
Research Article

On Elasticity Measurement in Cloud Computing

Wei Ai,1 Kenli Li,1 Shenglin Lan,1 Fan Zhang,2 Jing Mei,1 Keqin Li,1,3 and Rajkumar Buyya4

1College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
2IBMMassachusetts Lab, 550 King Street, Littleton, MA 01460, USA
3Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
4Department of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3010, Australia

Correspondence should be addressed to Kenli Li; lkl@hnu.edu.cn

Received 21 January 2016; Accepted 8 May 2016

Academic Editor: Florin Pop

Copyright © 2016 Wei Ai et al. Jis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key beneNt of cloud
computing. However, there is no clear, concise, and formal deNnition of elasticity measurement, and thus no ePective approach to
elasticity quantiNcation has been developed so far. Existing work on elasticity lack of solid and technical way of deNning elasticity
measurement and deNnitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement.
In this paper, we present a new deNnition of elasticity measurement and propose a quantifying and measuring method using a
continuous-timeMarkov chain (CTMC) model, which is easy to use for precise calculation of elasticity value of a cloud computing
platform. Our numerical results demonstrate the basic parameters aPecting elasticity as measured by the proposed measurement
approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only
correct but also robust and is ePective in computing and comparing the elasticity of cloud platforms. Our research in this paper
makes signiNcant contribution to quantitative measurement of elasticity in cloud computing.

1. Introduction

(1) Motivation. As a subscription-oriented utility, cloud com-
puting has gained growing attention in recent years in both
research and industry and is widely considered as a promising
way of managing and improving the utilization of data center
resources and providing a wide range of computing services
[1]. Virtualization is a key enabling technology of cloud com-
puting [2]. System virtualization is able to provide abilities
to access so^ware and hardware resources from a virtual
space and enables an execution platform to provide several
concurrently usable and independent instances of virtual
execution entities, o^en called virtual machines (VMs). A
cloud computing platform relies on the virtualization tech-
nique to acquire more VMs to deal with workload surges
or release VMs to avoid resource overprovisioning. Such a
dynamic resource provision andmanagement feature is called
elasticity. For instance, when VMs do not use all the provided
resources, they can be logically resized and be migrated from
a group of active servers to other servers, while the idle

servers can be switched to the low-power modes (sleep or
hibernate) [3].

Elasticity is the degree to which a system is able to adapt
to workload changes by provisioning and deprovisioning
resources in an autonomic manner, such that at each point
in time the available resources match the current demand as
closely as possible [4]. By dynamically optimizing the total
amount of acquired resources, elasticity is used for various
purposes. From the perspective of service providers, elasticity
ensures better use of computing resources and more energy
savings [5] and allows multiple users to be served simultane-
ously. From a user’s perspective, elasticity has been used to
avoid inadequate provision of resources and degradation of
system performance [6] and also achieve cost reduction [7].
Furthermore, elasticity can be used for other purposes, such
as increasing the capacity of local resources [8, 9]. Hence,
elasticity is the foundation of cloud performance and can be
considered as a great advantage and a key beneNt of cloud
computing.

Elastic mechanisms have been explored recently by
researchers from academia and commercial Nelds, and

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 7519507, 13 pages
http://dx.doi.org/10.1155/2016/7519507

2 ScientiNc Programming

tremendous ePorts have been invested to enable cloud
systems to behave in an elastic manner. However, there is
no common and precise formula to calculate the elasticity
value. Existing deNnitions of elasticity in the current research
literature are all vague concepts and fail to capture the
essence of elastic resource provisioning. Jese formulas of
elasticity are not suitable for quantifying and measuring
elasticity. Moreover, there is no systematic approach that has
been proposed to quantify elastic behavior. Only quantitative
elasticity value can produce better comparison between dif-
ferent cloud platforms. Jerefore, the measurement of cloud
elasticity should be further investigated. As far as we know,
the current reported works are inePective to cover all aspects
of cloud elasticity evaluation and measurement. Jerefore,
we are motivated to develop a comprehensive model and an
analytical method to measure cloud elasticity.

(2) Our Contributions. In this paper, we propose a clear and
concise deNnition to compute elasticity value. In order to do
that, an elasticity computing model is established by using
a continuous-time Markov chain (CTMC). Je proposed
computing model can quantify, measure, and compare the
elasticity of cloud platforms.

Je major contributions of this paper are summarized as
follows.

(i) First, we propose a new deNnition of elasticity in the
context of virtual machine provisioning and a precise
computational formula of elasticity value.

(ii) Second, we develop a technique of quantifying and
measuring elasticity by using a continuous-time
Markov chain (CTMC) model. We investigate the
elastic calculation model intensively and completely.
Je model is not only an analytical method, but also
an easy way to calculate the elasticity value of a cloud
platform quantitatively.

(iii) Jird, we examine and evaluate our proposedmethod
through numerical data, simulations, and experi-
ments. Je numerical data demonstrate the basic
parameters which aPect elasticity in our analytical
model.Je simulation results validate the correctness
of the proposed method. Je experimental results on
a real cloud computing platform further show the
robustness of our model and method in predicting
and computing cloud elasticity.

Je rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 describes the deNnition of
cloud elasticity. Section 4 develops the computing model of
cloud elasticity. Sections 5, 6, and 7 present simulation and
numerical and experimental results, respectively. Section 8
concludes this paper.

2. Related Work

2.1. Elasticity DeVnition and Measurement. Jere has been
some work on elasticity measurement of cloud computing.
In [4], elasticity is described as the degree to which a system
is able to adapt to workload changes by provisioning and

deprovisioning resources in an autonomic manner, such that
at each point in time the available resourcesmatch the current
demand as closely as possible. In [10], elasticity is deNned
as the ability of customers to quickly request, receive, and
later release as many resources as needed. In [11], elasticity
is measured as the ability of a cloud to map a single user’s
request to diPerent resources. In [12], elasticity is deNned as
dynamic variation in the use of computer resources to meet
a varying workload. In [13], an elastic cloud application or
process has three elasticity dimensions, that is, cost, quality,
and resources, enabling it to increase and decrease its cost,
quality, or available resources, as to accommodate speciNc
requirements. Recently, in [14], elasticity is deNned by using
the expression 1/(! × #), where ! denotes the average time to
switch from an underprovisioning state to an elevated state
and # denotes the oPset between the actual scaling and the
autoscaling. Existing deNnitions of elasticity fail to capture
the essence when elastic resource provisioning is performed
with virtual machines, and the formulas of elasticity are
not suitable for quantifying elasticity. For example, # in the
above expression is digcult to obtain when resource of a
cloud is increasing or decreasing. In contrast, the deNnition
proposed in our work rehects the essence of elasticity, and the
calculation formula focuses on how to measure the elasticity
value ePectively.

Jere aremany approaches to predicting elasticity, antici-
pating the system load behavior, and deciding when and how
to scale in/out resources by using heuristics and mathemat-
ical/analytical techniques. In [4], the authors established an
elasticity metric aiming to capture the key elasticity charac-
teristics. In [15], the authors proposed execution platforms
and reconVguration points to rehect the proposed elasticity
deNnition. In [5, 7, 16–18], the authors adopted predictive
techniques to scale resources automatically. Although these
techniques perform well in elasticity prediction, further
measurement of elasticity is not covered. In [4], the authors
just outlined an elasticity benchmarking approach focusing
on special requirements on workload design and implemen-
tation. In [15], the authors used thread pools as a kind of
elastic resource of the Java virtual machine and presented
preliminary results of running a novel elasticity bench-
mark which reveals the elastic behavior of the thread pool
resource. Jese studies mainly present initial research. In
most elasticity work, diPerent elasticity benchmark programs
are expected to execute on diPerent systems over varying
data sizes and rehect their potential elasticity, but they can
only get a macroscopic view of elasticity analysis rather than
the calculation of the elasticity value. In contrast, our work
performs in-depth research focusing on the measurement of
elasticity value.

2.2. Analytical Modeling. Continuous-time Markov chain
(CTMC) models have been used for modeling various
random phenomena occurring in queuing theory, genetics,
demography, epidemiology, and competing populations [19].
CTMC has been applied in a lot of studies to adjust resource
allocation in cloud computing. Khazaei et al. proposed an
analytical performance model that addresses the complexity
of cloud data centers by distinct stochastic submodels using

ScientiNc Programming 3

CTMC [20]. Ghosh et al. proposed a performance model
that quantiNes power performance trade-oPs by interacting
stochastic submodels approach using CTMC [21]. Pacheco-
Sanchez et al. proposed an analytical performancemodel that
predicts the performance of servers deployed in the cloud by
using CTMC [22]. Ghosh et al. proposed a stochastic reward
net that quantiNes the resiliency of IaaS cloud by usingCTMC
[23, 24]. However, to the best of our knowledge, CTMC
has never been applied in the research of cloud elasticity.
Our work in this paper adopts a CTMC model for ePective
elasticity measurement.

3. Definition of Cloud Elasticity

In this section, we Nrst present a detailed discussion of
diPerent states which characterize the elastic behavior of a
system. Jen, we formally deNne elasticity that is applied in
cloud platforms.

3.1. Notations and Preliminaries. For clarity and convenience,
Notations describes the correlated variables which are used
in the following sections. To elaborate the essence of cloud
elasticity, we give the various states that are used in our
discussion. Let $ denote the number of VMs in service and
let % be the number of requests in the system.

(1) Just-in-Need State. A cloud platform is in a just-in-
need state if $ < % ⩽ 3$. 'j is deNned as the accu-
mulated time in all just-in-need states.

(2) Overprovisioning State. A cloud platform is in an
overprovisioning state if 0 ⩽ % ⩽ $. 'o is deNned as
the accumulated time in all overprovisioning states.

(3) Underprovisioning State. A cloud platform is in an
underprovisioning state if % > 3$. 'u is deNned as the
accumulated time in all underprovisioning states.

Notice that constants 1 and 3 in this paper are only for
illustration purpose and can be any other values, depending
on how an elastic cloud platform is managed. DiPerent
cloud users and/or applications may prefer diPerent bounds
of the hypothetical just-in-need states. Je length of the
interval between the upper (e.g., 3$) and lower (e.g., $)
bounds controls the reprovisioning frequency. Narrowing
down the interval leads to higher reprovision frequency for
a huctuating workload.

Je just-in-need computing resource denotes a balanced
state, in which the workload can be properly handled and
quality of service (QoS) can be satisfactorily guaranteed.
Computing resource overprovisioning, though QoS can be
achieved, leads to extra but unnecessary cost to rent the cloud
resources. Computing resource underprovisioning, on the
other hand, delays the processing of workload and may be at
the risk of breaking QoS commitment.

3.2. Elasticity DeVnition in Cloud Computing. In this section,
we present our elasticity deNnition for a realistic cloud
platform and present mathematical foundation for elasticity
evaluation.Je deNnition of elasticity is given from a compu-
tational point of view and we develop a calculation formula

for measuring elasticity value in virtualized clouds. Let 'm be
themeasuring time, which includes all the periods in the just-
in-need, overprovisioning, andunderprovisioning states; that
is, 'm = 'j + 'o + 'u.

DeVnition 1. Je elasticity * of a cloud perform is the
percentage of timewhen the platform is in just-in-need states;
that is, * = 'j/'m = 1 − 'o/'m − 'u/'m.

Broadly deNning, elasticity is the capability of delivering
preconNgured and just-in-need virtual machines adaptively
in a cloud platform upon the huctuation of the computing
resources required. Practically it is determined by the time
needed from an underprovisioning or overprovisioning state
to a balanced resource provisioning state. DeNnition 1 pro-
vides amathematical deNnition which is easily and accurately
measurable. Cloud platforms with high elasticity exhibit high
adaptivity, implying that they switch from an overprovi-
sioning or an underprovisioning state to a balanced state
almost in real time. Other cloud platforms take longer time
to adjust and reconNgure computing resources. Although it
is recognized that high elasticity can also be achieved via
physical host standby, we argue that, with virtualization-
enabled computing resource provisioning, elasticity can be
delivered in a much easier way due to the hexibility of service
migration and image template generation.

Elasticity * rehects the degree to which a cloud platform
changes upon the huctuation of workloads and can be
measured by the time of resource scaling by the quantity
and types of virtual machine instances. We use the following
equation to calculate its value:

* = 1 − ('o + 'u)'m
= 1 − 'o'm

− 'u'm
, (1)

where 'm denotes the total measuring time, in which 'o
is the overprovisioning time which accumulates each single
period of time that the cloud platform needs to switch
from an overprovisioning state to a balanced state and 'u is
the underprovisioning time which accumulates each single
period of time that the cloud platform needs to switch from
an underprovisioning state to a corresponding balanced state.

Let 4j, 4o, and 4u be the accumulated probabilities of
just-in-need states, overprovisioning states, and underprovi-
sioning states, respectively. If 'm is sugciently long, we have
4j = 'j/'m, 4o = 'o/'m, and 4u = 'u/'m. Jerefore, we get

* = 4j = 1 − 4o − 4u. (2)

Equation (1) can be used when elasticity is measured by
monitoring a real system. Equation (2) can be used when
elasticity is calculated by using our CTMCmodel. If elasticity
metrics are well deNned, elasticity of cloud platforms could
easily be captured, evaluated, and compared.

We would like to mention that the primary factors of
elasticity, that is, the amount, frequency, and time of resource
reprovisioning, are all summarized in 'o and 'u (i.e., 4o and
4u). Elasticity can be increased by changing these factors. For
example, one can maintain a list of standby or underutilized
compute nodes. Jese nodes are prepared for the upcoming

4 ScientiNc Programming

Resource demandUnderprovisioning
Resource supplyOverprovisioning

Just-in-need

Measure time

P
ro

vi
si

o
n

ed
 r

es
o

u
rc

es

B11 B12

A11

(a) Elastic cloud resource provisioning in cloud platform !

Resource demandUnderprovisioning
Resource supplyOverprovisioning

Just-in-need

Measure time

P
ro

vi
si

o
n

ed
 r

es
o

u
rc

es

B21

A21

A22

(b) Elastic cloud resource provisioning in cloud platform "

Figure 1: An example of elasticity metrics.

surge ofworkload, if there is any, tominimize the time needed
to start these nodes. Such a hot standby strategy increases
cloud elasticity by reducing 'u.

3.3. An Example. In Figure 1, 611 = 3 hours, 621 = 5 hours,
and 622 = 4 hours are the time spans in underprovisioning
states, and 911 = 4 hours, 912 = 5 hours, and 921 = 10 hours
are the time spans in overprovisioning states. Je measuring

time of cloud platform 6 is '!m = 24 hours and cloud

platform 9 is '"m = 26 hours. So '!u = 611 = 3 hours (i.e.,
underprovisioning time of cloud platform 6), '!o = 911 +
912 = 9 hours (i.e., overprovisioning time of cloud platform

6), '"u = 621 + 622 = 9 hours (i.e., underprovisioning

time of cloud platform 9), and '"o = 921 = 10 hours (i.e.,
overprovisioning time of cloud platform 9). According to (1),
the elasticity value of cloud platform 6 is *! = 1 − '!o /'!m −
'!u /'!m = 0.5, and the elasticity value of cloud platform 9 is
*" = 1 − '"o /'"m − '"u /'"m = 0.27. As can be seen, a greater
elasticity value would exhibit better elasticity.

3.4. Relevant Properties of Clouds. In this section, we com-
pare cloud elasticity with a few other relevant concepts, such
as cloud resiliency, scalability, and egciency.

Resiliency. Laprie [25] deNned resiliency as the persistence of
service delivery that can be trusted justiNably, when facing
changes. Jerefore, cloud resiliency implies (1) the extent to
which a cloud systemwithstands the external workload varia-
tion and under which no computing resource reprovisioning
is needed and (2) the ability to reprovision a cloud system
in a timely manner. We think the latter implication deNnes
the cloud elasticity while the former implication only exists
in cloud resiliency. In our elasticity study, we will focus on
the latter one.

Scalability. Elasticity is o^en confused with scalability in
more ways than one. Scalability rehects the performance

speedup when cloud resources are reprovisioned. In other
words, scalability characterizes how well in terms of per-
formance a new compute cluster, either larger or smaller,
handles a given workload. On the other hand, elasticity
explains how fast in terms of the reprovisioning time the
compute cluster can be ready to process the workload.
Cloud scalability is impacted by quite a few factors such as
the compute node type and count and workload type and
count. For example, Hadoop MapReduce applications typi-
cally scale much better than other single-thread applications.
It can be deNned in terms of scaling number of threads,
processes, nodes, and even data centers. Cloud elasticity,
on the other hand, is only constrained by the capability
that a cloud service provider oPers. Other factors that are
relevant to cloud elasticity include the type and count of
standby machines, computing resources that need to be
reprovisioned. DiPerent from cloud scalability, cloud elastic-
ity does not concern workload/application type and count
at all.

EZciency. Egciency characterizes how cloud resource can
be egciently utilized as it scales up or down. Jis concept
is derived from speedup, a term that deNnes a relative per-
formance a^er computing resource has been reconNgured.
Elasticity is closely related to egciency of the clouds. Eg-
ciency is deNned as the percentage of maximumperformance
(speedup or utilization) achievable. High cloud elasticity
results in higher egciency. However, this implication is
not always true, as egciency can be inhuenced by other
factors independent of the system elasticitymechanisms (e.g.,
diPerent implementations of the same operation). Scalability
is aPected by cloud egciency. Jus, egciency may enhance
elasticity, but not sugciency. Jis is due to the fact that
elasticity depends on the resource types, but egciency is not
limited by resource types. For instance, with a multitenant
architecture, users may exceed their resources quota. Jey
may compete for resources or interfere each other’s job
executions.

ScientiNc Programming 5

!0 !1 !2 !n!n−1!n−2

%1 %2 %3 %n−1 %n %n+1

· · · · · ·0 1 2 3 n − 2 n − 1 n n + 1

Figure 2: State-transition-rate diagram for a birth-death process.

Service request
queue

!

Incoming
service

requests

···VM1 VM2 VM3

Figure 3: Modeling an elastic cloud computing platform as an extendedA/A/B queuing system.

4. Elasticity Analysis Using CTMC

In this paper, we implement the cloud elasticity computing
model using CTMC.

4.1. A Queuing Model. Jis section mainly explains why the
continuous-time Markov chain (CTMC) can be applied to
compute cloud elasticity and the connection between them.

A continuous-time Markov chain is a continuous time,
discrete-state Markov process. Many CTMC have transitions
that only go to neighboring states, that is, either up one
or down one; they are called birth-and-death processes.
Motivated by populationmodels, a transition up one is called
a birth, while a transition down one is called a death. Je
birth rate in state $ is denoted by C#, while the death rate in
state $ is denoted by ##. Je state-transition-rate diagram for
a birth-and-death process (with state space {0, 1, . . . , D}) takes
the simple linear form shown in Figure 2.

In many applications, it is natural to use birth-and-death
processes. One of the queuing models is A/A/B queue,
which has B servers and unlimited waiting room. Je main
properties of a queuing system are as follows.

(1) Requests arrive in a Poisson process with parameter
C.

(2) Je service times are exponential random variables
with parameter #.

So a queuing system is a birth-and-death process with
Markov property.

A cloud computing service provider serves customers’
service requests by using a multiserver system. An elastic
cloud computing platform treated as a multiserver system

and modeled as an extended A/A/B queuing system is
shown in Figure 3. Assume that service requests arrive by
following a Poisson process and task service times are
independent and identically distributed random variables
that follow an exponential distribution. When a running
request Nnishes, the capacity used by the corresponding VM
is released and becomes available for serving the next request.
Je request at the head of the queue is processed (i.e., Nrst-
come-Nrst-served) on a runningVM if there is capacity to run
a scheduled request. Elastic resource provisioning cannot be
done with physical machines, and only virtual machines can
be reconNgured in real time. A cloud platform is able to adapt
to variation in workload by starting up or shutting oP VMs in
an autonomic manner, avoiding overprovisioning or under-
provisioning. If no enough running VMs are available (e.g.,
underprovisioning state), a new VM is started up and used
for service. If there are excessive VMs (e.g., overprovisioning
state), redundant VMs are shut oP.

According to (1) and (2), the calculation of the elastic-
ity value needs to count the accumulated time in all the
overprovisioning and underprovisioning states. In real cloud
platforms, it is possible to record the overprovisioning time
and underprovisioning times. Furthermore and fortunately,
the accumulated probability of both overprovisioning and
underprovisioning states can be computed using our pro-
posed CTMCmodel as discussed in the next section.

4.2. Elastic Cloud Platform Modeling. To model elastic cloud
platforms, we make the following assumptions.

(i) All VMs are homogeneous with the same service
capability and are added/removed one at a time.

6 ScientiNc Programming

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10

3,0

4,0

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

M/M/4

M/M/3

M/M/2

M/M/1

%

% %

%

%

% % % % % % % % % %

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! !

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...

4 4 4

4

4 4 4

4 4 4

4 4 5

5555

5 5 5 5 5 5 5

2%

2% 2% 2% 2% 2% 2% 2% 2% 2%

2%

2% 3% 3%

3%3%

3% 3% 3% 3% 3% 3%

4%4%4%4%4%4%4%

Figure 4: State-transition-rate diagram of our extendedA/A/B queuing system.

(ii) Je user request arrivals are modeled as a Poisson
process with rate C.

(iii) Je service time, the start-up time, and the shut-
oP time of each VM are governed by exponential
distributions with rates #, E, and F, respectively [26].

(iv) Let $ denote the number of virtual machines that are
currently in service, and let % denote the number of
requests that are receiving service or in waiting.

(v) Let statev($, %) denote the various states of a cloud
platform when the virtual machine number is $ and
the request number is %. Let the hypothetical just-in-
need state, overprovisioning state, and underprovi-
sioning state be JIN, OP, and UP, respectively. We can
set the equations of the relation between the virtual
machine number and the request number as follows:

statev ($, %) =
{{{{
{{{{
{

OP, if 0 ≤ % ≤ $;
JIN, if $ < % ≤ 3$;
UP, if % > 3$.

(3)

Je hypothetical just-in-need state, overprovisioning
state, and underprovisioning state are listed in Table 1.

Based on these assumptions, we build a two-dimensional
continuous-time Markov chain (CTMC) for our extended
A/A/B queuing system shown in Figure 4, which is actually
a mixture of A/A/B systems for all B = 1, 2, 3, Je
CTMC model records the number of VMs and the number
of user requests received for service, which can eventually be
employed to calculate the elastic value *.

Each state in the model, shown in Figure 4, is labeled
as ($, %), where $ ($ ∈ {1, . . . , B}) denotes the number of
virtual machines that are currently processing requests and

Table 1: Je relation between the virtual machine number and the
request number.

VM
number

Overprovisioning
state

Just-in-need
state

Underprovisioning
state

1 0 ⩽ % ⩽ 1 1 < % ⩽ 3 % > 3
2 0 ⩽ % ⩽ 2 2 < % ⩽ 6 % > 6
3 0 ⩽ % ⩽ 3 3 < % ⩽ 9 % > 9
4 0 ⩽ % ⩽ 4 4 < % ⩽ 12 % > 12
...
$ 0 ⩽ % ⩽ $ $ < % ⩽ 3$ % > 3$
...

% (% ∈ {0, 1, . . . , B}) denotes the number of requests that are
receiving service. For the purpose of numerical calculation,
we set the maximum number of VMs that can be deployed as
B, which is sugciently large to guarantee enough accuracy.
Similarly, the maximum % is B. Let # be the service rate of
each VM. So the total service rate for each state is the product
of number of running VMs and #.

Je state transition in an elastic cloud computing model
can occur due to user request arrival, service completion,
virtual machine start-up, or virtual machine shut-oP. In state
($, %), according to Table 1, the state can be determined as
“just-in-need,” “underprovisioning,” or “overprovisioning.”
Depending on the upcoming event, four possible transitions
can occur.

Case 1. When a new request arrives, the system transits to
state ($, % + 1) with rate C.

Case 2. When a requested service is completed, if the system
examines the state as not “overprovisioning,” the system

ScientiNc Programming 7

moves back to state ($, % − 1) with total service rate $#. If the
system examines the state as “overprovisioning” and $ = %,
the systemmoves back to state ($, % − 1)with total service rate
(% − 1)#, because a server is shutting oP and cannot perform
any task at the moment. If the system examines the state as
“overprovisioning” and $ ̸= %, the system moves back to state
($, % − 1) with total service rate %#.

Case 3. Je system examines the state as “underprovision-
ing” and transits to state ($ + 1, %) with rate E.

Case 4. Je system examines the state as “overprovisioning”
and transits to state ($ − 1, %) with rate F.

We use 4#,$ to denote the steady-state probability that the
system stays in state ($, %), where $ ∈ {1, . . . , B} and % ∈
{0, 1, . . . , B}.We can now set the balance equations as follows:

C4#,$ = O2#4#,$+1 + F4#+1,$,

if $ = 1, % = 0;

(C + O1#) 4#,$ = C4#,$−1 + O2#4#,$+1 + F4#+1,$,

if $ = 1, 0 < % ≤ $ + 1;

(C + O1#) 4#,$ = C4#,$−1 + O2#4#,$+1,

if $ = 1, $ + 1 < % ≤ 3$;

(C + O1# + E) 4#,$ = C4#,$−1 + O2#4#,$+1,

if $ = 1, 3$ < % < B;

(O1# + E) 4#,$ = C4#,$−1, if $ = 1, % = B;

(C + F) 4#,$ = O2#4#,$+1 + F4#+1,$,

if 1 < $ < B, % = 0;

(C + O1# + F) 4#,$ = C4#,$−1 + O2#4#,$+1 + F4#+1,$,

if 1 < $ < B, 0 < % ≤ $;

(C + O1#) 4#,$ = C4#,$−1 + O2#4#,$+1 + F4#+1,$,

if 1 < $ < B, % = $ + 1;

(C + O1#) 4#,$ = C4#,$−1 + O2#4#,$+1,

if 1 < $ ≤ B, $ + 1 < % ≤ 3 ($ − 1) ;

(C + O1#) 4#,$ = C4#,$−1 + O2#4#,$+1 + E4#−1,$,

if 1 < $ < B, 3 ($ − 1) < % ≤ 3$;

(C + O1# + E) 4#,$ = C4#,$−1 + O2#4#,$+1 + E4#−1,$,

if 1 < $ < B, 3$ < % < B;

(O1# + E) 4#,$ = C4#,$−1 + E4#−1,$,

if 1 < $ < B, % = B;

(C + F) 4#,$ = O2#4#,$+1, if $ = B, % = 0;

(C + O1# + F) 4#,$ = C4#,$−1 + O2#4#,$+1,

if $ = B, 0 < % ≤ $ + 1;

(C + O1#) 4#,$ = C4#,$−1 + O2#4#,$+1 + E4#−1,$,

if $ = B, 3 ($ − 1) < % < B;
O1#4#,$ = C4#,$−1 + E4#−1,$,

if $ = B, % = B,
(4)

where

O1 = %, if $ > %;
O1 = % − 1, if $ = %, % ̸= 1;
O1 = 1, if $ = %, % = 1;
O1 = $, if $ < %;
O2 = % + 1, if $ > % + 1;
O2 = %, if $ = % + 1, % + 1 ̸= 1;
O2 = 1, if $ = % + 1, % + 1 = 1;
O2 = $, if $ < % + 1,

&
∑
#=1

&+1
∑
$=0
4#,$ = 1.

(5)

In the above equations, C, #, E, and F are the request
arrival rate (i.e., the interarrival times of service requests are
independent and identically distributed exponential random
variables with mean 1/C), the service rate (i.e., the average
number of tasks that can be Nnished by a VM in one unit
of time), the virtual machine start-up rate (i.e., a VM needs
time ' = 1/E to turn on), and the virtual machine shut-
oP rate (i.e., a VM needs time ' = 1/F to shut down),
respectively. Je balance equations link the probabilities of
entering and leaving a state in equilibrium.Je total number
of equations isB× (B+ 1) + 1, but there are onlyB× (B+ 1)
variables:41,0, 41,1, . . . , 4&,&.Jerefore, in order to derive4#,$,
we need to remove one of the equations to obtain the unique
equilibrium solution. Unfortunately, the steady-state balance
equations cannot be solved in a closed form; hence, we must
resort to a numerical solution.

Je input and output parameters of our CTMCmodel are
summarized in the following.

Input. Je request arrival rate is C, the service rate is #, the
virtual machine start-up rate is E, and the virtual machine
shut-oP rate is F. (In addition, the deNnitions of “just-in-
need,” “underprovisioning,” and “overprovisioning” states
should also be included.)

8 ScientiNc Programming

Output

(i) Je accumulated underprovisioning state probability
4u of a cloud platform is as follows:

4u =
&
∑
#=1

&+1
∑
$=3#+1
4#,$, (6)

where 4#,$ is the steady-state probability.
(ii) Je accumulated overprovisioning state probability
4o of a cloud platform is as follows:

4o =
&
∑
#=2

#
∑
$=0
4#,$, (7)

where 4#,$ is the steady-state probability.
(iii) Je elasticity value * of a cloud platform is obtained

by (2), (6), and (7).

5. Model Analysis

In this section, we present some numerical results obtained
based on the proposed elastic cloud platformmodeling, illus-
trating and quantifying the elasticity value under diPerent
load conditions and diPerent system parameters. All the
numerical data in this section are obtained by setting B =
1,000, that is, the maximum number of VMs that can be
deployed, to guarantee sugcient numerical accuracy.

5.1. Varying the Arrival Rate. For the Nrst scenario, we have
considered a systemwith diPerent service rates (# = 100, 120,
140, 160, and 180 jobs/hour), while the arrival rate is a variable
from C = 100 to 400 jobs/hour in sixteen steps. In all cases,
the virtualmachine start-up rate and virtualmachine shut-oP
rate are assigned values of E = 120 VMs/hour and F = 540
VMs/hour.

Figure 5 illustrates that the elasticity value is an increasing
function of the arrival rate. As can been seen, it increases
rather quickly when the arrival rate is up to 300 and smoothly
when the arrival rate is higher. Jis behavior is due to
the fact that increasing C results in noticeable reduction of
the probability of overprovisioning but slight change of the
probability of underprovisioning. Furthermore, it is observed
that the elasticity value decreases as the service rate increases,
as described in the next section.

5.2. Varying the Service Rate. For the second scenario, we
have considered a systemwith diPerent arrival rates (C = 200,
220, 240, 260, and 280 jobs/hour), while the service rate is a
variable from # = 10 to 290 jobs/hour in N^een steps. In all
cases, the virtual machine start-up rate and virtual machine
shut-oP rate are assigned values of E = 120 VMs/hour and
F = 540 VMs/hour.

Figure 6 illustrates that the elasticity value is a decreasing
function of the service rate. It shows that, for a Nxed arrival
rate, increasing service rate decreases the elasticity value
sharply and almost linearly. Jis phenomenon is due to the
fact that increasing # results in noticeable increment of the

E1(% = 100)

E2(% = 120)

E3(% = 140)

E4(% = 160)
E5(% = 180)

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

3
00

3
20

3
4
0

3
6
0

3
80

4
00

Arrive rate (jobs/h)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

E
la

st
ic

it
y

Figure 5: Elasticity versus arrival rate.

E1(! = 200)

E2(! = 220)

E3(! = 240)

E4(! = 260)

E5(! = 280)

10 3
0

5
0

7
0

9
0

11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

Service rate (jobs/h)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
la

st
ic

it
y

Figure 6: Elasticity versus service rate.

probability of overprovisioning, and change of the probability
of underprovisioning does not aPect the decreasing trend of
the just-in-need probability. Figure 6 also conNrms that the
elasticity value is an increasing function of the arrival rate.

5.3. Varying the Virtual Machine Start-Up Rate. For the
third scenario, Figure 7 shows numerical results for a Nxed
arrival rate, service rate, and virtual machine shut-oP rate but
diPerent virtual machine start-up rates.

First, we characterize the elasticity value by presenting the
ePect of diPerent arrival rates (C = 200, 220, 240, 260, and 280
jobs/hour) and the virtual machine start-up rate is a variable
from E = 120 to 260 VMs/hour in N^een steps. In all cases,
other system parameters are set as follows. Je service rate is

ScientiNc Programming 9

Virtual machine start-up rate (VMs/h)

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

E1(! = 200)

E2(! = 220)

E3(! = 240)

E4(! = 260)

E5(! = 280)

0.675

0.680

0.685

0.690

0.695

E
la

st
ic

it
y

(a) Variable arrival rate

Virtual machine start-up rate (VMs/h)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

E
la

st
ic

it
y

E1(% = 100)

E2(% = 120)

E3(% = 140)

E4(% = 160)
E5(% = 180)

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

(b) Variable service rate

Figure 7: Elasticity versus virtual machine start-up rate.

= 100 jobs/hour, and the virtual machine shut-oP rate is
F = 540VMs/hour. As can be seen in Figure 7(a), it increases
slightly when the virtualmachine start-up rate increases.Jis
is due to the fact that, for high virtual machine start-up rate,
each virtual machine start-up time is shorter, meaning that
less time is needed to switch from an underprovisioning state
to a balanced state, so the probability of underprovisioning4u
is smaller, while the probability of overprovisioning 4o does
not change toomuch, and the probability of just-in-need 4j is
increasing.

Second, we also analyze the ePects of diPerent service
rates (# = 100, 120, 140, 160, and 180 jobs/hour), while the
virtual machine start-up rate is a variable from E = 120
to 260 VMs/hour in N^een steps. In all cases, other system
parameters are set as follows. Je arrival rate is C = 200
jobs/hour, and the virtual machine shut-oP rate is F = 540
VMs/hour. It can be seen in Figure 7(b) that the elasticity
value increases slightly with increasing virtual machine start-
up rate.

Je results allow us to conclude the increasing elasticity
value at increasing virtual machine start-up rate for a Nxed
arrive rate, service rate, and virtual machine shut-oP rate. In
other words, increasing the virtual machine start-up rate will
decrease the probability of underprovisioning and increase
the just-in-need probability. Jese behaviors (see Figure 7)
conNrm that the elasticity value of a cloud platform has a
relationship to its virtual machine start-up speed.

5.4. Varying the Virtual Machine Shut-O\ Rate. For the
fourth scenario, Figure 8 shows numerical results for a Nxed
arrival rate, service rate, and virtual machine start-up rate but
diPerent virtual machine shut-oP rates.

We examine the ePect of virtual machine shut-oP rate
on elasticity. For diPerent arrival rates (C = 200, 220, 240,
260, and 280 jobs/hour), the virtual machine shut-oP rate is a
variable from F = 540 to 680VMs/hour in N^een steps. In all

cases, other system parameters are set as follows. Je service
rate is # = 100 jobs/hour, and the virtual machine start-up
rate is E = 120 VMs/hour. It can be seen from Figure 8(a)
that the elasticity value increases slightly where the virtual
machine shut-oP rate is increased from 540 to 680VMs/hour.
Jis happens because the virtual machine shut-oP time is
shorter, and a platformbecomesmore responsive, resulting in
diminishing overprovisioning time which is the accumulate
time for the system to switch from an overprovisioning state
to a balanced state. Furthermore, the probability of overpro-
visioning 4o is smaller, the probability of underprovisioning
4u shows slight change, and the probability of just-in-need 4j
is increasing.

We also calculate the elasticity value under the diPerent
service rates (# = 100, 120, 140, 160, and 180 jobs/hour), while
the virtual machine shut-oP rate is a variable from F = 540
to 680 VMs/hour in N^een steps. Je arrival rate is C =
200 jobs/hour, and the virtual machine start-up rate is E =
120 VMs/hour. In Figure 8(b), the elasticity value increases
slightly by increasing the virtual machine shut-oP rate. Jis
is also because of the corresponding reduction in virtual
machine shut-oP time, guaranteeing shorter overprovision-
ing probability 4o.

Based on these results, we can conclude the increasing
elasticity value at increasing virtual machine shut-oP rate for
a Nxed arrive rate, service rate, and virtual machine start-
up rate. In other words, increasing the virtual machine shut-
oP rate will decrease the probability of overprovisioning
and increase the just-in-need probability. Jese behaviors of
Figure 8 conNrm that the elasticity value of a cloud platform
has a relationship to its virtual machine shut-oP speed.

6. Simulation Results

In this section, we present our elastic cloud simulation
system calledCloud Elasticity Value. Its aim is to demonstrate

10 ScientiNc Programming

5
4
0

5
5
0

5
6
0

5
7
0

5
80

5
9
0

6
00

6
10

6
20

6
3
0

6
4
0

6
5
0

6
6
0

6
7
0

6
80

Virtual machine shut-o1 rate (VMs/h)

E1(! = 200)

E2(! = 220)

E3(! = 240)

E4(! = 260)

E5(! = 280)

0.674

0.676
0.678
0.680
0.682
0.684
0.686
0.688
0.690
0.692
0.694
0.696
0.698
0.700
0.702

E
la

st
ic

it
y

(a) Variable arrival rate

E1(% = 100)

E2(% = 120)

E3(% = 140)

E4(% = 160)
E5(% = 180)

5
4
0

5
5
0

5
6
0

5
7
0

5
80

5
9
0

6
00

6
10

6
20

6
3
0

6
4
0

6
5
0

6
6
0

6
7
0

6
80

Virtual machine shut-o1 rate (VMs/h)

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

E
la

st
ic

it
y

(b) Variable service rate

Figure 8: Elasticity versus virtual machine shut-oP rate.

that our elasticity measurement is correct and ePective in
computing and comparing the elasticity value and to show
cloud elasticity under diPerent parameter settings.

6.1. Design of the Simulator. Our simulation uses the same
code base for the elasticity measurement as the real imple-
mentation. Je simulator is implemented in about 40,000
lines of C++ code. It runs in a Linux box over a rack-mount
server with Intel5Core62 Duo CPU and 4.00GB of memory.

Je simulator consists of four modules, that is, the task
generator module, the virtual machine monitor module, the
request monitor module, and the queue module. Je task
generator module produces simulation of Poisson distribu-
tion requests.Je virtualmachinemonitormodule is used for
deciding whether to start up and shut oP the virtualmachines
and recording the start-up and shut-oP times. Je request
monitor module is used to count how many requests are
being serviced in the system and to record the service times.
Arrived service requests are Nrst placed in a queue module
and recorded their arrival times before they are processed by
any virtual machine.

Je main process of the simulator is listed as follows.

Step 1. Je task generator module produces simulation of
Poisson distribution requests. When the service requests
arrive, they are placed in a queue module and recorded their
arrival times.

Step 2. Je virtual machine monitor module determines
whether to start up or shut oP the VMs and records the start-
up and shut-oP times.

Step 3. Je request monitor module determines whether
there is a request in the queue. If there is a request, it takes
a request and assigns it to a running virtual machine and
records the service time.

Step 4. A^er the simulation time is over, the simulator
counts up the accumulated time in overprovisioning and
underprovisioning states and returns the elasticity value
using (1).

6.2. Simulation Results and Analysis. We have evaluated
cloud elasticity values using two methods, that is, (1) the
elasticity values in terms of the steady-state probabilities
obtained for the given parameter and (2) the elasticity values
in terms of our simulation system obtained for the same
parameters.We compare ourCTMCmodel solutionswith the
results produced by the simulation method.

We have considered the arrival rate characterized by C =
60, 200, and 600 jobs/hour. Je service rate values chosen
are # = 60, 200, and 600 jobs/hour. In all cases, the virtual
machine start-up rate is assigned the value of E = 300
VMs/hour, while the virtual machine shut-oP rate is F = 540
VMs/hour.

Table 2 shows the diPerence between the elasticity values
obtained by the CTMC model and the simulator. From
Table 2, we can see that the elasticity values between the two
cases are very close, with the maximum relative diPerence
only 0.8 percent. Je agreement between the simulation
and CTMC model results is excellent, which conNrms the
validity of our CTMC model. So we conclude that the
proposed elasticity quantifying and measuring method using
the continuous-timeMarkov chain (CTMC)model is correct
and ePective.

7. Experiments on Real Systems

7.1. Experiment Environment. We have conducted our exper-
iments on LuCloud, a cloud computing environment located
in Hunan University. On top of hardware and Ubuntu
Linux 12.04 operating system, we install KVM virtualization

ScientiNc Programming 11

Table 2: Comparison of CTMCmodel results and simulation results.

Arrival rate Service rate Start-up rate Shut-oP rate
Method

DiPerence
CTMCmodel Simulation

60 60 300 540 0.705212 0.702837 0.3%

60 200 300 540 0.445756 0.475257 0.4%

60 600 300 540 0.635151 0.637240 0.3%

200 60 300 540 0.735167 0.739055 0.5%

200 200 300 540 0.543948 0.546414 0.5%

200 600 300 540 0.235727 0.234727 0.4%

600 60 300 540 0.827098 0.828784 0.2%

600 200 300 540 0.688974 0.684784 0.6%

600 600 300 540 0.435171 0.438784 0.8%

Table 3: Comparison of CTMCmodel results and experimental results with exponential service times.

Arrival rate Service rate Start-up rate Shut-oP rate
Method

DiPerence
CTMCmodel Experiment

60 60 120 540 0.701205 0.706082 0.6%

60 200 120 540 0.475480 0.479752 0.9%

60 600 120 540 0.631525 0.649275 3.0%

200 60 120 540 0.731117 0.739533 1.2%

200 200 120 540 0.516099 0.521308 1.0%

200 600 120 540 0.221065 0.269039 2.2%

600 60 120 540 0.817088 0.826455 1.1%

600 200 120 540 0.687533 0.681169 0.9%

600 600 120 540 0.409537 0.491034 0.9%

so^ware which virtualizes the infrastructure and provides
uniNed computing and storage resources. To create a cloud
environment, we install CloudStack open-source cloud envi-
ronment, which is composed of a cluster and responsible for
global management, resource scheduling, task distribution,
and interaction with users. Je cluster is managed by a
cloud manager (8 AMD Opteron Processor 4122 CPU, 8GB
memory, and 1 TB hard disk). We use our elasticity testing
platform to achieve the allocation of resources, that is, virtual
machine start-up and shut-oP on LuCloud.

7.2. Experiment Process and Results. First, in order to validate
the proposed model, Table 3 summarizes the comparison
between the two approaches, that is, the CTMC model and
the experiments on LuCloud. We have considered the arrival
rate characterized by C = 60, 200, and 600 jobs/hour. Je
service rate values chosen are # = 60, 200, and 600 jobs/hour.
Je virtual machine start-up rate is assigned the value of
E = 120VMs/hour, and the virtual machine shut-oP rate is
assigned the value of F = 540VMs/hour.

In Table 3, we can observe that the elasticity values of
both approaches are very close, with the maximum relative
diPerence only 3.0 percent. We conclude that the proposed
CTMC model can be used to compute the elasticity of cloud
platforms and can oPer accurate results within reasonable
diPerence.

Our second set of experiments focus on the robustness
of our model and method, that is, its applicability when

the assumptions of our model are not satisNed. We have
considered Gamma distributions for the service times. Je
Gamma(R, !) distribution is deNned in terms of a shape
parameter R and a scale parameter ! [27]. We use the same
parameter settings in Table 3, except that the exponential
distributions of service times are replaced by Gamma distri-
butions, that is, Gamma(0.0083, 2), Gamma(0.0025, 2), and
Gamma(0.00083, 2), such that the service rates are still # =
60, 200, and 600 jobs/hour.

From Table 4, we can see that the elasticity values of the
CTMC model and the experiments are very close, with the
maximum relative diPerence only 3.3 percent. We observe
that the experimental results with Gamma service times
match very closely with those of the proposed CTMCmodel.
So we conclude that the proposed model and method for
quantifying and measuring elasticity using continuous-time
Markov chain (CTMC) are not only correct and ePective,
but also robust and applicable to real cloud computing
platforms.

8. Conclusion

In this paper, we have introduced a new deNnition of cloud
elasticity. We have presented an analytical method suitable
for evaluating the elasticity of cloud platforms, by using a
continuous-time Markov chain (CTMC) model. Validation
of the analytical results through extensive simulations has
shown that our analytical model is sugciently detailed to
capture all realistic aspects of resource allocation process,

12 ScientiNc Programming

Table 4: Comparison of CTMCmodel results and experimental results with Gamma service times.

Arrival rate Start-up rate Shut-oP rate Service distribution
Method

DiPerence
CTMCmodel Experiment

60 120 540 Gamma(0.0083, 2) 0.701205 0.716401 2.2%

60 120 540 Gamma(0.0025, 2) 0.475480 0.476752 0.3%

60 120 540 Gamma(0.00083, 2) 0.631525 0.612930 3.0%

200 120 540 Gamma(0.0083, 2) 0.731117 0.711420 2.7%

200 120 540 Gamma(0.0025, 2) 0.516099 0.522762 1.3%

200 120 540 Gamma(0.00083, 2) 0.221065 0.227146 2.8%

600 120 540 Gamma(0.0083, 2) 0.817088 0.835865 2.3%

600 120 540 Gamma(0.0025, 2) 0.687533 0.667146 3.0%

600 120 540 Gamma(0.00083, 2) 0.409537 0.395865 3.3%

that is, virtual machine start-up and virtual machine shut-
oP, while maintaining excellent accuracy between CTMC
model results and simulation results. We have examined
the ePects of various parameters including request arrival
rate, service time, virtual machine start-up rate, and virtual
machine shut-oP rate. Our experimental results further
evidence that the proposed measurement approach can be
used to compute cloud elasticity in real cloud platforms.
Consequently, cloud providers and users can obtain quanti-
tative, informative, and reliable estimation of elasticity, based
on a few essential characterizations of a cloud computing
platform.

Notations

*: Je elasticity value
$: Je number of VMs in service
%: Je number of requests in the queue
'j: Je accumulated just-in-need time

'o: Je accumulated overprovisioning time
'u: Je accumulated underprovisioning time
'm: Je measuring time
4j: Je accumulated probability of just-in-need

states
4o: Je accumulated probability of

overprovisioning states
4u: Je accumulated probability of

underprovisioning states
C: Je request arrival rate
#: Je request service rate
E: Je virtual machine start-up rate
F: Je virtual machine shut-oP rate
($, %): A state in our CTMCmodel
4#,$: Je steady-state probability of state ($, %)
S: Je average number of requests in the queue
': Je average response time
A: Je average number of VMs in service
CPR: Je cost-performance ratio.

Competing Interests

Je authors declare that they have no competing interests.

Acknowledgments

Je research was partially funded by the Key Program of
National Natural Science Foundation of China (Grants nos.
61133005 and 61432005) and the National Natural Science
Foundation of China (Grants nos. 61370095 and 61472124).

References

[1] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
load distribution for multiple heterogeneous multicore server
processors across clouds and data centers,” IEEE Transactions
on Computers, vol. 63, no. 1, pp. 45–58, 2014.

[2] M. Bourguiba, K. Haddadou, I. E. Korbi, and G. Pujolle, “Im-
proving network I/O virtualization for cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp. 673–681, 2014.

[3] Cost-egcient consolidating service for Aliyun’s cloud-scale
computing, http://kylinx.com/papers/c4.pdf.

[4] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud
computing: what it is, and what it is not,” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC
’13), pp. 23–27, San Jose, Calif, USA, June 2013.

[5] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic
resource scaling for multi-tenant cloud systems,” in Proceedings
of the 2nd ACM Symposium on Cloud Computing (SOCC ’11), p.
5, ACM, Cascais, Portugal, October 2011.

[6] G. Galante and L. C. E. de Bona, “A survey on cloud computing
elasticity,” in Proceedings of the IEEE/ACM 5th International
Conference on Utility and Cloud Computing (UCC ’12), pp. 263–
270, Chicago, Ill, USA, November 2012.

[7] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware
elasticity provisioning system for the cloud,” in Proceedings
of the 31st International Conference on Distributed Computing
Systems (ICDCS ’11), pp. 559–570, IEEE, Minneapolis, Minn,
USA, July 2011.

[8] R.N. Calheiros, C. Vecchiola, D. Karunamoorthy, andR. Buyya,
“Je Aneka platform and QoS-driven resource provisioning
for elastic applications on hybrid clouds,” Future Generation
Computer Systems, vol. 28, no. 6, pp. 861–870, 2012.

[9] J. O. Fitó, Í. Goiri, and J. Guitart, “SLA-driven elastic cloud host-
ing provider,” in Proceedings of the 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing (PDP ’10),
pp. 111–118, IEEE, Pisa, Italy, February 2010.

ScientiNc Programming 13

[10] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, Drac Cloud
Computing Synopsis and Recommendations, vol. 800, NIST
Special Publication, 2011.

[11] R. Cohen, DeVning Elastic Computing, 2009, http://www.elas-
ticvapor.com/2009/09/deNning-elastic-computing.html.

[12] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing:
Principles and Paradigms, vol. 87, JohnWiley & Sons, New York,
NY, USA, 2010.

[13] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of
elastic processes,” IEEE Internet Computing, vol. 15, no. 5, pp.
66–71, 2011.

[14] K. Hwang, X. Bai, Y. Shi, M. Li, W. Chen, and Y. Wu, “Cloud
performance modeling with benchmark evaluation of elastic
scaling strategies,” IEEETransactions on Parallel andDistributed
Systems, vol. 27, no. 1, pp. 130–143, 2016.

[15] M. Kuperberg, N. Herbst, J. von Kistowski, and R. Reussner,
DeVning and Quantifying Elasticity of Resources in Cloud Com-
puting and Scalable Platforms, KIT, Fakultät für Informatik,
2011.

[16] W. Dawoud, I. Takouna, and C. Meinel, “Elastic VM for cloud
resources provisioning optimization,” inAdvances inComputing
and Communications, A. Abraham, J. L. Mauri, J. F. Buford, J.
Suzuki, and S. M. Jampi, Eds., vol. 190 of Communications
in Computer and Information Science, pp. 431–445, Springer,
Berlin, Germany, 2011.

[17] N. Roy, A. Dubey, and A. Gokhale, “Egcient autoscaling in
the cloud using predictive models for workload forecasting,” in
Proceedings of the IEEE 4th International Conference on Cloud
Computing (CLOUD ’11), pp. 500–507, IEEE, Washington, DC,
USA, July 2011.

[18] Z. Gong, X. Gu, and J.Wilkes, “Press: predictive elastic resource
scaling for cloud systems,” in Proceedings of the International
Conference on Network and Service Management (CNSM ’10),
pp. 9–16, IEEE, Ontario, Canada, October 2010.

[19] W. J. Anderson, Continuous-Time Markov Chains, Springer
Series in Statistics: Probability and Its Applications, Springer,
New York, NY, USA, 1991.

[20] H. Khazaei, J. Mišić, V. B. Mišić, and S. Rashwand, “Analysis of
a pool management scheme for cloud computing centers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 5,
pp. 849–861, 2013.

[21] R. Ghosh, V. K. Naik, and K. S. Trivedi, “Power-performance
trade-oPs in IaaS cloud: a scalable analytic approach,” in
Proceedings of the IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W ’11), pp.
152–157, IEEE, Hong Kong, June 2011.

[22] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G.
Parr, and S. Dawson, “Markovian workload characterization for
QoS prediction in the cloud,” in Proceedings of the IEEE 4th
International Conference on Cloud Computing (CLOUD ’11), pp.
147–154, IEEE, Washington, Wash, USA, July 2011.

[23] R. Ghosh, F. Longo, V. K. Naikz, and K. S. Trivedi, “Quantifying
resiliency of IaaS cloud,” in Proceedings of the 29th IEEE
Symposium on Reliable Distributed Systems, pp. 343–347, IEEE,
New Delhi, India, November 2010.

[24] R. Ghosh, D. Kim, andK. S. Trivedi, “System resiliency quantiN-
cation using non-state-space and state-space analytic models,”
Reliability Engineering & System Safety, vol. 116, pp. 109–125,
2013.

[25] J.-C. Laprie, “From dependability to resilience,” in Proceedings
of the 38th IEEE/IFIP International Conference on Dependable

Systems and Networks, pp. G8–G9, Anchorage, Alaska, USA,
June 2008.

[26] M. Mao and M. Humphrey, “A performance study on the
VM startup time in the cloud,” in Proceedings of the IEEE 5th
International Conference on Cloud Computing (CLOUD ’12), pp.
423–430, IEEE, Honolulu, Hawaii, USA, June 2012.

[27] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, “Task exe-
cution timemodeling for heterogeneous computing systems,” in
Proceedings of the IEEE 9thHeterogeneous ComputingWorkshop
(HCW ’00), pp. 185–199, Cancun, Mexico, 2000.

