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a b s t r a c t

Advances in sensor technology, personal mobile devices, wireless broadband communications, and Cloud
computing are enabling real-time collection and dissemination of personal health data to patients and
health-care professionals anytime and from anywhere. Personal mobile devices, such as PDAs andmobile
phones, are becoming more powerful in terms of processing capabilities and information management
and play a major role in peoples daily lives. This technological advancement has led us to design a real-
time health monitoring and analysis system that is Scalable and Economical for people who require
frequent monitoring of their health. In this paper, we focus on the design aspects of an autonomic Cloud
environment that collects peoples health data and disseminates them to a Cloud-based information
repository and facilitates analysis on the data using software services hosted in the Cloud. To evaluate
the software design we have developed a prototype system that we use as an experimental testbed on
a specific use case, namely, the collection of electrocardiogram (ECG) data obtained at real-time from
volunteers to perform basic ECG beat analysis.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Advancing the field of health informatics has been listed as one
of the 14 engineering grand challenges for the 21st century [1].
Activities in this field include acquiring, managing, and using
biomedical information, from personal to global levels, to enhance
the quality and efficiency of medical care and the response
to widespread public health emergencies. Particularly, on the
personal level, biomedical engineers envision ‘‘a new system of
distributed computing tools that will collect authorized medical
data about people and store it securely within a network designed
to help deliver quick and efficient care’’ [1].

In this direction, several technological advances and new con-
cepts, such as wearable medical devices, Body Area Networks
(BANs), pervasive wireless broadband communications and Cloud
computing, are enabling advancedmobile health-care services that
benefit both patients and health professionals. Specially, they en-
able the development of a system to perform remote real-time col-
lection, dissemination and analysis of medical data for the purpose
of managing chronic conditions and detecting health emergencies.
For example, by leveraging a mobile phone processing capability,
its integrationwith body sensors, and its Internet access, a personal
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health monitoring system could alert health professionals when
the patient needs attention, or even perform automatic interven-
tion, e.g. trigger automatic release of drugs into the body when
necessary.

The usefulness of a pervasive health information system is clear
to those who require continuous monitoring but often reside far
from their health service provider andhave difficulty attending fre-
quent therapy sessions. This need and the availability of the afore-
mentioned technologies has led us to envision and design a Cloud
computing-based real-time healthmonitoring and analysis frame-
work capable of aidinghealth-care professionals bettermanagepa-
tient bases by reducing or eliminating on-site consultations.

1.1. Challenges and approach

To design a computing system architecture that efficiently sup-
ports the above mentioned objective, numerous challenges need
to be addressed, including scalability and cost restrictions. Cloud
computing fits well as an enabling technology in this scenario as
it presents a flexible stack of computing, storage and software ser-
vices at low cost. We discuss these challenges and explain howwe
tackle them by leveraging various Cloud computing services in our
ECGmonitoring and analysis use case. Specific architectural details
and examples are described in Section 4.

Scalability: In order to support efficient monitoring and auto-
mated analysis of large patient populations, it is essential to have
an infrastructure that provides high throughput, high volume stor-
age and reliable communication. We are especially interested in
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two scalability measures: (a) horizontal scalability – the ability
for a system to easily expand its resource pool to accommodate
heavier load; (b) geographic scalability – the ability to maintain
performance, usefulness, or usability regardless of expansion from
concentration in a local area to a more distributed geographic pat-
tern. Similarly, the system must be able to contract its resource
pool in situationswhen the load decreases. In the Cloud computing
model, the ability of a system to seamlessly expand and contract is
known as elasticity.

In our use case, the system may be used by a variable number
of users located in different locations. In addition, configuration
preferences available in the mobile software allow users to adjust
the reporting frequency in which readings are sent for remote
analysis. Our software architecture must be able to seamlessly
handle the changes that these preferences cause in request pattern.
For this purpose, our architecture encompasses services deployed
at all three layers of the Cloud computing stack, i.e. software,
platform and infrastructure levels.

A scalable web server hosts a Web Service (the system’s front-
end) that receives and manages the distribution of user requests
to subsequent components. At the platform level, we employ
a middleware software that manages available resources and
scheduling of computing tasks onto them. In other words, the
middleware manages the system’s elasticity, scaling computing
resources so that ECG analysis results can be delivered quick
enough to maintain a user acceptable Quality of Service (QoS).
At the infrastructure level, we rely on third-party Infrastructure-
as-a-Service providers, which offer pay-as-you-go computing and
storage services that can be deployed in various geographical
regions.

Economy: Our system offers a Software (ECG monitoring and
analysis) as a Service for public users, who will pay for it on a per-
analysis basis. At the same time, our system is also a consumer
of infrastructure level Cloud services. Cloud computing service
providers charge its users according to a pay-as-you-go model.
There are costs associated with the use of computation, network
bandwidth, storage, software services,monitoring, accounting, and
content delivery. In order to attract and retain end-users, we need
to maintain a high standard of QoS at minimal cost to users, while
minimizing the system’s own underlying cost. To accomplish this
objective, the middleware aims at maximizing resource utilization
by judiciously distributing and redistributing workload to existing
or newly provisioned resources. The challenge in this case is being
able to simultaneously satisfy QoS and lower resource usage cost.

The remainder of this paper is organized as follows: Section 2
lists related work and discusses the uniqueness of our approach;
Section 3 describes the ECG data analysis process and modeling
the problem as a workflow; Section 4 presents details of the
implemented prototype system; Section 5 describes experimental
results; finally, Section 6 concludes our paper listing future work.

2. Related work

The focus of this work is proposing a novel architectural design
and a use case for integrating Cloud and mobile computing tech-
nologies to realize a health monitoring and analysis system. Our
designmakes use of all abstraction levels of the Cloud stack. To the
best of our knowledge there is no work that studies such compre-
hensive integration. However several works in the biomedical en-
gineering and computer science areas approach the automation of
personal health-care systems using similar technologies (i.e. mo-
bile computing, body sensor networks, and high performance
computing).

Jones et al. [2] propose an architecture for mobile management
of chronic conditions and medical emergencies. It focuses on
defining a genericmobile solution, in the sense that it is not limited
to a particular condition but can be adapted to different clinical
applications. It is also designed to be easy to wear and use and
as unobtrusive as possible. Based on this architecture the authors
implemented and trialled two systems, namely: (i) the Personal
Health Monitor, which focuses on personal/local monitoring and
most of the processing is done by the mobile phone itself; and
(ii) MobiHealth, which contains a processing and storage back-
end to suit applications that require higher processing capability.
Our architecture shares many of the objectives of [2], but with a
stronger aim in the processing and storage back-end, which takes
scalability, economy and QoS issues into account.

Analysis of heartbeat waveforms can be time-consuming and
hence automated computer-based processing of ECG data serves
as a useful clinical tool. One of the major tasks to be provided
is the accurate determination of the QRS complex [3]. Several
algorithms have been proposed to accurately detect and classify
these signals by applying various signal processing techniques,
including wavelet transforms [4], neural networks [5], and genetic
algorithms [4] (also refer to Kohler et al. [3] for a comprehensive
survey of QRS complex detection methods). Research in this area
points to the need of more accurate analysis methods, which
usually results in more computing and data intensive techniques.
This fact reinforces the importance of using novel software and
hardware platforms, such as our Cloud-based architecture.

In a more general context, cloud computing technologies have
been evaluated and considered viable to support scientists in their
computational requirements. For instance, Deelman et al. [6] car-
ried out a study to assess the cost of doing science in the cloud by
renting computing and storage resources from Amazon Web Ser-
vices to run a scientific workflow, and concluded that costs could
be reduced with little impact on performance. Technologies, such
as MapReduce and Dryad have also been evaluated in the scien-
tific context to support data analysis problems that traditionally re-
lied on MPI-style parallel programming [7]. Additionally, Amazon
Web Services has recently announced specialized support for high-
performance computing applications through its Cluster Compute
Instances [8], which offer a set of virtual machines linked via a fast
network interconnect.

Ranabahu et al. [9] identified the lack of scaling strategy in
Cloud middleware. They propose a horizontally replicating best
practice that includes a load balancing layer, an application server
layer and a database layer. Their scaling strategy is horizontal
replication and includes rules that trigger replications, very similar
to how we replicate the workflow engine container.

The issue with data security when moving to Cloud computing
is one of the primary challenges [10,11]. It becomes critical
to secure data when they are related to medical history of a
large number of people. Recent work focus on using encryption
techniques and privacy management in Clouds. Chow et al. [11]
described the use of trusted computing and applied cryptographic
techniques to secure data in the Cloud. Li and Ping [12] developed
a trust model for enhancing security and interoperability between
Clouds. Pearson et al. [13] described several architectures for
privacy management in Cloud computing. These works together
with the use of best practices, as proposed by the Cloud Security
Alliance (http://www.cloudsecurityalliance.org), can help secure
private data in the Cloud.

3. ECG data analysis: a case study

Our objective is to propose an architecturally generic Cloud-
based system to accommodate multiple scenarios where patients
need to be remotely monitored and recorded data must be
analyzed by a computing system and become available to be
visualized by specialists or by the patients themselves. Although
our design and prototype are generic to accommodate several use

http://www.cloudsecurityalliance.org
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Fig. 1. A software system that integrates mobile and Cloud computing services.
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Fig. 2. Graphs depicting results obtained after the analysis of a heart beat data (obtained from a volunteer). (a) The ECG time series graph clearly showing the P,Q , R, S and
T points. (b) The RR interval time series graph of the ECG graph plotted in (a).
cases, in this paper, we focus on one motivational case, namely:
the monitoring of patients who suffer from cardiac arrhythmias,
requiring continuous episode detection. Electrocardiogram (ECG)
data from commodity wearable sensors are obtained in real-
time and used to perform episode detection and classification.
Fig. 1 depicts a high level view of the use case considered in this
paper.

ECG is the electrical manifestation of the contractile activity
of the hearts myocardium. The P,QRS and T waves characterize
the ECG waveform, as depicted in Figs. 2 and 3(a). The most
prominent feature is the QRS complex, where R denotes the
peak of QRS complex. The ECG remains the most common non-
invasive method for diagnosing heart diseases. Any disturbance
in the regular rhythmic activity of the heart (amplitude, duration,
and shape of rhythms) is known as arrhythmia. ECG is a low-
cost, non-invasive test for cardiac monitoring, which has become
the common diagnostic tool. Certain cardiac arrhythmias occur
occasionally and up to a few days of ECG recording may be
required using a Holtermonitor in order to capture these beats and
episodes. However, Holter monitors are used to record ECG data
only and the analysis is performed offline. Therefore, a continuous
cardiac monitoring and online analysis system could detect these
rare episodes of cardiac arrhythmias as they occur. Identifying an
arrhythmia requires the classification of heartbeats. The rhythm of
the ECG signal can then be determined through the classification
of consecutive heartbeats.

The overall functionality of an ECG monitoring and analysis
system involves the following steps:
1. A patient is equipped with a wireless ECG sensor attached to
their body and amobile device that is capable of communicating
to the Internet;

2. The wireless ECG sensor module collects patient’s data and for-
wards it themobile device via Bluetoothwithout user interven-
tion;

3. A client software in the mobile device transmits the data to
the ECG analysis Web Service, which is hosted by a Cloud
computing-based software stack. This communication can hap-
pen with a home wireless gateway or directly via the mobile’s
data connectivity (e.g. mobile 3G network);

4. The analysis software carries out numerous computations over
the received data taking the reference from the existing de-
mographic data, and the patient’s historic data. Computations
concern comparison, classification, and systematic diagnosis of
heartbeats, which can be time-consuming when done for long
time periods for large number of users;

5. The software then appends the latest results to the patient’s
historic record maintained in private and secure Cloud-based
storage, so that authenticated users can access it anytime from
anywhere. Physicians will later interpret the features extracted
from the ECG waveform and decide whether the heartbeat be-
longs to the normal (healthy) sinus rhythm or to an appropriate
class of arrhythmia;

6. The diagnosis results are disseminated to the patient’s mobile
device and/or monitor, their doctor and/or emergency services
at predefined intervals;

7. The monitoring and computing processes are repeated accord-
ing to the user’s preference, which may be hourly or daily over
a long period of time.
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Fig. 3. A workflow depicting ECG analysis.

Table 1
Description of tasks used in ECG analysis.

Task name Description

wrsamp Reads the raw data to produce a binary file with specified
sample frequency, gain, format, etc.

ann2rr Creates an annotation file from ECG data; creates RR interval
series from ECG annotation files

ihr Reads an annotation file and produces an instantaneous
heart rate signal

Plot graph Plots the graphs of the heart rate signal, RR interval, etc.

Fig. 3 depicts a workflow for a simple analysis of ECG data.
We chose this analysis process by referencing the PhysioNet
tutorial [14]. This analysis process serves as a general analysis (not
a clinical diagnosis) as also outlined by several authors [15,16]. An
in-depth analysis of ECG data is out of scope for this paper.

The raw ECG data are the numerical readings of the signals
obtained by placing electrodes at the limbs of a subject. The data
is fed into the workload of computational tasks. Table 1 briefly
describes the role of each of task.

The results (numerical data and graphs) obtained after the
execution of the ECG application are all stored in a Cloud storage.
Fig. 2 depicts two of these results. They are organized and stored
in the Cloud storage according to user details such as: user-id,
age, gender, sleep time, etc. Categorizing the data helps in further
analysis of the results at the comparison stage.

Apart from the ECG analysis, Fig. 3 also depicts user directed
commands, such as: store & analyze, compare, and plot/retrieve
graphs. Store & analyze is issued by the mobile client without the
user’s intervention at regular intervals. This command initiates the
process starting from sampling the ECG data (wrsamp) to plotting
the graphs and storing in the Cloud storage. Medical practitioners
(also applicable for users), who want to analyze historic data of
patients, can issue the ‘compare’ command to compare all available
ECG data of any patient. The ‘plot/retrieve graph’ command simply
returns already computed results to the user by retrieving them
from the Cloud storage. These set of functions used in theworkflow
are for demonstration purposes only and thus can be expanded
according to user requirements.
4. System design

The advent of Cloud computing has enabled us to host the
software pack that analyses ECG data as Software-as-a-Service
(SaaS). The SaaS layer contains the tools for conducting custom
designed analysis of current and historic ECG data of all users. We
depict this in Fig. 4, where the boxes represent the SaaS, PaaS, and
the IaaS layers, in top–down order, respectively. This software is
hosted as a web-service such that any client-side implementation
can simply call the underlying functions (analyze, upload data, etc.)
without having to go through the complexities of the underlying
application. The PaaS layer controls the execution of the software
using three major components: (i) Container scaling manager, (ii)
Workflow Engine [17], and (iii) Aneka [18].

Theworkflow engine [17] is hosted inside a container (e.g. Tom-
cat container). The engine manages the execution of tasks of the
ECG application workflow depicted in Fig. 3. As the number of re-
quests fromusers grow, the container scalingmanager instantiates
more containers so that the user requests are distributed to work-
flow engines. This load balancing is done at run-time based on two
parameters: (i) the number of requests queued at anyworkflowen-
gine waiting to be scheduled, (ii) the average number of requests a
container managed within a certain period of time (e.g. 1 h).

Theworkflow engine packages the tasks thatwere created from
user requests and submits them to Aneka. Aneka is a workload dis-
tribution andmanagement platform (PaaSmiddleware) that accel-
erates applications in Microsoft.NET framework environments. As
Aneka does not differentiate the tasks submitted by the workflow
engine, it submits any task waiting in its queue to the first avail-
able resource. Aneka is thus responsible to handle the communi-
cation between the underlying infrastructure layer (IaaS) and the
PaaS layer using amaster–worker framework. The Anekamaster is
the service running in the PaaS layer, whereas the Aneka workers
are the application executors installed in every VM instantiated at
the infrastructure level.

The ‘‘Dynamic Scalable Runtime’’ (DSR) module, which we im-
plemented as part of Aneka scheduling environment, is respon-
sible for maintaining the QoS of the applications running as SaaS
(e.g. ECG analysis software). For the ECG application, the ‘response
time’ is the only QoS parameter we take into account in this pa-
per. The DSRmodule keeps track of response time of tasks submit-
ted in the past (limited time-frame), averages them and makes a
decision whether to instantiate more VMs if the average response
timehas increased, or to shut downand release VMs if the response
time has decreased than a pre-specified threshold value. This sim-
ple dynamic scaling in/out of VMs helps maintain the user-defined
response time.

We propose the use of a trusted third party/certification
authority to implement a Public Key Infrastructure (PKI) based
authentication and authorization system. Using PKI, any data being
interchanged between the application layer and the middleware
can be encrypted/decrypted. Similarly, data can be encrypted using
the keys from CA before storing on Cloud storage. This way, even
when a malicious user, who has administrative privileges, at the
IaaS layer tries to access the stored data, he would need access to
the decryption keys from the CA, which he would not be able to
get impersonating an existing SaaS user. Hence, assuming that the
PKI system is secure, any data interchanged and storedwhen using
Cloud-based systems can be considered secure. Work on securing
data on Clouds is emerging, as also mentioned in Section 2. The
prototype system and the experimental results presented in this
paper does not utilize this security infrastructure. However, we
would like to explore this area in greater detail in our future
work.
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Fig. 4. Components of the personal health monitoring system.
Table 2
Characteristics of computing resources used in the experiment.

HW–SW Aneka master Aneka workers Workflow engine running under tomcat containers

CPU 2 virtual cores with 2.5 EC2 Computing Units 1 virtual core with 1 EC2 Computing Unit 4 Cores Intel(R) Xeon(TM) 2.80 GHz
Memory 1.7 GB 1.7 GB 2 GB
Storage 320 GB 160 GB 320 GB
Platform 32 bit Windows 32 bit Windows 64 bit Linux
5. Performance analysis

In this section, we present the experimental results obtained
as part of a demonstration at the Third IEEE International Scalable
Computing Challenge (SCALE 2010) held in conjunction with the
10th IEEE International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2010),Melbourne, Australia, May 17–20, 2010.

5.1. Experiment setup

Table 2 lists the characteristics of the computing resources we
used during our experiment. We hosted the Aneka PaaS layer on
Amazon EC2 infrastructure, scaling manager and the workflow
engine on a machine located at the University of Melbourne. Both
Aneka master and worker nodes were hosted in Amazon EC2.

What is the problem? With a fixed number of computing re-
sources (worker nodes) and a fixed number of application man-
agers (Workflow Engine running in a fixed number of Tomcat
Containers), it is not possible to simultaneously handle an increas-
ingly large number of user requests and satisfy quality of service
requirements (QoS = response time in our application scenario).

Proposed solution: Dynamically scale out/in the worker nodes
and the application manager so that any number of user requests
can be served in parallel by dynamically created VM instances.

We implemented a simple heuristic to support our solution in
the DSR module depicted in Fig. 4:

1. If the ‘average’ observed user response time (e.g. in the last 1 h)
is above the threshold value (1min), instantiatemore resources
(worker nodes) until the response time decreases below the
threshold.

2. If user requests are not forwarded to the Aneka Cloud timely
(indicated both by an increase in thenumber of requests queued
and a decrease in the utilization of the Aneka Cloud), instantiate
more containers with workflow engine at the PaaS layer until
Aneka resource utilization increases to more than K% (e.g. 20%)
of the previous value in the same time interval.

We group our experiments into the following four setups:
Setup 1: We fix the number of Amazon EC2 resources to 25

VM instances and increase user requests from 80 to 2000 over
time.We thenmonitor the response time of each of these requests.
We depict the response time for this scenario in Figs. 5 and 6 by
labeling the tasks (points in the graph) as Setup 1 - Static.

Setup 2: We use a simple dynamic resource allocation policy
to instantiate Amazon EC2 resources at run-time based on the
response time (up to a maximum of 50 VMs) and increase user
requests from 80 to 2000. We then monitor the response time for
each request. We depict the response time for this setup alongside
the static setup in Fig. 5 and Fig. 6. The tasks for this setup are
labeled as Setup 2 - Dynamic.

Setup 3: We use only one container running the workflow
engine that accepts all the user requests to be forwarded to Aneka.
The response time for this scenario is depicted in Fig. 7(a).

Setup 4: We use multiple containers, each running a workflow
engine. The container scaling manager decides the instantiation
of these containers according to the number of user requests, as
described in Section 4. The response time obtained for this scenario
is depicted in Fig. 7(b).
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(a) Number of user requests were low ( <80 requests). (b) Number of user requests were increased gradually up to 2000 requests.

Fig. 5. Response time (QoS) when using either static or dynamic resource provisioning policy for varying user requests. Solid lines represent the general trend.
(a) Number of user requests were increased aggressively up to 2000 requests. (b) Number of user requests were increased at the highest rate, up to 2000
requests.

Fig. 6. Response time (QoS) when using either static or dynamic resource provisioning policy for varying user requests. Solid lines represent the general trend.
(a) Response time when not using a container scaling manager. (b) Response time when using a container scaling manager.

Fig. 7. Response time depends on the use of container scaling manager.
5.2. Description of results

Setup 1 represents a non-scalable and costlymethod for execut-
ing the ECG application. The computing resources are fixed to 25
computing nodes (VMs), all the VMs are initially instantiated and
there is no means of adding more VMs even when the response
time increases due to an increasing number of user requests. Ini-
tially, when the number of user requests were low (∼80 requests),
the response time gradually increased from 30 s to 90 s, within
the first 30 s of job submission (Fig. 5(a)). We then increased the
number of user requests to up to 2000 gradually and monitored
the response timewithin the first 300, 600, and 2500 s, as depicted
in Fig. 5(b) and 6(a), (b).

In Setup 2, we used a simple dynamic resource provisioning
policy so that we could scale in/out according to the response time
and also reduce the cost of using Cloud resources. Initially, we
startedwith 2 VMs serving asworker nodes. This resulted in higher
response time for user requests less than 80 than in the static
case (Fig. 5(a)). But, when the response time started to increase,
the dynamic provisioning policy added more worker nodes to the
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Table 3
Difference between minimum Response Time (minRT) and Maximum Response
Time (MaxRT) when using static (25 VMs) vs. dynamic (up to 50 VMs) resource
provisioning policies. (%Imprv. = Improvement).

#Tasks 25-minRT 50-minRT %Imprv. (%)

80 25 15 40
160 40 25 37.5
320 50 50 0
640 55 50 9

2000 200 100 50

system. This runtime provisioning helped decrease the response
time, as clearly indicated by the rise and fall of the response time
in Fig. 5(a). Similar to Setup 1,we continued to increase the number
of user requests andmonitored the response time for 300, 600, and
2500 s.

Table 3 compares the response time between Setup 1 and
Setup 2. In this table, 25-minRT represents the minimum response
time when using 25 computing resources (Setup 1), and 50-minRT
represents the minimum response time when using up to 50
computing resources (Setup 2). Obviously, the response time we
recorded using dynamic provisioning policy (Setup 2) was lower
than that given by the static setup (Setup 1) for large number of
requests. This is because Setup 2 could provision an additional 25
VMs than Setup 1 that processed user requests.

When using static provisioning, the system fails to maintain
low response time when the system receives large number of
requests. For example, in Fig. 5(b) and Fig. 6, as we increased the
number of requests, the static provisioning policy took a longer
time to complete the requests with a higher response time than
the dynamic provisioning policy. In contrast, when we used the
dynamic provisioning policy, the system scaled out depending on
the number of requests, and the overall response time became
much lower than when using static provisioning, as shown by
Fig. 5(d).

But, the dynamic provisioning policy performed poorly for a
short period of time, when the number of requests were low (≤ 80
in our experiment). Fig. 5(a) shows the addition of new VMs when
the response time increases beyond 1 min. This addition was able
to decrease the response time for some time (10more seconds), but
as the number of requests grew, the system could not distribute
the load well as the dynamic provisioning policy did not have
enough resources available (Setup 2) at that point in time, as it
takes time to provision addition resources. On the other hand, the
static provisioning policywas able to sustain the load as therewere
25 resources on standby for use (Setup 1).

The advantage of using dynamic provisioning over static
provisioning technique can also be identified from Fig. 5 and Fig. 6
when we compare the maximum response time of a majority of
the tasks. Most of the tasks (excluding the outliers) that used
Setup 2 (dynamic environment) produced a maximum response
time lower than those tasks that were executed using Setup 1
(static environment). This improvement in system performance
ultimately reduces the amount of time most users wait for
obtaining the ECG analysis results.

In Setup 3, we used a single container to handle all the 2000
tasks submitted by users. Even though tasks were submitted
gradually (not all at the same time), majority of the tasks got
queued at the workflow engine and did not get submitted for
execution. This is evident by a sharp rise in response time at
the beginning for all the tasks as depicted in Fig. 7(a). The figure
includes three independent executions plotted in the same graph
(square, triangle, and a cross represent ECG analysis tasks) to
emphasize the similar nature of the response time for repeated
executions. As time progressed, tasks started to complete and the
response time decreased from nearly 3000 s to 1̃800, as visible
from the negative slope of the graph of Fig. 7(a). This was a clear
indication that the workflow engine was the bottleneck and hence
prevented the scalability of the system irrespective to the number
of computing resources used.

Realizing the limitation of Setup 3, we decided to dynamically
scale out/in the number of Workflow Engines running so that the
load (user requests) could be balanced across each of the running
containers. We could achieve a gradual increase in response time
as the number of user requests increased, as depicted in Fig. 7(b).
This showed that our system could achieve both user-request
parallelism (using multiple workflow containers) and process
parallelism (using dynamic provisioning of computing resources).

6. Conclusions and future work

In this work, we presented an autonomic system that integrates
mobile computing and Cloud Computing for analyzing ECG data.
We started by describing challenges end-user applications are
facing when using traditional computing and service model. Our
system addresses the issues related to scalability and cost in a
non-disruptive manner. We demonstrate this with the help of
an ECG Analysis application. We have implemented a prototype
of the system, obtained real data from volunteers, and also
demonstrated a working system in the Third IEEE International
Scalable Computing Challenge (SCALE 2010), Australia,May 17–20,
2010.

As part of our ongoingwork, we areworking on heuristic-based
techniques that minimize the cost of using Cloud resources while
maintaining user QoS satisfaction. This could be done by Cloud
resource provisioning, matchmaking, and user allocations based
on user priority and varying Cloud resource costs. We are also
exploring techniques to address problems related to data security
while using distributed Cloud storage.
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