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This paper presents the design, implementation and evaluation of a dataflow system, 

including a dataflow programming model and a dataflow engine, for coarse-grained 

distributed data intensive applications. The dataflow programming model provides users 

with a transparent interface for application programming and execution management in a 

parallel and distributed computing environment. The dataflow engine dispatches the tasks 

onto candidate distributed computing resources in the system, and manages failures and 

load balancing problems in a transparent manner. The system has been implemented over 

.NET platform and deployed in a Windows Desktop Grid. This paper uses two 

benchmarks to demonstrate the scalability and fault tolerance properties of our system. 

1.   Introduction 

Due to the growing popularity of networked computing environments and the 

emergence of multi-core processors, parallel and distributed computing is now 

required at all levels of application development, from desktops to Internet-scale 

computing environments, such as Grid [6] and P2P. However, programming on 

distributed resources, especially for parallel applications, is more difficult than 

programming on centralized environment. There are many research systems that 

simplify distributed computing. These include BOINC [3], XtremWeb [5], 

Alchemi [1], and JNGI [9]. These systems divide a job into a number of 

independent tasks. Applications that can be parallelized in this way are called 

“embarrassingly parallel”. However many algorithms can not be expressed as 

independent tasks because of internal data dependencies.  

The work presented in this paper aims towards supporting advanced 

applications containing multiple tasks with data dependency relationships. Many 

resource-intensive applications consist of multiple modules, each of which 

receives input data, performs computations and generates output. Scientific 

applications for this nature include genomics [16], simulation [8], data mining 
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[12] and graph computing [18]. In many cases for these applications, a 

module’s output becomes an input other modules. A coarse grained dataflow 

model [19] can be used to describe such applications. 

We use a dataflow programming model to compose a dataflow graph for 

specifying the data dependency relationship within a distributed application. 

Under the dataflow interface, we use a dataflow engine to explore the graph to 

schedule tasks across distributed resources and automatically handle the 

cumbersome problems, such as scalable performance, fault tolerance, load 

balancing, etc. Within this process, users do not need to worry about the details 

of processes, threads and explicit communication. 

The main contributions of this work are: 1) A simple and powerful dataflow 

programming model, which supports the composition of parallel applications for 

deployment in a distributed environment; 2) An architecture and runtime 

machinery that supports scheduling of the dataflow computation in dynamic 

environments, and handles failures transparently; 3) A detailed analysis of 

dataflow model using two sample applications over a Desktop Grid.  

The remainder of this paper is organized as follows. Section 2 provides a 

discussion on related work. Section 3 describes the dataflow programming 

model with examples. Section 4 presents the architecture and design for a 

dataflow system over .NET platform. Section 5 presents experimental evaluation 

results. Section 6 concludes the paper with pointer to future work. 

2.   Related Work 

Dataflow concept was first presented by Dennis et al. [19]. Since then several 

researchers have investigated various aspects of dataflow models for parallel and 

distributed systems and applications. As the pure dataflow is fine-grained, its 

practical implementation has been found to be an arduous task. Thus optimized 

versions of dataflow models have also been presented, including dynamic 

dataflow model and synchronous dataflow model [10]. Its usage continued to 

investigate for coarse-grained parallel applications.  

River [13] provides a dataflow programming environment for scientific 

database like applications on clusters through a visual interface. River focuses 

on solving transient heterogeneity problems rather than fault tolerance problem 

in dynamic environment. 

Grid systems such as Condor [4], Gridbus Workflow Engine [21], and 

Pegasus [20]   provide mechanisms for workflow scheduling. Workflow systems 

are trying to seek opportunities for concurrency at the level of tasks. However, 

how to easily achieve the concurrency within each task has been ignored. Kepler 

[15] provides a graph based interface for scientific workflow scheduling, and 

Grid superscalar [14] allows users to write their applications in a sequential way. 

However they do not focus on handling failures. 

MapReduce [7] is a cluster middleware designed to help programmers to 

transform and aggregate key-value pairs by automating parallelism and failure 
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recovery. Their programming model can also be taken as a fixed static dataflow 

graph. 

3.   Programming Model 

Dataflow programming model abstracts the process of computation as a 

dataflow graph consisting of vertices and directed edges. 

The vertex embodies two entities: 

a) The data created during the computation or the initial input data; 

b) The execution module to generate the corresponding vertex data. 

The directed edge connects vertices, which indicates the dependency 

relationship between vertices. A vertex, takes its dependent vertices as its inputs. 

A vertex is an initial vertex if there are no edges pointing to it but it has 

edges pointing to other vertices; correspondingly, a vertex is called a result 

vertex if it has no edges pointing to other vertices and there are some edges 

pointing to it. An initial vertex does not have an associated execution module. 

Our current programming model focuses on supporting a static dataflow 

graph for SPMD (Single Program Multiple Data) applications, which means the 

number of vertices and their relationships are known before execution. We 

expect the graph to be a Directed Acyclic Graph (DAG). 

3.1.   Namespace for vertices 

Each vertex has a unique name in the dataflow graph. The name consists of 3 

parts: Category, Version and Space. Thus, the name is denoted as <C, T, S>. 

Category denotes different kinds of vertices; Version denotes the index for the 

vertex along the time axis during the computing process; Space denotes the 

vertex’s index along the space axis during execution. In the following text, we 

call vertex name as name.  

3.2.   Dataflow library API 

3.2.1.   Specifying Execution Module 

To specify instructions/code to be executed, which is called execution module 

and used to generate the output for each vertex, users need to inherit the Module 

class in dataflow library for writing each vertex’s execution code. In particular, 

users need to implement 3 virtual functions: 

• ModuleName SetName() : specify a name for the execution module, 

which is used as an identifier during editing the data dependency graph. 

• void Compute(Vertex[] inputs) : implemented by users for generating 

output taking input vertex data. The input data is denoted by inputs. 

Each element of inputs consists of a name and a data buffer. 

• byte[] SetResult():called by the system to get the output data after 

Compute() is finished. 
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3.2.2.   Composing Dataflow Graph 

The dataflow API provides two functions for composing the static data 

dependency graph: 

• CreateVertex(vertex, ModuleName) : is used to specify the name and 

corresponding execution module for each vertex. 

• Dependency(vertex, InputVertex): is used to add y as x’s dependent 

vertex. 

Two functions are provided to set the initial and result vertices as follows: 

• SetInitialVertex(vertex, file) 

• SetResultVertex(vertex, file) 

3.3.   Example 

Given the matrix vector iterative multiplication, V
t
=M*V

t-1
. We partition the 

matrix and vector by rows into m pieces respectively, as                .                      . 
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Figure 1: Dataflow graph for the i-th vector piece. 

 

The corresponding dataflow graph is illustrated by Figure 1. To name 

vertices, Category = M denotes the matrix vertices and Category = V denotes the 

vector vertices. For i-th vector vertex, the data relationship should be specified 

as:  <V, t, i>←{<M, 0, i>, <V, t-1, j>} (j=1…m). 

4.   Architecture and Design 

This section describes a dataflow architecture designed for a Windows Desktop 

Grid consisting of commodity PCs based on .NET platform. The environment 

consists of idle desktops that are used for computing but drop out of the system 

as soon as interactive programs are started by the users on them. Such nodes can 

rejoin the system when they are idle again. 

4.1.    System Overview 

The dataflow system consists of a single master and multiple workers as 

illustrated in Figure 2. The master is responsible for accepting jobs from users, 

organizing multiple workers to work cooperatively, sending executing requests 

to workers and handling failures of workers. Each worker contributes CPU and 

disk resources to the system and waits for executing requests from the master. 
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4.2.   The Structure of the Master 

The master is responsible for monitoring the status of each worker, dispatching 

ready tasks to suitable workers and tracking the progress of each job according 

to the data dependency graph. On the master, there are 4 key components:  

• Membership component: maintains the list of available worker nodes. When 

some nodes join or leave the system, the list is updated correspondingly. The 

membership is maintained through heartbeat signal between master and 

workers. The heartbeat signal also carries the status information about the 

worker, such as CPU, memory and disk usage. 

• Registry component: maintains the location information for available vertex 

data. In particular, it maintains a list of indices for each available vertex data. 

Each vertex has an index, which lists workers that hold its data.  

• Dataflow Graph component: maintains the data dependency graph for each 

job, keeps track of the availability of vertices and explores ready tasks. 

When it finds ready tasks, it will notify the scheduler component. 

• Scheduler component: dispatches ready tasks to suitable workers for 

executing. For each task, the master notifies workers of inputs & initiates the 

associated execution module to generate the output data.  
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Figure 2: Architecture of dataflow-based desktop Grid computing system. 

4.3.   The Structure of a Worker 

Workers work in a peer to peer fashion. To cooperate with the master, each 

worker has two functions: executing upon requests from master and storing the 

vertex data. Correspondingly there are 2 important components on each worker:  

• Executor component: receives executing requests from the master, fetches 

input from the storage component, generates output to the storage 

component and notifies master about the available vertex of the output data. 

• Storage component: is responsible for managing and holding vertex data 

generated by executors and providing it upon requests. Actually the storage 

components across workers run as a distributed storage service. To handles 

failures, upon request from master, the storage component can keep data 
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persistently locally or replicate some vertices on remote side to improve the 

reliability and availability. 

4.4.   System Interaction 

Upon receiving submission from users, including the dataflow graph and 

execution modules, the master node will create an instance as a thread for each 

module. Based on .NET platform, the master serializes the execution module as 

an object, and then sends it to workers when dispatching vertices executing. 

To begin the execution, master node first sends the initial vertex to workers. 

When a worker receives the vertex, its storage component will keep it, and then 

notifies the registry component through an index publishing message. 

Every time the registry component receives an index publishing message for 

vertex x, it updates x’s index and then notifies the dataflow graph component to 

check if there is a vertex execution waiting x. If so, the ready vertex will be 

scheduled as an executing task. The scheduling component sends the executing 

request to candidate workers. The execution request carries the serialized object 

of corresponding execution module, and the location information of the input 

vertex data. After receiving it, the worker first fetches the input data, and then 

un-serializes the execution object and executes it. 

To improve the scalability of the system, workers transfer vertex data in a 

P2P manner. Whenever the executor component receives an executing request 

from master node, it sends a fetch request to the local storage component. If 

there is non local copy for the requested data, the storage component will fetch 

the data from remote worker according to the location specified in the executing 

request. After all the input data is available on the worker node, the executor 

component creates a thread instance for the execution module based on the 

serialized object from the master, feeds it with the input vertices and starts the 

thread. After the computation finishes, the executor component saves the result 

vertex into local storage component and notify the registry component. 

The storage component keeps hot vertex data in memory while holding cold 

data on disk. The vertex data will be dumped to disk asynchronously when there 

is a need to reduce memory space. Worker schedules the executing and network 

traffic of multiple tasks as a pipeline to optimize the performance.  

4.5.   Fault Tolerance 

In our Desktop Grid environment, besides physical failure (node cannot work 

due to software or hardware problems), we frequently face soft failure. Soft 

failure occurs when higher priority users demand node resources and the 

dataflow system yields. We use same mechanisms handling both failures. 

4.5.1.   Worker Failure 

The master monitors status for each task dispatched to workers. Each vertex task 

has 4 statuses: unavailable, executing, available and lost. Unavailable and lost 

means no any copy exists in the dataflow storage for the vertex. the difference 

between these two statuses is unavailable is specified to the vertex which is 
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never generated before, while lost means the vertex has been generated before 

but now lost due to worker failures. Available means that at least one copy for 

the vertex is held by some storage component in the dataflow system. Executing 

the vertex has been scheduled to some worker but still not finished. 

The failure of a worker/node leads to termination of the task it is processing 

and the master needs to re-schedule such tasks elsewhere. Furthermore, since the 

vertex data on the failure worker will not be accessible again, the master node 

will need to regenerate them if there are some unavailable tasks are eventually 

dependent on them. 

When the master detects that a worker has failed, it notifies the registry 

component to remove the failed worker from indices. During the removing 

process, status of some of the vertices will change from available to lost. For the 

lost vertices, if they are directly dependent by some executing or unavailable 

vertex tasks, we need to regenerate them to continue the execution. The 

rescheduled tasks may be dependent on other lost vertices, and eventually cause 

domino effects. For some extreme cases, the master node may need to re-send 

the initial vertices to continue the execution. 

Generally, rescheduling due to the domino effect will takes considerable 

time. The system replicates vertices between workers to reduce rescheduling. 

This is a feature triggered by the configuration of the master. If replication 

feature is set, the registry component will choose candidate workers to replicate 

the vertex after it receives the first publishing message for that vertex. 

Replication algorithm needs to take load balancing into consideration. 

Replication causes additional overhead. If we take vertices under same 

version as a checkpoint for the execution, it is not necessary for us to replicate 

every checkpoint. It is better for users to specify a replication step. It is called as 

n step replication if users want to replicate the vertices every n versions. Under 

failure cases, there is a tradeoff between replication steps and executing time. 

4.5.2.   Master Failure 

Generally master is running over a dedicated node, it may experience physical 

failures, but seldom has soft failures. To handle this, it frequently writes its 

internal status, including data structure in registry component, scheduler 

component and graph component to disk and then replicate the internal status to 

other node. After the master node fails, we could use the backup version to start 

a new master and continue the computation. 

4.6.   Scheduling 

In the current design, the scheduling is performed by the master giving priority 

to locality of data [11] and performance history of workers [17].  For an efficient 

scheduling, the size of each input vertex data and computing power, i.e. CPU 

frequency, are taken as the measure for load balancing. The scheduler collects 

the related performance information for each execution module, such as the 

input data size and time consumed. Based on this history information, we can 

predict the execution time for the execution module which has been scheduled. 
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5.   Performance Evaluation 

In this section, we evaluate the performance of the dataflow system through two 

experiments running in a Windows Desktop Grid deployed in Melbourne 

University and shared by students and researchers. 

5.1.   Environment Configuration 

The evaluation is executed in a Desktop Grid with 9 nodes. During testing, one 

machine works as master and the other 8 machines work as workers. Each 

machine has a single Pentium 4 processor, 500MB of memory, 160GB IDE disk 

(10GB is contributed for dataflow), 1 Gbps Ethernet and ran Windows XP. 

5.2.   Testing Benchmarks 

We use two examples as testing programs for the evaluation. These examples 

are built using the dataflow API. 

(a) Matrix Multiplication 

In this benchmark one matrix is multiplied with another one. Each matrix 

consists of 4000 by 4000 randomly generated integers. We partition matrix into 

square blocks with two granularities: 250 by 250 block and 125 by 125 block. 

The firs granularity of partition generates 16*16 blocks (255KB per block), 

and, the second one generates 32*32 blocks (63KB per block). 

(b) Matrix Vector Iterative Multiplication 

In this benchmark, one matrix is multiplied with one vector in an iterative 

manner. The matrix consists of 16000 by 16000 random integers, and the vector 

consists of 16000 random integers. The matrix is about 1GB and the vector is 

64KB. The matrix and vector are partitioned by rows. Two granularities for 

partition are adopted in the evaluation: 24 stripes and 32 stripes. 

For 24 stripes, the matrix and the vector are respectively partitioned by rows 

into 24 pieces. So there are 1200 vertices are generated. For 32 stripes, there are 

1600 vertices are generated. 

5.3.   Scalability of Performance 

Figure 3 illustrates the speedup of performance with an increasing number of 

workers. We can see that under same vertex partition settings as more workers 

are involved in the computation, better performance is obtained. On the other 

hand, overheads such as connections with the master also increase with the 

number of workers. So the speedup line is not ideal.  

The matrix vector multiplication benchmark illustrates a super linear 

speedup phenomenon for one worker. The reason is one computer has only 

500MB memory and is not enough to hold 1GB matrix. The swapping overhead 

causes reduction in performance, where this is not the case with parallelism as 

data is distributed across multiple workers.  

One expectation of partition granularity is that more partitions will introduce 

additional overhead during execution. 
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Figure 3: Scalability of performance. 

5.4.   Handling Worker Failure 

This section evaluates the mechanisms dealing with worker failure, including 

replication and rescheduling. We use iterative matrix vector multiplication with 

24 partitions and 100 iterations. In total, 2400 vertices are generated during the 

testing. As vertices created have same size, we measure the vertices number. 

8 workers and 1 master involve in the testing. We first collect the number of 

vertices without worker failures and replication, as the first line in Figure 4. The 

whole testing lasts for about 4 minutes. Within the initial phase, where the line is 

nearly flat, the master node sends initial vertices to workers. It is a sequential 

process. After that, the execution begins and the slope of vertices number line 

increases heavily. After all vertices are created, the line changes to flat. 
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Figure 4: Handling worker failures with replication and re-execution. 

 

Next we add one worker failure in the testing. We unplug one worker’s 

network cable to simulate its failure at around the 4th minute. When we do not 

take replication, one worker failure causes some vertices to be lost, illustrated by 

the 2nd line. Once the master detects the failure, it will dispatch live workers to 

regenerate lost vertices and then continue the execution. So there is a big drop at 
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the 230th second in the 2nd line. After generation of lost vertices, only 7 

workers are available, so the slope is smaller than the one before the drop point. 

Then we add replication mechanism to handle the failure. We test two 

settings: 1-step and 2-step replication. Compared with no replication, 2-step 

replication has only a small drop during the failure while 1 step replication has 

no drop. Eventually we can see replication mechanism effectively reduces the 

time consumed for regenerating lost vertices. 

6.   Conclusion 

We presented a dataflow computing platform within shared cluster environment. 

Through a static dataflow interface, users can freely express their data parallel 

applications and easily deploy applications in distributed environments. The 

mechanisms adopted in our system support scalable performance and 

transparent fault tolerance. We plan to incorporate dataflow model into Alchemi. 
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