
PM that are migrated to the target PMs and other
VMs in the same virtual cluster is calculated by (2).

� Total execution time: The total execution time for all
migrated VMs and the corresponding virtual clusters
to jointly execute a set of parallel applications can be
calculated as follows:

Ttatal ¼
Xn

i¼1
ðTendðtiÞ � TstartðtiÞÞ; (12)

where n is the number of parallel applications, and
TstartðtiÞ and TendðtiÞ are the start and end times of
the ith parallel application, respectively.

� Network resource consumption: This performance
metric can be evaluated by four sub-metrics, namely,
Packetall, Packetroot, Packetagg, and Packetedge, which
can be calculated as follows:

Packetedge ¼
Xn

i¼1
Ei � sizeðpacketiÞ; (13)

Packetagg ¼
Xn

i¼1
Ai � sizeðpacketiÞ; (14)

Packetroot ¼
Xn

i¼1
Ri � sizeðpacketiÞ; (15)

Packetall ¼ Packetroot þ Packetagg þ Packetedge; (16)

where Packetroot; Packetagg; Packetedge, and Packetall
are the total sizes of packets transferred by the root
switches, aggregation switches, edge switches, and
all switches, respectively. Further, Ri;Ai, and Ei are
the transfer frequencies of the root switches, aggre-
gation switches, and edge switches, respectively.

5.2 Experimental Results and Evaluation

In this section, we analyze the performance of our approach
by comparing it with five other related approaches in terms

LIU ET AL.: USING PROACTIVE FAULT-TOLERANCE APPROACH TO ENHANCE CLOUD SERVICE RELIABILITY 1197

of the overall transmission overhead, overall network
resource consumption, and total execution time while exe-
cuting a set of parallel applications.

5.2.1 Comparison of Overall Transmission Overhead

The first set of experiments aims to estimate the overall
transmission overhead incurred due to migration of the
VMs on the deteriorating PM to other healthy PMs. Accord-
ing to (2), the transmission overhead determines the execu-
tion time and network resource consumption when a
virtual cluster executes a set of parallel applications.

As shown in Fig. 6, the experimental results indicate that
our approach (PCFT) has the least transmission overhead
compared to the other five related approaches. This is because
our approach adopts the improvedPSO-based approximation
algorithm to search for the optimal PMs for the VMs, when
the current PM is deteriorating. Thus, when these VMs are
reallocated to healthy PMs, the transmission overhead is min-
imum. Other related approaches do not adopt a heuristic
algorithm. RFF, FF, and BF have nearly similar (higher) trans-
mission overhead, because these approaches do not consider
the transmission overhead during the search of the healthy
PMs, when the VMs are on the deteriorating PM. In contrast,
both MBFD and IVCA consider the transmission overhead.
Hence, their transmission overhead is lower as compared to
RFF, FF, and BF but higher as compared to PCFT. IVCA has
lower transmission overhead than MBFD because IVCA first
considers the transmission overhead of the VMs when they
are on the deteriorating PM. However, MBFD considers both
the transmission overheads.

5.2.2 Analysis of Cloud Service Reliability

Enhancement

We modeled CPU temperature to predict a deteriorating
PM in order to preemptively reallocate VMs from the deteri-
orating PM to a healthy PM; the proactive mechanism can
enhance cloud service reliability to a certain extent. We also
know that the transmission overhead determines the execu-
tion time and network resource consumption when virtual
clusters jointly execute a set of parallel applications. Next,
we analyzed the performance of cloud service reliability
enhancement on the basis of the total execution time and
network resource consumption. The results are shown in
Figs. 7 and 8.

Fig. 7 shows the total execution time of the RFF, FF, BF,
MBFD, PCFT, and IVCA approaches while executing a set of
parallel applications. The results indicate that the total execu-
tion time of PCFT is shorter than that of the other five
approaches. This is mainly because PCFT places the VMs in
the same virtual cluster in a more concentrated manner than
the other approaches. More precisely, PCFT needs more
aggregation and edge layer switches and fewer root layer
switches than the other five approaches.Hence, the communi-
cation traffic of the virtual clusters that use PCFT to reallocate
the VMs on the deteriorating PM requires more aggregation
and edge layer switches. Therefore, PCFT takes less time to
transfer data packets from one VM to another VM in the same
virtual cluster, which reduces the total execution time.

Next, we evaluated the network resource consumption of
all the approaches. Fig. 8 shows the network resource con-
sumption of edge layer switches, aggregation layer switches,
core layer switches, and all layer switches, respectively.
PCFT consumes the least edge layer, aggregation layer,
core layer, and overall network resources as compared to the
other related approaches. This is because PCFT adopts the
PSO-based allocation approach to reallocate the VMs on
the deteriorating PM to healthy PMs, which leads to the least
transmission overhead between one VM and other VMs in
the same virtual cluster. Hence, the VMs on the deteriorating
PM and other VMs in the same virtual cluster are placed
most likely in the same subnet or pod. In contrast, the other

Fig. 6. Overall transmission overhead between migrated VMs and other
VMs in the same virtual cluster.

Fig. 7. Total execution time of the RFF, FF, BF, MBFD, PCFT, and IVCA
approaches while executing parallel applications.

Fig. 8. Network resource consumption of the RFF, FF, BF, MBFD,
PCFT, and IVCA approaches for all layers.

1198 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

five approaches place the VMs in a more dispersed manner
as compared to PCFT. As a result, more core layer switches
are utilized. As per the fat-tree architecture, all packets
routed through the core layer switches will also be trans-
ferred by the aggregation and edge layer switches. Thus, the
core link becomes congested easily. Consequently, we
should try to reduce the network resource consumption of
the core link to enhance cloud service reliability.

From the experimental results, we can conclude that
PCFT outperforms the other five related approaches. More-
over, it demonstrates the same effect on cloud service reli-
ability enhancement as the related approaches.

5.3 Study of Parameters

In this section, we study the effect of the experimental
parameters on all the approaches. As shown in Figs. 9, 10,
and 11, the parameters include the virtual cluster size, num-
ber of parallel applications, and number of VMs. In our
experiments, the virtual cluster size was set at 3, the number
of VMs was set at 4,000, and the number of parallel applica-
tions was set at 1,000.

5.3.1 Effect of Virtual Cluster Size

Fig. 9 shows the effect of the virtual cluster size on all the
approaches. To clearly show its impact, the number of VMs
was set at 4,000, and the number of parallel applications was
set at 1,000. We varied the value of the virtual cluster size
from 1 to 10 in steps of 1 in the experiment. The figure shows
that the transmission overhead of all the approaches tends to
increase as a whole, and the growth rate of PCFT is the low-
est. We designed a parallel application model executed by a
virtual cluster including three VMs. Experimental results of
overall network resource consumption and total execution
time under other virtual cluster sizes have not been pro-
vided. However, owing to the relationship between the
transmission overhead and other performance metrics, we
believe that with an increase in the virtual cluster size, the
total execution time and overall network resource consump-
tionwill be affected to some extent. Further, the cloud service
reliability is also affected to some extent.

5.3.2 Effect of Number of Parallel Applications

Fig. 10 shows the effect of the number of parallel applica-
tions on all the approaches. To clearly show its impact, the

virtual cluster size was set at 3, and the number of VMs was
set at 4,000. We varied the number of parallel applications
from 100 to 1,000 in steps of 100 in this experiment. The
figure indicates that the transmission overhead is not
affected significantly by the number of parallel applications;
however, the overall network resource consumption and
the total execution time steadily increase with the number
of applications, and the network resource consumption
growth rate of PCFT is the lowest. Further, through this
observation, we can safely conclude that the cloud service
reliability decreases.

5.3.3 Effect of Number of VMs

Fig. 11 shows the effect of the number of VMs on all the
approaches. To clearly show its impact, the virtual cluster
size was set at 3, and the number of parallel applications
was set at 1,000. We varied the number of VMs from 1,000
to 6,000 in steps of 500 in this experiment. These figures

Fig. 9. Effect of virtual cluster size. The virtual cluster size represents the
number of VMs in a virtual cluster. The transmission overhead of all
approaches tends to increase as a whole when the value of the virtual
cluster size increases from 1 to 10, and our proposed approach (PCFT)
has the slowest growth rate.

Fig. 10. Effect of number of parallel applications. The number of parallel
applications represents the number of tasks processed. The transmis-
sion overhead of our approach (PCFT) is not affected significantly by
this parameter. All packets routed through all the three layer switches
and the total execution time of the parallel applications increase with the
number of parallel applications. The PCFT approach has the lowest net-
work resource consumption growth rate. (a) Effect on transmission over-
head, (b) effect on all switch packet processed, and (c) effect on total
execution time.

LIU ET AL.: USING PROACTIVE FAULT-TOLERANCE APPROACH TO ENHANCE CLOUD SERVICE RELIABILITY 1199

show that the transmission overhead, all packets routed
through all the three layer switches, and total execution
time increase with the number of VMs, and our approach
(PCFT) has the lowest growth rate. This is mainly because
the total number of PMs was 1,024 in the cloud data center;
each PM had a fixed hardware configuration. Thus, the
parameters increased with the number of VMs. Further,
based on the observations in these experiments, we can
safely conclude that the cloud service reliability decreased.

6 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a PCFT approach that adopts a
VM coordinated mechanism to anticipate a deteriorating

PM in a cloud data center, and then automatically migrates
VMs from the deteriorating PM to the optimal target PMs.
This is a very challenging problem, considering its effi-
ciency, effectiveness, and scalability requirements. We
addressed this problem through a two-step approach,
where we first proposed a CPU temperature model to
anticipate a deteriorating PM, and then searched for the
optimal target PMs using an efficient heuristic algorithm.
We evaluated the performance of the PCFT approach by
comparing it with five related approaches in terms of the
overall transmission overhead, overall network resource
consumption, and total execution time while executing a
set of parallel applications. The experimental results dem-
onstrated that our proposed approach outperforms the
other five related approaches.

In our experiments, for ease of understanding, we
designed a set of parallel applications, where each parallel
application consists of three tasks, in order to validate our
approach. However, complex parallel applications still
need to be designed in our experimental platform. Hence,
in the future, we will design multiple types of parallel
applications for execution in our experimental platform.
Meanwhile, we also plan to apply our approach to reac-
tive FT using the full coordinated checkpoint mechanism,
which helps to reduce checkpoint frequencies as fewer
unanticipated failures are encountered, in addition to
reducing network and storage resource consumption
while guaranteeing cloud service reliability.

ACKNOWLEDGMENTS

This work is supported by the NSFC (61272521 and
61472047), Shangguang Wang is the corresponding author.

REFERENCES

[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. 9th IEEE Grid Comput-
ing Environments Workshop, 2008, pp. 1–10.

[2] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility,” Future Gener. Comput.
Syst., vol. 25, no. 6, pp. 599–616, 2009.

[3] P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,” in
Proc. 10th ACM Comput. Commun. Rev., 2011, pp. 350–361.

[4] K. Vishwanath and N. Nagappan, “Characterizing cloud comput-
ing hardware reliability,” in Proc. 1st ACM Symp. Cloud Comput.,
2010, pp. 193–204.

[5] M. Schwarzkopf, D. Murray, and S. Hand, “The seven deadly sins
of cloud computing research,” in Proc. 4th USENIX Workshop Hot
Topics Cloud Comput., Jun. 2012, p. 1.

[6] M. Treaster, “A survey of fault-tolerance and fault-recovery tech-
niques in parallel systems,” in Proc. 5th ACM Comput. Res. Reposi-
tory, Jan. 2005, pp. 1–11.

[7] R. Jhawar and V. Piuri, “Fault tolerance and resilience in cloud
computing environments,” in Computer and Information Security
Handbook, Morgan Kaufmann Publisher, USA, 2013, pp. 125–141.

[8] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu,
“Performance and availability aware regeneration for cloud based
multitier applications,” in Proc. 40th IEEE/IFIP Dependable Syst.
Netw., 2010, pp. 497–506.

[9] Z. Zheng, T. Zhou, M. Lyu, and I. King, “Component ranking for
faulttolerant cloud applications,” IEEE Trans. Serv. Comput., vol. 5,
no. 4, pp. 540–550, 4th Quarter, 2012.

[10] Z. Zheng, T. Zhou, M. Lyu, and I. King, “FTCloud: A rank
ingBased framework for fault tolerant cloud applications,” in
Proc. 21th IEEE Int. Symp. Softw. Rel. Eng., 2010, pp. 398–407.

Fig. 11. Effect of number of VMs. The number of VMs represents the
number of VMs initially placed. The transmission overhead, all packets
routed through all the three layer switches, and total execution time for
1000 parallel applications increase with the number of VMs, but our pro-
posed approach (PCFT) has the lowest growth rate for each figure. (a)
Effect on transmission overhead, (b) effect on all switch packet proc-
essed, and (c) Effect on total execution time.

1200 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

[11] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for
distributed systems,” IEEE Trans. Softw. Eng., vol. SE-13, no. 1,
pp. 25–31, Jan. 1987.

[12] �I. Goiri, F. Julia, J. Guitart, and J. Torres, “Checkpoint-based fault
tolerant infrastructure for virtualized service providers,” in Proc.
IEEE/IFIP Netw. Operations Manag. Symp., 2010, pp. 455–462.

[13] A. Zhou, S. Wang, Z. Zheng, C. Hsu, M. Lyu, and F. Yang, “On
cloud service reliability enhancement with optimal resource usage,”
IEEETrans. Cloud Comput., 2014, Doi: 10.1109/TCC.2014.2369421.

[14] C. Coti et al., “Blocking vs. non-blocking coordinated checkpoint-
ing for large-scale fault tolerant MPI,” in Proc. 19th ACM/IEEE
Conf. Supercomput., 2006, pp. 11–20.

[15] K. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. Comput. Syst.,
vol. 3, no. 1, pp. 63–75, 1985.

[16] M. Zhang, H. Jin, X. Shi, and S. Wu., “Virtcft: A transparent vmle-
vel fault-tolerant system for virtual clusters,” in Proc. 16th IEEE
Int. Conf. Parallel Distrib. Syst., 2010, pp. 147–154.

[17] B. Cully et al., “Remus: High availability via asynchronous virtual
machine replication,” in Proc. 5th USENIX Symp. Netw. Syst. Des.
Implementation , 2008, pp. 161–174.

[18] A. Nagarajan, F. Mueller, C. Engelmann, and S. Scott, “Proactive
fault tolerance for HPC with Xen virtualization,” in Proc. 21th Int.
Conf. Supercomput., 2007, pp. 23–32.

[19] P. Barham et al., “Xen and the art of virtualization,” in Proc. 19th
ACM Symp. Operating Syst. Principles, 2003, pp. 164–177.

[20] M. Dong, H. Li, K. Ota, L. T. Yang, and H. Zhu, “Multicloud-
based evacuation services for emergency management,” IEEE
Cloud Comput., vol. 1, no. 4, pp. 50–59, Nov. 2014.

[21] J. Ho, P. Hsiu, and M. Chen, “Improving serviceability for virtual
clusters in bandwidth-constrained datacenters,” in Proc. 8th IEEE
Int. Conf. Cloud Comput., 2015, pp. 710–717.

[22] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,”
in Proc. ACM Conf. Appl., Technol., Archit., Protocols Comput.
Commun., 2011, pp. 98–109.

[23] Cisco Global Cloud Index, “Forecast and Methodology, 2013–
2018,” [Online]. Available: http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/global-cloud-index-gci/
Cloud_Index_White_Paper.pdf, 2014.

[24] D. Breitgand and A. Epstein, “Improving consolidation of virtual
machines with risk-aware bandwidth oversubscription in com-
pute clouds,” in Proc. 31th IEEE Int. Conf. Comput. Commun., 2012,
pp. 2861–2865.

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[26] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual ma
chine placement for fault-tolerant consolidated server clusters,” in
Proc. IEEE/IFIP Netw. Operations Manage. Symp., 2010, pp. 32–39.

[27] E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and
D. Lorenz, “Guaranteeing high availability goals for virtual
machine placement,” in Proc. 31th Int. Conf. Distributed Comput.
Syst., May 2011, pp. 700–709.

[28] S. Deng, L. Huang, J. Taheri, and A. Zomaya, “Computation off-
loading for service workflow in mobile cloud computing,” IEEE
Trans. Parallel Distributed Syst., vol. 26, no. 12, pp. 3317–3329, 2015.

[29] S. Wang, A. Zhou, C. Hsu, X. Xiao, and F. Yang, “Provision of
data-intensive services through energy-and QoS-aware virtual
machine placement in National Cloud Data Centers,” IEEE Trans.
Emerging Topics Comput., 2015, Doi: 10.1109/TETC.2015.2508383.

[30] Z. Zheng, Y. Zhang, and M. Lyu, “CloudRank: A QoS-Driven
component ranking framework for cloud computing,” in Proc.
29th IEEE Int. Symp. Reliable Distributed Syst., 2010, pp. 184–193.

[31] H. Li, M. Dong, X. Liao, and H. Jin, “Deduplication-based energy
efficient storage system in cloud environment,” Comput. J., vol. 58,
no. 6, pp. 1373–1383, 2015.

[32] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A sur-
vey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[33] A. Ciuffoletti, “Error recovery in systems of communicating proc-
esses,” in Proc. 7th Int. Conf. Softw. Eng., 1984, pp. 6–17.

[34] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot in
stances via checkpointing in the amazon elastic compute cloud,”
in Proc. 3th IEEE Int. Conf. Cloud Comput., Jun. 2010, pp. 236–243.

[35] Y. Liu, et al., “An optimal checkpoint/restart model for a large
scale high performance computing system,” in Proc. 22th IEEE Int.
Symp. Parallel Distrib. Process., 2011, pp. 1–9.

[36] N. Limrungsi et al., “Providing reliability as an elastic service in
cloud computing,” in Proc. IEEE Int. Conf. Commun., 2012,
pp. 2912–2917.

[37] X. Liu, Y. Ma, Y. Liu, T. Xie, and G. Huang, “Demystifying the
imperfect client-side cache performance of mobile web browsing,”
IEEE Trans.Mobile Comput., 2016, Doi: 10.1109/TMC.2015.2489202.

[38] S. Garg and R. Buyya, “An environment for modeling and
simulation of message-passing parallel applications for cloud
computing,” Softw.: Practice Experience, vol. 43, no. 11, pp. 1359–
1375, 2013.

[39] S. Garg and R. Buyya, “Networkcloudsim: Modelling parallel
applications in cloud simulations,” in Proc. 4th IEEE Int. Conf. Util-
ity Cloud Comput., 2011, pp. 105–113.

[40] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM Comput. Com-
mun. Rev., 2008, pp. 63–74.

[41] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Proc. 6th IEEE/ACM
Int. Conf. Green Comput. Commun., 2010, pp. 179–188.

[42] T. Heath et al., “Mercury and Freon: Temperature emulation and
management for server systems,” Proc. 12th Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2006, pp. 106–116.

[43] L. Ramos and R. Bianchini, “C-Oracle: Predictive thermal man
agement for data centers,” in Proc. 14th IEEE Int. Symp. High Per-
form. Comput. Archit., 2008, pp. 111–122.

[44] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in
Proc. 9th ACM Int. Conf. Internet Meas., 2009, pp. 202–208.

[45] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,” in
Proc. 30th IEEE Int. Conf. Comput. Commun., 2011, pp. 71–75.

[46] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, “Particle swarm
optimization for energy-aware virtual machine placement optimi-
zation in virtualized data centers,” in Proc. 19th IEEE Int. Conf.
Parallel Distrib. Syst., 2013, pp. 102–109.

[47] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “FTCloudSim: A
simulation tool for cloud service reliability enhancement mecha-
nisms,” in Proc. 14th ACM/IFIP/USENIX Int. Middleware Conf.
Demo Poster Track, 2013, pp. 1–2.

[48] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Softw.: Practice Experience, vol. 41, 1,
pp. 23–50, 2011.

[49] A. Beloglazov and R. Buyya, “Optimal online deterministic algo
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput.: Practice Experience, vol. 24, no. 13,
pp. 1397–1420, 2012.

[50] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable virtual
infrastructure mapping in virtualized data centers,” in Proc. 5th
IEEE Int. Conf. Cloud Comput., Jun. 2012, pp. 196–203.

[51] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware re source
allocation heuristics for efficient management of data centers for
Cloud computing,” Future Green Comput. Syst., vol. 28, no. 5,
pp. 755–768, 2012.

Jialei Liu received the ME degree in computer
science and technology from Henan Polytechnic
University in 2008. He is currently working toward
the PhD degree at Beijing University of Posts
and Telecommunications, Beijing, China. His
research interests include cloud computing and
service reliability.

LIU ET AL.: USING PROACTIVE FAULT-TOLERANCE APPROACH TO ENHANCE CLOUD SERVICE RELIABILITY 1201

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf

Shangguang Wang received the PhD degree
from Beijing University of Posts and Telecommu-
nications (BUPT), Beijing, China, in 2011. He is
an Associate Professor at the State Key Labora-
tory of Networking and Switching Technology,
BUPT. He is the Vice Chair of IEEE Computer
Society Technical Committee on Services
Computing, President of the Service Society
Young Scientist Forum in China and served as
the General Chair of CollaborateCom 2016,
General Chair of ICCSA 2016, TPC Chair of IOV

2014, and TPC Chair of SC2 2014. His research interests include
service computing, cloud computing, and QoS Management. He is a
Senior Member of the IEEE.

Ao Zhou received the ME degree in computer
science and technology from Beijing University of
Posts and Telecommunications, Beijing, China,
in 2012. She is currently working toward the PhD
degree at Beijing University of Posts and Tele-
communications. Her research interests include
cloud computing and service reliability.

Sathish A. P. Kumar received the PhD degree in
computer science and engineering from the
University of Louisville, KY, in 2007. He is
currently an Assistant professor at the Coastal
Carolina University, SC, USA. He has published
more than 30 papers. His current research inter-
ests include cloud computing security and reliabil-
ity and service computing. He is a senior member
of the IEEE.

Fangchun Yang received the PhD degree in
communications and electronic systems from the
Beijing University of Posts and Telecommunica-
tion, Beijing, China, in 1990. He is currently a
professor at the Beijing University of Posts and
Telecommunication, China. He has published six
books and more than 80 papers. His current
research interests include network intelligence,
service computing, communications software,
soft-switching technology, and network security.
He is a fellow of the IET.

Rajkumar Buyya a professor of computer
science and software engineering, future fellow
of the Australian Research Council, and the
director in the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations
in cloud computing. He has authored over 450
publications and five textbooks including Master-
ing Cloud Computing published by McGraw Hill

and Elsevier/Morgan Kaufmann, 2013 for Indian and international mar-
kets, respectively. Software technologies for grid and cloud computing
developed under his leadership have gained rapid acceptance and are
in use at several academic institutions and commercial enterprises in
40 countries around the world. He has led the establishment and devel-
opment of key community activities, including serving as the foundation
Chair in the IEEE Technical Committee on Scalable Computing and five
IEEE/ACM conferences. These contributions and international research
leadership of him are recognized through the award of “2009 IEEE
TCSC Medal for Excellence in Scalable Computing.” He is currently
serving as co-editor-in-chief of Journal of Software: Practice and Experi-
ence, which was established 40þ years ago. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1202 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

