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a b s t r a c t

Task scheduling in distributed stream computing systems is an NP-complete problem. Current schedul-
ing schemes usually have a pause or slow start process due to the fluctuation of input data stream,
which affects the performance stability, especially the high throughput and low latency goals. In
addition, idle compute nodes at runtime may result in large idle load energy consumption. To address
these problems, we propose an energy efficient and runtime-aware framework (Er-Stream). This paper
thoroughly discusses the framework from the following aspects: (1) The communication between
real-time data streaming tasks is investigated; stream application, resource and energy consumption
are modeled to formalize the scheduling problem. (2) After an initial topology is submitted to
the cluster, task pairs with high communication cost are processed on the same compute node
through a lightweight task partitioning strategy, minimizing the communication cost between nodes
and avoiding frequent triggering of runtime scheduling. (3) At runtime, reliable task migration is
performed based on node communication and resource usage, which in turn helps the dynamic
adjustment of the node energy consumption. (4) Metrics including latency, throughput, resource load
and energy consumption are evaluated in a real distributed stream computing environment. With a
comprehensive evaluation of variable-rate input scenarios, the proposed Er-Stream system provides
promising improvements on throughput, latency and energy consumption compared to the existing
Storm’s scheduling strategies.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Data-intensive services, such as social networking, stock trad-
ng and weather monitoring, are becoming increasingly common.
hey generate massive amounts of data every second. At the
ame time, more and more applications emphasize real-time and
ccuracy, putting higher demand on stream processing. For exam-
le, security issues face great challenges in large-scale computing
nvironments [1,2], where timeliness is crucial in security check,
nd real-time computing allows for fast analysis and processing
o obtain useful information. Besides, real-time computing is also
sed in various aspects such as education industry [3], road
raffic [4], and environmental inspection [5].

To meet this demand, a variety of stream processing frame-
orks have emerged, including Spark [6], Heron [7], Samza [8]

∗ Corresponding author.
E-mail addresses: sundaweicn@cugb.edu.cn (D. Sun), cuiyijing@cugb.edu.cn

Y. Cui), wuminghui@cugb.edu.cn (M. Wu), shang.gao@deakin.edu.au (S. Gao),
buyya@unimelb.edu.au (R. Buyya).
ttps://doi.org/10.1016/j.future.2022.06.007
167-739X/© 2022 Elsevier B.V. All rights reserved.
and Storm [9], etc. Built on batch processing [10], Spark divides
incoming data stream into short batches; Heron is a real-time
fault-tolerant distributed stream data processing system devel-
oped by Twitter [11] as an open-source project; Samza started
out as a stream processing solution for LinkedIn [12]. Its most
important feature is its construction relies heavily on the log-
based Kafka [13]; Storm is one of the most popular open source
big data stream computing systems and has been widely used by
many well-known companies and organizations, such as Twitter
and Alibaba [14].

A stream computing system has multiple compute nodes that
collaborate to process tasks, where high data transfer latency
between nodes may have a negative impact on system perfor-
mance. The communication time and data transfer latency can
be effectively reduced by restricting data transfer on the same
node or between nearby nodes. In addition, capability differences
between nodes result in different performance of task execution
and data transfer. Task placement for streaming applications can
be mapped to an NP-complete problem [15]. Given the computa-

tional resources of a node are limited, data loss may occur when
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Fig. 1. System throughput at different times.

ode resources cannot meet the computational demand. These
actors make the scheduling of streaming applications challeng-
ng.

Triggering rescheduling [16,17] at runtime to reallocate tasks
nd resources for streaming applications is one of the ways to
ddressing this challenge. However, runtime scheduling also has
roblems, such as how to keep the sustainability of stream pro-
essing, how to effectively reduce the network delay of processing
ata tuples and balance the computational resources of nodes.
ig. 1 shows the throughput variation of an example application
ver time in Storm system. To create resource utilization bottle-
eck on some nodes, a smaller than required number of compute
odes are purposely used to run a streaming application. As can
e seen, when the topology is running in [0s, 15s], its throughput
tays at a relatively low level. The main reason for the low
hroughput may be because tasks with high communication load
re on different nodes and/or some nodes are short of computing
esources. To improve the throughput of the system, we can
estart the whole topology to make the tasks with high commu-
ication load on the same node and deploy part of tasks from
he nodes with limited computing resources to these with idle
omputing resources or to new nodes. However, this reschedul-
ng process can seriously lower the throughput during interval
18s–27s] and a slow pickup during interval [27s–33s], which
bviously affects user’s experience. This is just a simple case,
ut it demonstrates the necessity of providing a runtime-aware
echanism which can monitor the node resource consumption
nd communication among tasks, dynamically balance the node
esource load and deploy tasks based on their communication
oad at runtime.

In addition, after a streaming application is mapped to a di-
ected acyclic graph (DAG), a critical path of the DAG can reflect
he response time of the system. When none of the tasks running
n a node is on a critical path, the node does not have to run the
asks to its full capability as it will inevitably result in high energy
onsumption. If there is a good method to dynamically adjust the
orking state of compute nodes, the energy consumption of the
ystem may become more effective.
Based on the above observations and thoughts, this paper

roposes an energy efficient and runtime-aware framework (Er-
tream). It tries to resolve: (1) when and how to reschedule an
pplication topology based on the fluctuation of data stream, (2)
hen to perform reliable task migration based on node resource
onsumption, and (3) how to dynamically adjust the frequency of

ode’s CPU based on their resource load.

253
1.1. Paper contributions

As discussed, Er-Stream is proposed to improve the through-
put and reduce the latency of a distributed stream computing
system. Our contributions are summarized as follows:

(1) Investigate task placement, resource constraint and energy
consumption of fluctuating data streams, and formalize
the scheduling problem by modeling stream application,
resource constraint and energy consumption;

(2) Propose a stream application scheduling algorithm that
deploys tasks with potential communication load on the
same node in the DAG initialization phase and evaluate
the resource allocation scheme at runtime to determine the
necessity of making partial task adjustments;

(3) Propose a run-time aware scheduling algorithm to avoid
excessive consumption of node resources by determining
the necessity of making task migration, and adjust node’s
CPU frequency dynamically based on the resource usage
information to lower the energy consumption;

(4) Evaluate the system throughput, response time and energy
consumption of the proposed scheduling framework.

Experiments are conducted on real data and the results demon-
strate the effectiveness of the Er-stream framework.

1.2. Paper organization

The rest of this paper is organized as follows. Section 2 de-
scribes the background knowledge; Section 3 introduces the sys-
tem models, including the DAG model, the resource model and
the energy consumption model; Section 4 formalizes the schedul-
ing problem and provides optimization schemes; Section 5 in-
troduces the Er-Stream framework and its main algorithms; Sec-
tion 6 evaluates the performance of the Er-Stream; Section 7
presents related work and Section 8 concludes our work.

2. Background

Scheduling strategies in a stream computing system determine
the allocation of stream applications to compute nodes. In the
process of creating a topology for a streaming application, user
can define the parallelism of components and the number of
resources to be used by the topology. Storm, as one of the most
popular distributed streaming computing systems, provides four
built-in scheduling strategies [9]: EvenScheduler, IsolationSched-
uler, MultitenantScheduler and ResourceAwareScheduler.

2.1. EvenScheduler

EvenScheduler releases resources that are no longer needed
by other topologies before assigning tasks to them. The available
resources in the system are therefore evenly distributed among
the active topologies. As shown in Fig. 2, a streaming application
G includes tasks v1,1, v1,2, v3,1 and v3,2, which are deployed on 4
compute nodes n1, n2, n3, n4. Tasks in dashed boxes implement
the same function. There are two main steps to run tasks of the
example streaming application G in a Storm cluster: (1) receive
the tasks submitted by users, then distribute them evenly to four
workers with two instances per worker. (2) retrieve the available
resources of the current cluster, and place the four workers
evenly on the nodes. This load distribution is not absolutely even.
When the number of topologies submitted by users increases,

uneven node load may occur.
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Fig. 2. Tasks in Topology are evenly distributed on nodes by EvenScheduler.

Fig. 3. Computing resource is isolated by IsolationScheduler.

.2. IsolationScheduler

IsolationScheduler provides a mechanism that allows users
o individually specify the node resources needed for certain
opologies. The user needs to specify this information (topology
ames and the number of nodes they need) in the Storm con-
iguration entry, and IsolationScheduler will prioritize the task
ssignment of these topologies, ensuring that the nodes assigned
o a particular topology can only run that particular topology,
s if these topologies were running in a separate environment
rom each other. After these specified topologies are assigned, the
venScheduler assigns tasks of the remaining topologies using the
emaining resources in the system.

As shown in Fig. 3, The streaming application G is assigned to
two nodes n1, n2. The tasks in G will be evenly distributed over n1
nd n2. This scheduler is designed to make the topology exclusive
o the cluster nodes, so that different topologies are physically
solated from each other by occupying different cluster resources
hen they are released.

.3. MultitenantScheduler

The MultitenantScheduler first constructs an isolated resource
ool for each user exclusively, then it traverses the topology
et and assigns nodes by creating topological associations to
he resource pool. The resources are isolated from each other
mong the users. As shown in Fig. 4, two users userA, userB

submit their streaming applications to the cluster. Assume the
application submitted by userA is G and it is deployed on nodes
n1, n2. The one submitted by userB is deployed on nodes n3, n4.
s the applications are submitted by different users, there is
o resource sharing between the two applications. If there are
ust right processing resources for G and userA wants to submit
nother streaming application, userA will have to wait for the
esources of G to be completely released. If userA still has unused
esources, other users cannot use them either. This scheduling
trategy decreases resource utilization of the cluster, but pro-
ides an isolation mechanism for each application and fixes the
llocation of computational resources.
254
Fig. 4. Isolated resource pool is exclusively constructed for each user by
MultitenantScheduler.

Fig. 5. Public resource pool can be used by ResourceAwareScheduler if users’
computing resources are insufficient.

2.4. ResourceAwareScheduler

The ResourceAwareScheduler allocates resources on a per-
user basis. Each user is guaranteed a certain number of resources
to run their topology, and the ResourceAwareScheduler will guar-
antee the allocation as much as possible. When a Storm cluster
has additional resources, the ResourceAwareScheduler will al-
locate the additional resources to users in a fair manner. The
ResourceAwareScheduler can compensate for the shortcomings
of MultitenantScheduler and improve the resource utilization of
the entire cluster. As shown in Fig. 5, nodes n1, n2 can be used
by userA, node n3 can be used by userB and node n4 is a public
resource that can be used by both userA and userB. Assume userA
submits a streaming application G which requires more than its
available computational resources. As there exists an extra re-
source node n4 in the cluster, G allocates its task to this extra node
n4. The unallocated resources of the cluster are public resources
and can be used when needed.

The basic design idea behind all these stream computing
scheduling strategies is to track the resource load of nodes. How-
ever, these strategies are static and cannot dynamically adapt to
changing communication load between tasks or take into account
the current load and energy consumption of each node. On Storm
platform, topology rescheduling can be implemented through the
IScheduler interface, but it requires that the entire topology be
killed before the rescheduling strategy being applied.

In this paper, we focus on an energy efficient and runtime-
aware framework for stream computing on the Storm platform,
and further propose a scheme for reliable task migration upon
rescheduling to improve both the performance and energy effi-
ciency of the system.

3. System models

Before formalizing the scheduling problem and introducing
our solution, we first model the stream application, resource and

energy consumption in stream computing environments.
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Fig. 6. Topology relationship diagram on Storm.

.1. Stream application model

In a stream computing environment, users are able to define
topology themselves and submit it to the stream computing

ystem. A topology consists of spout and bolt, where the spout
ask, the source of the data stream, can emit an unbounded num-
er of tuples to downstream in the topology, and the bolt task,
component that consumes any number of tuples from spouts
r other bolts, can process the received tuples, and potentially
mit new tuples to downstream. The topology formed by spouts
nd bolts constitutes a complex streaming application and can
e mapped to a directed acyclic graph G = (V (G), E(G)), where

V (G) = {vi|i ∈ 1, . . . , n} represents a finite set with n vertices.
vertex vi ∈ V (G) is an operation with a specific function

nd can be represented as multiple instances of a spout or bolt
omponent. E(G) = {evi,k,vj,m |vi,k, vj,m ∈ V (G)} denotes a finite set
f edges and an edge evi,k,vj,m ∈ E(G) denotes the existence of
ommunication between instances vi,k and vj,m.
When a topology is submitted to the cluster, a stream ap-

lication model is first constructed based on the parallelism set
y the user for each component, then the default EvenScheduler
if no other scheduler explicitly specified) steps in to allocate
esources and distribute the corresponding tasks to run on nodes.
s shown in Fig. 6, the illustrated topology contains one spout
omponent and three bolt components, where each component
as a parallelism of 2. This topology can be viewed as a directed
cyclic graph with each component mapped as a vertex vi ∈ V (G)

and each communication relationship between instances of the
components mapped as evi,k,vj,m ∈ E(G).

We define tr(vi,k, vj,m), where i, j = {1...n and i ̸= j}, k =
1...size(vi)},m = {1...size(vj)}, is the data tuple transmission rate
etween instances vi,k, vj,m of two vertices vi and vj, that is, the
umber of tuples passed per unit time. It satisfies (1).

r(vi,k, vj,m) =

{ 0 vi,k and vj,m on the
same node,

wtr otherwise,
(1)

here wtr represents the average transmission rate in time in-
erval [ts, te], ts and te denote the start time and end time of a
iven short time period which can be set by user (e.g. 5 s). There
ay be transient fluctuations in the arrival stream rates, and wtr
an effectively lower its impact by deducting the max and min
ates and calculating the average rate, easing the impact brought
y sudden rate fluctuations. It can be calculated by (2).

tr =

∫ te
ts

wtrt dt −max(wtrt )−min(wtrt )
. (2)
te − ts
255
where wtrt represents the transmission rate at time t , and t ∈
[ts, te].

The vertex instance vi,k outputs the processed data tuples to
ts downstream vertex instance set D(vi,k), oD(vi,k) = |D(vi,k)|
indicating the number of downstream instance set. If oD(vi,k) = 0
ndicates that the vertex is the last component of the stream
opology. As shown in Fig. 6, the downstream instance set of v2,1
s D(v2,1) = {v3,1, v3,2}.

The vertex instance vi,k receives the input data stream from its
pstream vertex instance set U(vi,k), oU (vi,k) = |U(vi,k)| indicating
he number of upstream instance set. If oU (vi,k) = 0, it indicates
hat the vertex is the data source of the streaming application.
s shown in Fig. 6, the upstream instance set of v2,1 is U(v2,1) =
v1,1, v1,2}.

.2. Resource model

In a cluster, resources on a compute node can be measured in
ifferent dimensions, such as CPU, memory and I/O. In this paper,
e consider the CPU resources. The complexity of a vertex vi,k is
etermined by the function it implements and measured by the
ime complexity and space complexity of the function algorithm
mplemented. The greater the complexity, the more CPU com-
utational resources required. Not only the tuple processing, but
lso the tuple sending and receiving consume CPU computational
esources.

Therefore, running an instance vi,k of vertex vi on a compute
ode, the CPU consumption of this instance vi,k, noted as Lvi,k , can
e calculated by (3).

vi,k = lvi,k,c + lvi,k,in · εvi,k,vi−1,j

+ lvi,k,out · ρvi,k,vi+1,m ,
(3)

here lvi,k,c , lvi,k,in , lvi,k,out denote the CPU resources consumed by
he instance vi,k on tuple computation, tuple input and output
n instance vi,k, respectively. εvi,k,vi−1,j and ρvi,k,vi+1,m are decision
ariables and can be obtained by (4) and (5), respectively.

vi,k,vi−1,j =

{ 0, vi,k and vi−1,j run
on the same node,

1, otherwise,
(4)

vi,k,vi+1,m =

{ 0, vi,k and vi+1,m run
on the same node,

1, otherwise,
(5)

here vi−1,j ∈ U(vi,k), vi+1,m ∈ D(vi,k).
At time t , there may be multiple instances vi,k running on com-

ute node ni, denoted as Cni,v . The CPU consumption of compute
ode ni (denoted Lni ) can be calculated by (6).

ni =
∑

vi,k∈Cn,v

Lvi,k · wvi,k,t , (6)

here wvi,k,t is a coefficient, and can be calculated by (7).

vi,k,t =

{
1 at time t, vi,k is running,
0 otherwise. (7)

Since the CPU utilization of one compute node may vary, to
ase the effect of such variation, all mathematical expectations in
statistical time interval [ts, te] can be defined as the load factor
rni,[ts,te] for compute node ni. Lrni,[ts,te] can be calculated by (8).

rni,[ts,te] =
Lni
=

∑
vi,k∈Cn,v

Lvi,k · wvi,k,t
, (8)
te − ts te − ts
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.3. Energy consumption model

Power consumption [18,19] of a processor can be mainly di-
ided into static power consumption and dynamic power con-
umption. Static power consumption refers to the standby power
onsumption of the physical machine. In general, the static power
onsumption of the same type of physical machine is a fixed
onstant. Dynamic power consumption refers to the power con-
umption of data processing when the physical machine performs
task. It is a variable and generally depends on the tasks. The
ower consumption of a processor can be denoted as (9)

= c · v2
· f , (9)

Where P represents the power consumption, c represents a con-
stant determined by the process and other factors, v represents
the voltage and f represents the clock frequency. It is known that
f is positively correlated with v. Therefore, for the convenience of
discussion, the dynamic power consumption is modeled as cf κ ,
κ is approximately equal to 3, and Ps is used to denote the static
power consumption of the physical machine. The complete power
consumption of the processor is denoted as (10)

P = Ps + c · f κ . (10)

Assume the maximum frequency of a processor is fmax and
max
ni is the execution time for node ni to execute λ data tuples

at the maximum frequency fmax. When the frequency of node ni
is fi (fi < fmax), the execution time of executing λ data tuples can
be estimated by (11).

hni =
hmax
ni · fmax

fi
. (11)

Then, the energy consumption of node ni to execute λ data
uples can be calculated by (12).

ni(fi) = P · hni = (ps + c · fiκ ) ·
hmax
ni · fmax

fi
. (12)

The energy consumption for the cluster deployed with a stream
ing application can calculated by (13).

En(f ) =
sc∑
i=1

Eni(fi) (13)

where sc denotes the size of the cluster.

4. Problem statement and optimization

In this section, we formalize the scheduling problem in stream
omputing systems and present our optimization schemes for
AG initialization and runtime scheduling, and strategies for
nergy saving.

.1. Scheduling problem

Latency and throughput are two important criteria for per-
ormance evaluation of a stream computing system. Assume the
ystem latency to process a data tuple is dr , then the average
elay dr[1,λ] when processing λ data tuples can be calculated by
14).

r[1,λ] =
1
λ
· (

λ∑
l=1

dtr +
λ∑

l=1

dqu+
λ∑

l=1

dco), (14)

here dtr , dqu, and dco denote the transmission delay, queuing
elay, and computational delay of a data tuple in the system,
espectively. In this paper, the queuing delay of a data tuple is
ot considered for the time being. When the system’s data tuple
256
processing delay dr[1,λ] is low, its throughput will be high. dtr , dco
and dr[1,λ] are positively correlated. There exists a positive math-
ematical relationship between transmission delay of instances dtr
and the data tuple transmission rate of instances tr(vi,k, vj,m), as
epresented by (15).

(dtr) = ω · tr(vi,k, vj,m), (15)

where ω is a coefficient and ω > 0. Computational delay dco
and a node’s CPU consumption Lni are positively correlated, as
represented by (16).

g(dco) = dco+ δ · Lni , (16)

here δ is a coefficient and can be calculated by (17).

=

{
µ Lni > B,
0 otherwise, (17)

here B is the maximum limit of the node resource load, µ is the
actor that decides the change of dco, and µ is a positive number.

Suppose Dn = {n1, n2, n3, . . . , nnum} is a cluster with num
ompute nodes. When a user submits an application topology
= (V (G), E(G)) (i.e., a DAG model), all vertex instances of V (G)

re deployed to Dn. For λ input tuples, the topology’s network
ransmission latency dtr[1,λ] can be estimated by (18).

tr[1,λ] =
λ∑

l=1

z(dtr) = ω ·

λ∑
l=1

tr(vi,k, vj,m). (18)

From (18), we can see that the larger
∑

tr(vi,k, vj,m) is, the
reater the system transmission latency becomes. The main rea-
on of the increase is that the two vertex instances with commu-
ication relationship are allocated to different compute nodes.
When a user submits multiple applications to a stream com-

uting system, there may be an uneven distribution of vertex
nstances. This can result in some nodes being overloaded. Due
o the relationship between the computational delay dco and
ode’s CPU consumption Lni as indicated in (16), the dco of the
verloaded node will increase.
In a time interval [ts, te], if a node’s tuple processing rate is

or[ts,te], and its tuple receiving rate is inr[ts,te], ε can be calculated
y (19).

=
inr[ts,te]
cor[ts,te]

, (19)

here ε denotes the ratio between receiving and processing tuple
ates in the [ts, te] time interval. When ε ≤ 1, the data tuples
f instance vi,k will not be backed up in cache, so the queuing
elay will be small. When ε > 1, the data tuples for instance vi,k
re continuously accumulated in the cache, and the queuing delay
qu increases over time.
In summary, if the scheduler of a stream computing sys-

em cannot effectively perceive the communication load between
odes and the resource usage of nodes, the dtr , dqu and dco of
ata tuples will grow.

.2. DAG initialization optimization

The initial scheduling optimization is to find a reasonable allo-
ation scheme that minimizes the communication cost between
odes, helping improve the throughput and lower the response
atency.

The data tuple transmission rate between vertex instances
annot be estimated in the initialization phase because the com-
unication load between vertex instances is not available yet.
owever, we can determine if communication exists between
wo adjacent instances, i.e. tr(vi,k, vi+1,m) > 0, we assume the
average transmission rate w = 1.
tr(vi,k,vi+1,m)
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Fig. 7. Graph segmentation example.

For a cluster Dn = {n1, n2, n3, . . . , nnum} and a streaming
pplication G, we assign all instances in G to run on Dn. To reduce
nnecessary network transmission overhead, the number of Dn
sed by G should be minimized, given allocated nodes are not
verloaded.
Assume the set of compute nodes used by G is Gn = {ni|1 ≤
≤ num}, then the available resources of the cluster must be
reater than the resources required for topology G, i.e., condition
n (20) must be satisfied.
i

j=1

Cnj,v ≥
∑

vi∈V (G)

∑
vi,k∈vi

vi,k. (20)

As G is a directed acyclic graph and can be stored in a matrix,
t can be further divided into lengthGn number of subgraphs,
enoted as (21).

= {Gsub1 ,Gsub2 , . . . ,GsublengthGn
}, (21)

where Gsub denotes one subgraph of graph G. The size of Gsubi
corresponds to Cnj,v , and each subgraph has a mapping relation-
ship with compute node, denoted asMap(subi, nj). In addition, the
subgraph must satisfy condition (22).

min(
∑

tr(Gsubi ,Gsubj )), (22)

where tr(Gsubi ,Gsubj ) denotes the communication load between
Gsubi and Gsubj .

As shown in Fig. 7, if the example application uses 3 com-
pute nodes n1, n2 and n3, the graph will be divided into 3 sub-
graphs Gsub1 , Gsub2 and Gsub3 . The dashed circle indicates the split
boundary.

At runtime, the vertex instances of Gsub1 , Gsub2 and Gsub3 are
placed on the corresponding compute nodes n1, n2 and n3.

4.3. Runtime scheduling optimizer

The runtime reliable scheduling optimizer monitors the com-
munication load and CPU load of nodes. When the communi-
cation load between vertex instances changes significantly, it
produces an assessment result. Based on this result, a local ad-
justment is made to the allocation of vertex instances running
on the compute nodes. If a node becomes CPU overloaded, a
corresponding migration action is triggered, allowing the system
computational latency to reach a balanced and stable state.

(1) The communication load. Given one stream application
G = (V (G) , E (G)) runs on node set Gn = {ni|1 ≤ i ≤ num},
each compute node ni runs vertex instances Cni,v , and the com-
munication load between each vertex instance can be collected by
257
Fig. 8. A topology running on two nodes.

a monitoring module, the communication load between compute
nodes in Gn can be calculated by (23).

tr(ni, nj) =
∑

tr(vi,k, vj,m), (23)

here tr(vi,k, vj,m) denotes the communication load between vi,k
nd vj,m. vi,k and vj,m are running instances of the respective
odes.
When condition (24) is satisfied, a local adjustment to the ver-

ex instance assignment on the compute nodes will be triggered.

oldtr(ni,nj)
newtr(ni,nj)

> α, (ni, nj) ∈ Gn, (24)

here oldtr(ni,nj) denotes the current allocation scheme on the
ompute node set Gn. newtr(ni,nj) denotes the proposed new allo-
ation scheme generated by the background monitoring module.
denotes a user-defined trigger threshold, determining whether

he vertex instance allocation needs adjustment.
There exists a mapping relationship between the position

djustment of vertex instances and the compute nodes, denoted
s fs(vi,k, vj,m) : ni → nj. When the position of one vertex
nstance changes, there must exist another instance to replace
t, i.e. Changes occur in pairs and fs(vi,k, vj,m) is a one-to-one
elationship.

When the mapping relationship fs is obtained, it does not
mmediately trigger a migration action on the vertex instances.
e have to consider the state of the compute node’s CPU load in
comprehensive way, e.g. whether the pair of instances can be
igrated without overloading the CPU of the compute node. The
igration action is triggered when condition (25) is satisfied.

Lrni,[ts,te] + Lvi,k < Bni , (25)

here DLrni,[ts,te] denotes the CPU load ratio of the target node to
e migrated to by vi,k. Lvi,k denotes the CPU consumption of this
nstance vi,k. Bni is the maximum CPU load ratio per node set by
he user.

As shown in Fig. 8, the streaming application depicted in Fig. 6
uns on 2 compute nodes node1 and node2. It can be seen that
here is a huge amount of communication load between node1
nd node2 in this deployment. The monitoring module can sense
his problem by collecting information about the communica-
ion load among vertex instances and propose a new allocation
cheme. The new scheme is compared with the old one and
enerates the set of tasks to be migrated.
When the vertex instances in the set are migrated, the CPU

oads of node1 and node2 are not evaluated as overload. After the
ask migration, the distribution of vertex instances on the nodes is
hown in Fig. 9. It is clear that the communication load between
ode1 and node2 is decreased by roughly 66% ((180-60)/180 =
.66) by adjusting the vertex instances deployed on the nodes,
hich contributes to the high throughput and low response time
f the system.
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Fig. 9. Distribution of adjusted instances on nodes.

Fig. 10. Migration is triggered when a node’s CPU is overloaded.

(2) The CPU load. The migration of vertex instances can also be
riggered when the CPU load ratio of a compute node is greater
han Bni . And the choice of the to-be-migrated vertex instance vi,s
ust satisfy condition (26) so that the instance migration cost is
inimized.

i,s = min(
∑

vi,s∈Cni,v

∑
vm,n∈Cni,v

tr(vi,s, vm,n)). (26)

The vertex instance vi,s can choose a target node for migration
where the upstream or downstream instance of vi,s is located on
the target node. Set M(ni) = D(vi,s)∪U(vi,s), where M(ni) denotes
the migrated target set and ni is the node that satisfies (25).

Consider migrating vi,s to an appropriate node in set M(ni) and
obtain the reliability of node nj ∈ M(ni) to get r(nj), where r(nj)
enotes the reliability estimate of node nj given by the system.
inally, migrate vi,s to the node with max(r(nj)), where nj ∈ M(ni).
hen set M(ni) is empty, obtain the reliability of all nodes r(nj),
here nj ∈ Dn(ni), and migrate vi,s to node max(r(nj)).
As shown in Fig. 10, when node2’s CPU is overloaded, instance

1,2 running on node2 will be migrated to other node because it
as minimal communication load with the other instances of the
opology. The migration of instance v1,2 follows two steps: (1)
ocal selection. As node1 has upstream or downstream instances
f v1,2, it is considered first. However, as node1 is a computation-
lly intensive node, if instance v1,2 is migrated to node1, it may
verload node1’s CPU according to condition (24). So no node
s selected in this step. (2) Global selection. Global nodes in the
luster are considered in this step. Node3 has the lowest CPU load
nd is therefore selected. Instances v1,2 is migrated to node3.
Task migration triggered by the communication load among

odes or by the CPU load of node can be accomplished by restart-
ng the task. If there are stateful tasks in a streaming application,
checkpoint mechanism can be used to manage the states of

hese tasks. Before killing a stateful task, backing-up its state is
 s
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equired. After restarting the stateful task on a new node, its state
eeds to be recovered from the backup storage.

.4. Energy saving strategies

CPU is the most important indicator of energy consumption
or compute nodes [20,21]. In this paper, we therefore only focus
n the CPU consumption. Optimizing node energy consumption
equires sensing the CPU utilization of node on non-critical path
nd the amount of data processed by node on non-critical path.
he computational performance of the node is known to be
orrelated with the frequency of the node’s CPU fi, the CPU
tilization rate Lni and the amount of data processed by the node.
heir correlation [18] is modeled in (27). Energy efficiency can
e improved by making the node’s CPU frequency equal to the
requency required to process data tuples, reducing the idle load
nergy consumption.

ni (fi) = ln
[
fi · Lni + (1− Lni )

]
· θ, (27)

here, yni (fi) denotes the performance of node ni, θ is a coeffi-
ient and can be estimated by (28). The minimum performance
riterion of a given node is ymin, which satisfies yni (fi) ≥ ymin.

=

∑
vi,k∈Cni,v

dcovi,k

lengthCni,v
, (28)

here dcovi,k denotes the computational delay of instance vi,k
nd lengthCni,v

denotes the size of set Cni,v .
Assuming that the streaming application has been deployed to

he cluster, the resource usage and computational latency of each
ode is known, given the minimum computational performance
f a node, the energy consumption of a node is minimized.
Then, our problem becomes:

inimizeEn(f ) =
lengthDn∑

i=1

Eni(fi), (29)

subject to

yn1 (f1) ≥ ymin,

yn2 (f2) ≥ ymin,

...

yn(fn) ≥ ymin.

(30)

Please refer to Appendix for detail.
The minimum CPU frequency of a node can be calculated

y considering the node’s computing capability (Appendix). As
hown in Fig. 11, a streaming application is deployed on 3 com-
ute nodes, where v1,2, v3,1, v4,1 and v5,1 are on the critical paths
alculated based on the stream application model. v1,2 and v3,1
re deployed on node1. v4,1 and v5,1 are on node2. None tasks
unning on node3 are on critical paths. Therefore, Node3’s CPU
requency can be determined by the amount of tasks being per-
ormed on it. Given the information about node3’s computing
apability, the minimum CPU frequency of node3 can be obtained
hrough the KKT mathematical model (in Appendix). Adjustment
o the CPU frequency for nodes on non-critical paths do not have
uch impact on the system performance.

. Er-Stream: Framework and algorithms

Based on the above formal modeling and analysis, we propose
nd implement Er-Stream, an energy efficient and runtime-aware
ramework for stream computing systems. To provide a bet-
er description of the proposal, this section discusses its overall
ramework and key algorithms, including DAG initialization al-
orithm, DAG runtime partial adjustment algorithm and energy
aving algorithm.
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Fig. 11. Frequency adjustment to nodes on non-critical paths.

Fig. 12. Er-Stream framework.

5.1. System framework

The system framework of Er-Stream consists of an optimiza-
tion layer and a monitoring layer, as shown in Fig. 12.

The monitor layer mainly includes a monitor module and two
controller module. The monitor module collects various metrics
of the cluster, such as communication load between nodes, rate
of node resource utilization, etc. The collected data is submitted
to the optimization layer. The controller module mainly includes
a Resource Controller and a Frequency Controller. It receives
decisions from the Scheduling Analysis module and the Energy
Saving module in the optimization layer. The Resource Controller
receives new scheduling information from the upper ReSchedul-
ing Migration module and deploys the new scheduling tasks
onto the supervisors in the cluster. The Frequency Controller gets
information about nodes on non-critical paths from the Energy
Saving module and informs the compute nodes to adjust their
CPU frequencies.
 s
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The optimization layer is mainly responsible for analyzing the
data from the monitor layer and coming up with an adjustment
suggestion. This layer mainly includes modules for topological
construction, instantiation analysis, scheduling analysis, reliable
migration and energy consumption analysis.

Topological construction refers to user designs the logical
structure for a stream application, and determines the grouping
strategy and the number of vertex instances for the stream
application.

Instantiation analysis refers to the system creates one or more
instances for each vertex. Instances of the same vertex have the
same functionality and semantics. Multiple vertex instances can
improve computational parallelism, but not the more the better.

Scheduling analysis refers to the system deploys vertex in-
stances to compute nodes in the cluster, especially allocating
the instances with potential communication load on the same
compute node and keeping the instance number on each compute
node balanced.

Reliable migration refers to the local adjustment of vertex
instances using a reliable migration strategy to make the system
sustainable when there are large fluctuations in data stream.
In addition, the reliable migration strategy is also triggered to
reduce system latency when the nodes are resource overloaded.
It can be implemented via the IScheduler interface in Storm.

Energy consumption analysis refers to the system reduces the
corresponding node’s CPU frequency according to the computa-
tional load on the node. It opens a monitoring thread to listen to
messages from the Frequency Controller. When the monitoring
thread of node is notified by the Frequency Controller, the node
triggers the CPU frequency adjustment strategy by using the
CPUFreq tool [22].

Er-stream has the following advantages compared with tradi-
tional scheduling schemes. (1) When the input rate is stable, the
traditional scheduling schemes do not consider the energy con-
sumption of the cluster if the system has not reached its resource
bottleneck. However, Er-stream can reduce the cluster’s power
consumption by adjusting the CPU frequency of nodes. (2) When
there is high performance demand on the system, the traditional
scheduling schemes will prolong nodes’ downtime, causing the
streaming application to work abnormally. Er-Stream can sense
the bottleneck of the computing resources in the system. When
the nodes are overloaded, a dynamic resource expansion can be
conducted by Er-Stream.

5.2. DAG initialization algorithm

At the initial stage, the additional overhead caused by runtime
scheduling can be reduced by graph partitioning of the DAG.
The more instances are migrated during the runtime scheduling
phase, the more costly the runtime scheduling will be. Therefore,
DAG initialization using graph partitioning tries to control and
reduce the number of runtime instance migrations.

Graph partitioning is an NP problem. Using heuristic genetic
algorithm is one of the effective ways to solving this partitioning
problem [23].

The heuristic genetic algorithm mainly consists of heuristic
information and a valuation function. We further abstract the
division of the DAG graph by maximizing the weights of the
edges owned by each subgraph. The valuation function for graph
partition is an objective function. It takes the average of the
weights of each subgraph and is denoted as (31).

fit(popi) =

∑
ni∈Gn

∑
(vi,k,vj,m)∈Cni,v

sum+ tr(vi,k, vj,m)

lengthGn
. (31)

here fit(popi) denotes the fitness value of the ith graph partition
cheme pop.
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Algorithm 1: Graph partition algorithm during initial-
ization.

Input: G = (V (G), E(G)), Gn = {ni|1 ≤ i ≤ num};
Output: Cni,v, ni ∈ Gn;

1 while User set population size n do
2 Generate a chromosome using a random method

cs(n) =
{
vj1, vj2, · · · , vjn

}
;

3 Add this chromosome to the initial population
pop(1)→ cs(n);

4 end
5 Obtain the initial population pop(1), t := 1, the

number of iterations is 1;
6 while User sets the number of iterations t do
7 For each chromosome popi(t) in population pop(t),

calculate its fitness value.;
8 ui = fit(popi(t));
9 if ui < ufi, ufi is a user set value then

10 With probability: pi =
ui

N∑
j=1

uj

randomly, use

roulette wheel to randomly select some
chromosomes from popi(t) to form a new
population
newpop(t + 1) = {popj(t)|j = 1, 2, ...,N};

11 Crossover with probability Pc to generate some
new chromosomes and get a new population
crosspop(t + 1);

12 With a small probability Pm of mutating a gene
on a chromosome to form
mutpop(t + 1); t := t + 1;

13 Form a new group pop(t) = mutpop(t + 1);
14 end
15 end
16 return The chromosome with the maximum value of ui

in pop(t);

The algorithm for graph partition in the initialization phase is
escribed in Algorithm 1.
The input of this algorithm includes the stream application
= (V (G), E(G)) and the available nodes Gn = {ni|1 ≤ i ≤ num}.
he output is the allocation Cni,v, ni ∈ Gn corresponding to each
ompute node.
Steps 1 to 4 initialize the population size popi(t). A real num-

er encoding is used, making each vertex instance vi,k of the
raph G a gene fragment. Steps 7 to 8 calculate the fitness value
itness(popi(t)) of each chromosome, which is mainly used as a
riterion to distinguish between good and bad individuals in a
opulation, and is the driving force of the algorithmic evolu-
ionary process, the only basis for natural selection. Step 10 is
selection operation, in which good individuals are randomly

elected by a roulette wheel spin, so that each chromosome has
chance to enter the next generation. The fitness scaling method

s used to set the magnitude of each individual probability Pi.
roulette wheel is constructed using the probability Pi of each

ndividual.
Step 11 is the crossover operation, using two adjacent chro-

osomes for two-point crossover. Two-point crossover is to set
wo crossover points and swap the code strings between the
rossover points with each other. The crossover points are ran-
omly generated. In the process of crossover, gene conflicts may
ccur, and partial match crossover (PMX) is used to resolve gene
onflicts. Step 12 is the mutation operation, which is mainly to
aintain the diversity of the population. Here it is used to repair
260
nd replenish certain genes that may be lost during the selection
rossover.
The algorithm uses swapping variants to generate two random

umbers and swap their gene fragments. The deployment scheme
enerated by algorithm 1 costs 64 ms. Its time complexity is O(n∗
), where n is the number of iterations and m is the population
ize.

.3. DAG runtime partial adjustment algorithm

To reduce the latency caused by data tuple processing, the
onitor module must be able to sense (1) stream fluctuations of
pplication G running on the set of compute nodes Gn = {ni|1 ≤
≤ num}, and (2) change of CPU load rate of compute node

i ∈ Gn. To meet these two requirements, the Er-Stream decision
lgorithm is divided into two phases.
In the first phase, the monitor component scans the CPU

oad ratio Lrn,[ts,te] of each compute node. When the condition
rn,[ts,te] > Bn is satisfied, Er-Stream triggers the instance migra-
ion strategy.

The node’s CPU load detection algorithm is described in Algo-
ithm 2.
Algorithm 2: CPU load detection algorithm.

Input: Lrn,[ts,te], vi,k, Lvi,k , r(ni), Bn;
Output: minvi,k → tn;

1 Declare migration target nodes tn;
2 minvi,k denotes the minimum communication load

with other vertex instances on node ni;
3 for li being the CPU load ratio for nodes in set Gn do
4 Determine whether the CPU of each node is

overloaded or not;
5 if li > Bn then
6 Fetch downstream nodes D(vi,k) and upstream

nodes U(vi,k) of the minvi,k , and assign them to
M(n);

7 for ni ∈ M(n) do
8 if DLrni + Lmin vi,j > Bn then
9 Remove(M(ni));

10 end
11 end
12 if M(ni) is empty then
13 tn = max(r(ni), ni ∈ Dn(ni));
14 end
15 tn = max(r(ni), ni ∈ M(ni));
16 end
17 end
18 return minvi,k → tn ;

The input of this algorithm includes the CPU load factor
Lrn,[ts,te] for each compute node, the CPU load factor Lvi,k for each
vertex instance, reliability of each node r(ni) and CPU resource
onstraint threshold Bn. The output is the node to which the
ertex instance is migrated. Step 3 to 5 select the compute
odes that are CPU overloaded and select the vertex instances
rom the nodes that will be moved out. Step 6 to 11 select the
odes that meet the conditions from the upstream or down-
tream nodes. In step 12 to 14, if the condition is not satisfied
y either upstream or downstream nodes, the node with the
ighest reliability among all nodes will be selected. In step 15, the
ode with the highest reliability is selected from the upstream
r downstream nodes. When a node is overloaded, a dynamic
esource expansion can be conducted by the algorithm 2. The
ime complexity of Algorithm 2 is O(n ∗m), where n denotes the
size of Gn and m denotes the size of Dn.
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In the second stage, the monitor module checks whether the
ommunication load between compute nodes Gn changes signif-
cantly. If true, reevaluate the graph G to get newtr(ni,nj).

The algorithm for runtime scheduling is described in Algo-
ithm 3.
Algorithm 3: Runtime scheduling algorithm.

Input: G, Lrn,[ts,te], vi,k, Lvi,k , tr(vi,k, vj,m), α;
Output: Set(fs(vi,k));

1 Set nos stores instances of vertices whose positions
have changed;

2 for ti ∈ G do
3 Build Matrix IEFi ← tr(vi,k, vj,m);
4 Call the genetic algorithm interface, output the best

allocation scheme and the fitness value
(BGrap_e, bfitness)← GAUtils(IETi);

5 if oldFitness
newFitness > α then

6 Compare the old and new assignment schemes,
and select the vertex instances vi,k whose
positions have changed
fs(vi,k)← compareScheme(BGrap_e,Grap);

7 if Lvi,k + Lnj − Lvk,i < Bn and
Lvk,i + Lni − Lvi,k < Bn then

8 vi,k and vk,i are found in pairs;
9 nos← fs(vi,k) : ni → nj;

10 nos← fs(vk,i) : nj → ni;
11 end
12 assigned(nos);
13 end
14 end
15 return nos;

The input of this algorithm includes the stream application G,
the CPU load factor Lrn,[ts,te] for each node ni ∈ Gn, the vertex
instance vi,k load factor Lvi,k , the communication load between
vertex instances tr(vi,k, vj,m) and the topology local adjustment
trigger threshold α. The output is the set of position change for
the vertex instances. In step 3 to 4, a matrix of application G is
constructed and passed into Algorithm 1, which returns the new
allocation scheme as well as the fitness value. In steps 5 to 6, if
the ratio of the old and new schemes is greater than the threshold
α, the vertex instance whose position has changed from the old
to the new scheme is selected. Steps 7 to 11 determine whether
the instances can be migrated to the destination node without
overloading the CPU of the destination node. The time complexity
of Algorithm 3 is O(n), where n denotes the number of vertex
instances.

5.4. Energy saving algorithm

When a node performs a task, its frequency can be dynami-
cally adjusted to reduce its energy consumption according to the
size of the processed task, providing that the node performance
is not affected. Dynamic adjustment to node’s CPU frequency can
be achieved by calling the CPUFreq interface, which provides a
lightweight CPU scaling monitor and is a powerful CPU frequency
management tool.

As discussed above, a binary search algorithm is able to return
optimal results under the constraints of keeping node perfor-
mance. The algorithm for optimizing node energy consumption
is described in Algorithm 4.

The input of this algorithm includes the correlation yni (fi)
etween the CPU frequency fi and CPU resource utilization Lni
f node ni, the minimum value of node performance ymin and
he functional relationship γ (f ) between γ and fi. The output is
ode’s optimal frequency. Step 1 calculates the range value of γ
261
Algorithm 4: Energy saving algorithm.
Input: ymin, yni (fi), γ (f );
Output: fi;

1 Compute lb and rb according to (A.13); // lb and rb are
the upper and lower bounds of the search region γ ,
respectively;

2 while rb− lb > µ do
3 mid← (lb+ rb)/2 ;
4 f ← γmid;
5 if ymin ≤ yni (f ) ≤ ymin + c then
6 return f ;
7 end
8 if yni (f ) ≥ ymin + c then
9 rb← mid;

10 else
11 lb← mid;
12 end
13 end

Table 1
Software configuration of the Er-Stream.
Software Version

Ubuntu Ubuntu16.03
Storm apache-storm-1.0.2
JDK jdk1.7.64 bit
Zookeeper zookeeper-3.4.6
Python python 2.7.2
MySql MySql-5.1.7
Power Detection PowerTop 2.9

and records the maximum and minimum. Step 4 calculates the
frequency f corresponding to γmid. Step 5 to 7 determine whether
the node performance at frequency f meets the requirements.
In step 8 to 11, if the node performance requirements are not
met, make adjustment to lb or rb. The time complexity of this
lgorithm is O(log2n) where n is the range of γ .

. Performance evaluation

Experiments are conducted to evaluate whether the proposed
cheduling algorithm can improve the system performance. In
his section, the experimental environment and parameter set-
ings are first discussed, followed by the result analysis of two
tream applications, Top_N and WordCount.

.1. Experimental environment and parameter setup

The Er-Stream framework is deployed above Storm-1.0.3 on
buntu 16.03. The experiments are conducted on a computing
luster in the Computer Architecture Laboratory of China Uni-
ersity of Geosciences, Beijing. The cluster consists of twelve
omputers with two as nimbus nodes and ten as supervisor
odes, and the monitor component deployed together with the
imbus nodes. Three computers (three multiplexed with the su-
ervisor) deploy the Zookeeper cluster. Detailed environment
onfiguration is shown in Table 1. Detailed Server configuration
s shown in Table 2.

Two stream applications Top_N and WorldCount are run to
valuate the system latency and throughput.
As shown in Fig. 13, the topology of Top_N is composed of four

ertices v1, v2, v3 and v4, where the numbers of vertex instances
or each vertex are 4, 8, 6 and 2, respectively. The function of
ach vertex is shown in Table 3. The grouping strategies between
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Table 2
Server configuration.
Hardware Performance

VCPU 2
Network Baseline Bandwidth 100 Mbps
Memory 1.2 GB
Hard Disk Drive 60 GB

Fig. 13. Logical graph of Top_N.

Table 3
Vertex function of Top_N.
Vertex Instances Function

v1 4 Read words from data stream
v2 8 Count words
v3 6 Rank words by count
v4 2 Merge all ranks from upstream

Fig. 14. Logical graph of WordCount.

Table 4
Vertex function of wordcount.
Vertex Instances Function

v1 6 Read sentence from data stream
v2 18 Split words of sentence
v3 8 Count words

vertices are field grouping, field grouping, and global grouping
from left to right.

As shown in Fig. 14, the topology of WordCount is composed
f three vertices, v1, v2 and v3, where the numbers of vertex

instances for each vertex are 6, 18 and 8, respectively. The func-
tion of each vertex is shown in Table 4. The grouping strategies
between vertices are shuffle grouping and field grouping from left
to right.

Among the four built-in schedulers on Storm introduced in
Section 2, EvenScheduler and ResourceAwareScheduler are fre-
quently used in industrial practice. Therefore, in this experiment,
we compare the proposed Er-Stream framework with them.

6.2. Performance results

The performance evaluation metrics adopted are system
throughput ST and system response time RT.

6.2.1. System throughput
System throughput is calculated based on the number of data

tuples processed per second. It reflects the cluster’s processing
capacity. The higher the system throughput, the more capable the
system is of processing the data.

When the input rate remains stable, Er-Stream has higher
real-time throughput compared to the EvenScheduler and Re-
sourceAwareScheduler.

As shown in Fig. 15, the input rate of the data stream is 1000
tuples/s. In [100s–350s], the average throughput of Er-Stream
is 506 tuples/s, and in [400s–600s], the average throughput of
Er-Stream is 554 tuples/s. In [100s–600s], the throughputs of
262
Fig. 15. System throughput of WordCount under stable input rate.

Fig. 16. System throughput of Top_N under stable input rate.

venScheduler and ResourceAwareScheduler are 271 tuples/s and
01 tuples/s, respectively. For the given WordCount application,
he average throughput of Er-Stream is higher than those of the
venScheduler and ResourceAwareScheduler when the input rate
s stable.

As shown in Fig. 16, when Top_N is running, the throughput
f the Er-Stream is higher compared to those of the EvenSched-
ler and ResourceAwareScheduler. In [100s–350s], the average
hroughput of Er-Stream is 486 tuples/s, and in [400s–600s], the
verage throughput of Er-Stream is 552 tuples/s. In [100s–600s],
he throughputs of the EvenScheduler and resourceAwareSched-
ler are 224 tuples/s and 184 tuples/s, respectively.
There are inflection points at the 30s and 420s in Fig. 15 and

61s in Fig. 16. At the DAG initialization stage, since the commu-
ication load between vertex instances cannot be predicted, our
ivision strategy is to minimize the number of edges connecting
ubgraphs, but this allocation may not be the best solution. After
period of time (which can be set, in this paper it is set to 30s),
he communication load between instances can be obtained by
he monitoring module. After 30s, The monitoring module con-
inuously evaluates the system performance and decides whether
o make a task migration. At the 420s in Fig. 15 and the 361s in
ig. 16, task rescheduling is triggered because the computational
haracteristics of the data may change significantly, resulting in
hanges in the data stream feed and the amount of data computed
t each node.
Er-Stream has higher system throughput compared to Even-

cheduler and ResourceAwareScheduler when the stream input
ate is varying over time.

As shown in Fig. 17, when WorldCount is running, the data
nput rate increases from 1000 tuple/s to 2000 tuple/s at the
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Fig. 17. System throughput of WordCount under increasing input rate.

Fig. 18. System throughput of Top_N under increasing input rate.

00s. The data input rate is 1000 tuple/s in [0s, 600s] and 2000
uple/s in [600s, 1000s]. Under steady input, the throughput of
r-Stream varies from 506 tuple/s to 912 tuple/s and the through-
uts of EvenScheduler and ResourceAwareScheduler range from
71 tuples/s to 546 tuples/s and from 201 tuples/s to 506 tuples/s,
espectively. The average throughput of Er-Stream is still higher
han those of the EvenScheduler and ResourceAwareScheduler
hen the input rate is increasing.
As shown in Fig. 18, when Top_N is running, the throughput of

r-Stream is still higher, compared to those of the EvenScheduler
nd ResourceAwareScheduler. They are 876 tuples/s, 526 tuples/s
nd 484 tuples/s, respectively.
The streaming applications WordCount and Top_N are de-

loyed on the same 6 compute nodes by using Er-Stream, Even-
cheduler and ResourceAwareScheduler, respectively. The bottle-
eck of system throughput is tested by continuously increasing
he input rate. As shown in Fig. 19, it can be seen that Er-Stream
as a stronger data processing capability than EvenScheduler
nd ResourceAwareScheduler when using the same amount of
omputational resources. It is because Er-Stream merges those
perations requiring high communication load. Therefore, the
ottleneck of system throughput under Er-Stream is greater than
hose under EvenScheduler and ResourceAwareScheduler, given
he same amount of computing resources.
263
Fig. 19. Comparison of throughput’s bottleneck under Er-Stream, EvenScheduler
and ResourceAwareScheduler.

Fig. 20. System latency of WorldCount under stable input rate.

6.2.2. System response time
System response time RT is the time interval from the input of

a topology to the output of result. It mainly includes processing
delay, propagation delay and queuing delay. We mainly consider
the propagation delay and processing delay in this paper. If the
system response time is too long, it will greatly downgrade user
experience. The shorter the system response time, the better the
real-time system performance. Storm platform has a built-in UI
allowing user to access RT data through a browser.

Er-Stream has lower latency compared to the Storm’s two
popular built-in scheduling strategies EvenScheduler and Re-
sourceAwareScheduler under stable input. As shown in Fig. 20,
the input rate for the WordCount is 1000 tuples/s, and the com-
putation node is continuously pressurized. Er-Stream triggers the
migration strategies at the 350s and stabilizes the computational
latency of the system afterwards. At [400s–600s], the average
latency of Er-Stream is 36 ms, while the computational latency
of the built-in scheduling strategies of Storm is increasing over
time.

As shown in Fig. 21, when Top_N is running, the real-time
performance of Er-Stream is clearly better than those of the
EvenScheduler and ResourceAwareScheduler. In [300s–600s], the
average computation latency of Er-Stream, EvenScheduler and
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Fig. 21. System latency of Top_N under stable input rate.

esourceAwareScheduler are 34 ms, 79 ms and 87 ms, respec-
ively.

.3. Cluster size and CPU utilization of the compute nodes

Keeping the data input rate stable at 1000 tuples/s, we de-
loy the WordCount application on 4, 6, 8 and 10 compute
odes, respectively. When the cluster size increases, Er-Stream
as higher throughput compared to the EvenScheduler and Re-
ourceAwareScheduler. In addition, when Er-Stream deploys an
pplication, it does not distribute the vertex instances evenly over
ll the compute nodes, but using the right number of compute
odes. As shown in Fig. 22, when the cluster size is 4 compute
odes, the average throughputs of Er-Stream, EvenScheduler and
esourceAwareScheduler are 502 tuples/s, 340 tuples/s and 240
uples/s, respectively. When the cluster size is 6, Er-Stream’s
hroughput remains stable, while the EvenScheduler’s throughput
rops to 311 tuple/s and ResourceAwareScheduler’s throughput
rops to 232 tuple/s. When the cluster size is 8, Er-Stream’s
hroughput remains stable, the EvenScheduler’s throughput drops
o 281 tuple/s and the ResourceAwareScheduler’s throughput
rops to 219 tuple/s. When processing non-intensive tasks, Er-
tream remains stable performance even if the cluster size grows,
hile the EvenScheduler and ResourceAwareScheduler have the
erformance decreased even with an increased cluster size. Er-
tream remains stable as the cluster size grows. The reason
ehind is that the number of nodes used by Er-Stream remains
onstant regardless of the size of the cluster. When the comput-
ng resources used by the streaming application are sufficient,
xpanding the cluster size can trigger extra communication de-
ays by EvenScheduler and ResourceAwareScheduler, leading to
ecreased throughput even with an increased cluster size.
To enable the compute nodes to better process data tuples, the

PU load of nodes is tested under pressure and their CPU utiliza-
ion rate is calculated after implementing the reliable migration
trategy.
As shown in Fig. 23, when the input rate is 1000 tuples/s, in

40s–160s] the CPU utilization rate of node1, node2, node3 and
ode4 are 60%, 74%, 57%, and 6%, respectively. It can be seen that
ach node is not overloaded in terms of resources.
At the 200s, the input rate is increased to 2000 tuples/s. It

an be found that at the 213s, node2 is CPU overloaded and the
PU utilization rate reaches 91%. At this point, reliable migration
s triggered on node2, and some tasks are migrated to node4
ccording to the reliability of the target migrating node (node4).
264
Fig. 22. System throughput with increasing cluster scale under stable input rate.

Fig. 23. CPU utilization of compute nodes under increasing input rate.

After that, the CPU utilization rate of node2 drops and is stabilized
below 80% afterwards. It is proved that Er-Stream can monitor
node’s resources in real time and trigger task migration when a
node becomes overloaded.

6.4. Energy saving strategy

The Top_N topology is deployed on 8 compute nodes by Even-
Scheduler. The power consumption of each node under a stable
input rate is separately monitored by the POWERTOP tool. It can
be observed that the power consumption is changed when the
node CPU frequency is adjusted. Their correlation is shown in
Fig. 24. When the system throughput is kept at a stable rate, the
average power consumption of node1, node2 and node6 remains
constant because the tasks running on these nodes are on critical
paths and no CPU frequency changes are made. The average
power consumption of node3, node4, node5, node7 and node8
decreases because their CPU frequencies are adjusted lower using
the CPUFreq tool. The cluster’s power consumption is therefore
reduced due to the decrement of these 5 nodes. The frequency
adjustments to these 5 nodes do not have much influence on the
system response time because they are not on critical paths.

As shown in Fig. 25, the Top_N topology is deployed on 4
nodes (nodes 1–4) of the cluster by ResourceAwareScheduler. It
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Fig. 24. Power consumption of TOP_N nodes under EvenScheduler.

Fig. 25. Power consumption of TOP_N nodes under ResourceAwareScheduler.

is clear that there is an apparent drop in power consumption for
node3 and node4 because the tasks running on these 2 nodes are
not on critical paths. Nodes 5–8 have low power consumption
because they are in idle state.

As shown in Fig. 26, the Top_N topology is deployed on the
same 8 compute nodes by Er-Stream. From this figure, we can
observe that the average power consumption of node1 and node3
remains constant. For node2 and node4, their average power
consumption decreases. For nodes 5–8, the consumption is signif-
icantly lower than the rest. Nodes 1–4 have higher average power
consumption because they are the only nodes used to deploy the
Top_N topology.

It can be found in Figs. 24–26 that the power consumption
among the Top_N nodes under EvenScheduler, ResourceAware
Scheduler and Er-Stream Scheduler is different because the dy-
namic CPU frequency scaling supported by Linux Operating Sys-
tem is used by the non-energy strategy based on resource load.
The power consumption of Top_N nodes with our energy saving
strategy is less than these with the default strategy, as Er-Stream
reduces the CPU frequencies of these non-critical-paths nodes
based on their minimum values.
265
Fig. 26. Power consumption of TOP_N nodes under Er-Stream.

Fig. 27. Energy consumption of Top_N under stable input rate.

The default dynamic CPU frequency scaling is used to ad-
just the CPU frequency of a node deployed with tasks in a dis-
tributed environment based on resource load. It is a better ap-
proach for a single node. However, for the whole cluster, it
may cause extra power consumption. From Figs. 24–26, we get
the cluster’s power consumption for Top_N under EvenSched-
uler, ResourceAwareScheduler and Er-Stream energy is 109 W,
94 W and 85 W, respectively. The average power consumption
under Er-Stream is lower than that of the EvenScheduler and
ResourceAwareScheduler when the system throughput rate is
stable.

The energy consumption of the cluster for Top_N under Er-
Stream, EvenScheduler and ResourceAwareScheduler is separately
tested. It is calculated by first working out the power consump-
tion of each node, then summing it up. The energy consumption
of each node can be obtained by multiplying the node power
consumption by its running time. The energy consumption under
the schedulers is shown in Figs. 27 and 28.

As shown in Fig. 27, when the data stream rate is stable at
2000 tuple/s, the energy consumption of the cluster for Top_N
under Er-Stream is smaller than that of EvenScheduler and Re-
sourceAwareScheduler. The longer the running time, the more
obvious the gap. We analyze the reason behind Er-Stream’s lower
energy consumption in two main aspects: (1) The impact of



D. Sun, Y. Cui, M. Wu et al. Future Generation Computer Systems 136 (2022) 252–269

r
i
b
t
u
a
R

7

w
s
c
a

7

i
y
m
d
c

p

Table 5
Related work comparison.
Aspects Related works Our work

[24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]

Runtime-aware ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Communication-aware ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Resource constraint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Reliable migration ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Energy consumption ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Fig. 28. Energy consumption of Top_N under increasing input rate.

compute node number on energy consumption under different
scheduling schemes (Er-Stream, EvenScheduler and
ResourceAwareScheduler). (2) The impact of CPU frequency un-
der Er-Stream. It is found that the number of compute nodes
employed by Er-Stream is reduced, compared with other sched-
ulers, and Er-Stream has lower power consumption by adjusting
node’s CPU frequency.

As shown in Fig. 28, when Top_N is running with a low trigger
escheduling factor value (e.g. α = 0), and the data input rate
ncreases from 2000 tuple/s to 4000 tuple/s at the 400 s, it can
e seen that the growth rate of the average energy consump-
ion under Er-Stream, EvenScheduler and ResourceAwareSched-
ler becomes faster after 400 s. Moreover, Er-Stream remains
lower energy consumption compared to EvenScheduler and
esourceAwareScheduler.

. Related work

In this section, we review three major categories of related
ork: stream application deployment optimization, resource con-
traints, and reliable scheduling & energy consumption in stream
omputing. The summary of the comparison between our work
nd other closely related works is given in Table 5.

.1. Stream application deployment optimization

The deployment of tasks for streaming applications is critical
n improving system throughput and reducing latency. In recent
ears, there has been great interest in stream application deploy-
ent on Storm. However, it is challenging to find an optimal
eployment due to the fluctuation of data stream, the processing
apacity of compute nodes and other factors.
In [24], a heuristic scheduling algorithm was proposed to

lace highly communicating tasks on the same compute node
266
to find an optimal task allocation scheme in a heterogeneous
cloud environment. However, data stream volatility and energy
consumption of compute nodes was not considered.

In [25], a workload scheduling strategy based on graph par-
titioning algorithm was proposed to collect the runtime com-
munication behavior of applications and create schedules using
the METIS package for graph partitioning. Both computational
resources of compute nodes and communication between tasks
were considered, however, the scheduling scheme resulted in an
equal amount of tasks processed by each compute node, which
does not correspond to a realistic streaming environment.

In [26], an offline resource-aware scheduler was proposed. The
algorithm used width-first search to rank the application topol-
ogy to reduce inter-node communication and maximize through-
put and resource utilization under user-specified resource con-
straints. However, the drawback is that users were frequently
involved in this process.

In [27], the scheduling problem is modeled as a bin-packing
variant and a heuristic-based algorithm is proposed to mini-
mize the inter-node communication. The algorithm overcame the
limitation of the static resource-aware scheduler. However, the
impact of network characteristics on system performance was not
considered.

In [36], a key/value store was added to each working node
to reduce the granularity of task scheduling, from scheduling
in processes to scheduling in threads. Each worker managed
its own executor, reducing unnecessary overhead. However, the
placement of communication-intensive tasks was not considered.

In [37], a novel predictive scheduling framework was proposed
to enable fast and distributed stream data processing, featured
with topology-aware modeling for performance prediction and
predictive scheduling.

In [28], an adaptive online scheme was proposed to schedule
and enforce resource allocation in stream processing systems,
which guaranteed that the system could achieve less congestion
under heavy load and less resource waste under light load.

In [29], the task assignment problem under stream computing
systems was mainly studied by finding highly communicative
tasks for which tasks were assigned by using graph partition-
ing algorithms and mathematical packages. However, the elastic
variation of the data stream and the energy consumption of the
compute nodes were likewise not considered.

Compared to them, the Er-Stream strategy uses heuristic al-
gorithms to quickly partition the instance graph and uses fewer
compute nodes to run streaming applications, reducing the la-
tency of the system. It is able to dynamically sense and respond
to changes of data stream.

7.2. Resource constraints of stream computing systems

While the impact of network latency on stream computing
performance is substantial, CUP resources on compute nodes are
also a factor that should not be ignored. When the CPU load of one
compute node is too heavy, it will very likely affect the efficiency
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f data processing and even cause the node to go down. Therefore,
t is helpful to optimize the load of a stream computing system.

In [38], an integrated solution is presented for load balanc-
ng, horizontal scaling and operator instance collocation, and the
roblem of load balance is modeled as a Mixed-Integer Linear
rogram to improve the load distribution in computing cluster.
owever, the number of nodes used by the application was not
inimal, resulting in a waste of resources.
In [30], the allocation of priority and non-priority tasks was

ainly considered, using the modified honey bee behavior in-
pired algorithm and the enhanced weighted round-robin algo-
ithm, respectively, which improved the efficiency of resource
tilization. However, the availability of computational nodes was
ot considered in the task migration process.
In [31], a new key-based workload partitioning framework

as proposed. It assigned target worker threads to keys via
ashing and routing strategies and supported dynamic work-
oad assignment for stateful operators. However, this work only
onsidered the short-term fluctuations of the data stream.
In [32], to load balance the system, a cloud-based resource

cheduling scheme was proposed. It dynamically scheduled re-
ources based on the current workload to avoid wasting resources
nd improved the operational efficiency of the system.
In [39], a new flow grouping scheme Partial Key Grouping

PKG) was proposed to optimize the standard hashing method
sing both key division and local load estimation. It solved the
oad imbalance problem to some extent.

Compared to them, Er-Stream is able to sense changes to the
PU load of compute nodes. It ensures the streaming applications
se fewer compute nodes to process data without overloading
PU of the compute nodes.

.3. Reliable scheduling and energy consumption in stream comput-
ng

When the deployment of a task is changed, the reliability of
odes is to be considered to keep the robustness of the system.
he energy utilization can be improved if the energy consumption
f nodes is controlled. In the past years, researchers have been
ptimizing reliable scheduling and energy consumption.
In [40], an Efficient Resource Allocation with Score scheme

ERAS) was proposed to provide reliable task scheduling for a
imited number of heterogeneous virtual machines. It considered
he earliest completion time of the task and the operational avail-
bility of the virtual machine to allocate resources to it. However,
here was still room for improvement in terms of dynamic task
cheduling efficiency.
In [33], an online adaptive framework for sensing runtime

ariations and environmental changes in real-time systems was
roposed, taking soft-error reliability and lifetime reliability into
ccount. In addition, dynamic migration tasks were performed
nder the condition that various constraints were satisfied.
In [34], an energy-aware real-time scheduling on a multi-core

latform was proposed to minimize the expected energy con-
umption by considering processors on the same cluster running
t the same speed and modeling the runtime energy consump-
ion.

In [41], energy efficiency and resource utilization problems
ere studied. In a heterogeneous environment, the processing
peed, energy consumption, and priority of compute nodes are
ifferent. An energy allocation and load balancing strategy based
n data fitting and Lagrangian theory approach was used to solve
hese two problems.

In [35], the problem of allocating and placing resilient re-
ources while satisfying energy cost minimization in a distributed
ystem was investigated and a collaborative strategy was pro-

osed from a system perspective. In addition, a prediction model

267
was incorporated to estimate the system latency by predicting
the future workload.

Compared to them, Er-Stream is able to evaluate node reli-
ability based on factors such as node load. Karush–Kuhn–Tucker
mathematical conditions are used to model node resource utiliza-
tion and energy consumption to minimize node energy consump-
tion of data center.

8. Conclusions and future work

In a fluctuating data stream environment, minimizing network
communication and energy consumption, and keeping nodes
meeting load constraints are the goals of a system implementa-
tion. Achieving these goals relies on the system that can intel-
ligently monitor data stream size and node resource utilization
to adaptively adjust instance deployment, and sense data cen-
ter energy consumption to tailor the CPU frequency of node
accordingly. In this work, we attempt to optimize the system
performance from the perspective of minimizing the network
transmission of data tuples by proposing an energy efficient
and runtime-aware framework, Er-Stream. It handles changes in
data stream and dynamically adjusts the instance migration on
compute nodes, thus optimizing the system performance. At the
same time, it senses the computational resources of each compute
node to adjust the resource allocation, further improving the
system performance. KKT mathematical constraints are used to
model node resources and energy consumption to increase the
energy utilization of the data center.

Currently, there is still room for Er-Stream to improve, e.g. it
does not support state management. In the future, we will fur-
ther:

(1) integrate state migration and fault tolerance into Er-Stream,
making the system more efficient and reliable.

(2) consider more indicators when modeling energy consump-
tion of nodes, such as I/O and memory.

(3) use Er-Stream in real-life large-scale stream computing
environments, such as IoT, Telematics and financial risk
control, to bring the system closer to the commercial sector
and promote the development of community.
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ppendix. Energy saving strategy

In this appendix, we present the process of minimizing cluster
nergy consumption. As discussed in Section 4.4, the problem of
nergy consumption for cluster can be defined as

inimizeEn(f ) =
lengthDn∑

i=1

Eni(fi), (A.1)

subject to

yn1 (f1) ≥ ymin,

yn2 (f2) ≥ ymin,

...

yn(fn) ≥ ymin.

(A.2)

We just need to minimize Eni for each node ni to finally
inimize En(f ). This is a variable optimization problem and It can

be well solved by meeting the Karush–Kuhn–Tucker conditions
(KKT) [21], an optimization method for inequality constraints
problems. For each node, the following is constructed:

L(fi, γ ) = Eni(fi)+ γ
[
ymin − yni (fi)

]
, (A.3)

which can be differentiated to,

∂L(fi, γ )
∂ fi

=
∂Eni(fi)

∂ fi
− γ ·

∂yn i
(fi)

∂ fi
, (A.4)

here,

∂Eni(fi)
∂ fi

= hni · fmax

[
c(κ − 1)f κ−2

i −
Ps
f 2i

]
, (A.5)

nd,
∂yn i

(fi, Lni , θ )
∂ fi

=
Lni

fi · Lni + (1− Lni )
, (A.6)

Equating (A.4) to 0

hni · fmax

[
c(κ − 1)f κ−2

i −
Ps
f 2i

]
=

γ ·
Lni

fi·Lni+(1−Lni )
.

(A.7)

We first analyze the relationship between γ and fi. The La-
rangian factor γ can be treated as a function of fi.

γ (fi) =
hni ·fmax

Lni
·

[
c(κ − 1) · f κ−2

i −
ps
fi

]
·
[
fi · Lni + (1− Lni )

]
,

(A.8)

here (A.9) is a factor of (A.8)

e(fi) =
[
c(κ − 1) · f κ−2

i −
ps
fi

]
. (A.9)

We have

e′(fi) = c(κ − 1)(κ − 2)f κ−3
i +

ps
f 2i

> 0. (A.10)

Therefore, te(fi) is a monotonically increasing function with
respect to fi. Furthermore, (A.11) is another factor of (A.8).

fi · Lni + (1− Lni ), (A.11)

where Lni > 0 and therefore (A.11) is also monotonically increas-
ing with respect to fi. We can consider γ (fi) as a monotonically
increasing function with respect to fi.

Considering Eq. (27), we get

y′ni (fi) =
Lni > 0. (A.12)
fi · Lni + (1− Lni )
268
Therefore, yni (fi) is also a monotonically increasing function
with respect to fi.

According to the above analysis, we can use a binary search to
find the γ value. The frequency of the node corresponding to this

satisfies ymin ≤ yni (fi) ≤ ymin + c , where c is the error factor.
he search range of γ is.

in γ (fi,min) ≤ γ ≤ max γ (fi,max), (A.13)

here min γ (fi,min) is minimum frequencies of the nodes and
ax γ (fi,max) is current frequency of the node.
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