
1

A DATAFLOW MODEL FOR .NET-BASED GRID

COMPUTING SYSTEMS

CHAO JIN, RAJKUMAR BUYYA

Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering

the University of Melbourne, Melbourne, VIC, Australia

LEX STEIN, ZHENG ZHANG

System Research Group

Microsoft Research Asia, Beijing, China

This paper presents the design, implementation and evaluation of a dataflow system,

including a dataflow programming model and a dataflow engine, for coarse-grained

distributed data intensive applications. The dataflow programming model provides users

with a transparent interface for application programming and execution management in a

parallel and distributed computing environment. The dataflow engine dispatches the tasks

onto candidate distributed computing resources in the system, and manages failures and

load balancing problems in a transparent manner. The system has been implemented over

.NET platform and deployed in a Windows Desktop Grid. This paper uses two

benchmarks to demonstrate the scalability and fault tolerance properties of our system.

1. Introduction

Due to the growing popularity of networked computing environments and the

emergence of multi-core processors, parallel and distributed computing is now

required at all levels of application development, from desktops to Internet-scale

computing environments, such as Grid [6] and P2P. However, programming on

distributed resources, especially for parallel applications, is more difficult than

programming on centralized environment. There are many research systems that

simplify distributed computing. These include BOINC [3], XtremWeb [5],

Alchemi [1], and JNGI [9]. These systems divide a job into a number of

independent tasks. Applications that can be parallelized in this way are called

“embarrassingly parallel”. However many algorithms can not be expressed as

independent tasks because of internal data dependencies.

The work presented in this paper aims towards supporting advanced

applications containing multiple tasks with data dependency relationships. Many

resource-intensive applications consist of multiple modules, each of which

receives input data, performs computations and generates output. Scientific

applications for this nature include genomics [16], simulation [8], data mining

 2

[12] and graph computing [18]. In many cases for these applications, a

module’s output becomes an input other modules. A coarse grained dataflow

model [19] can be used to describe such applications.

We use a dataflow programming model to compose a dataflow graph for

specifying the data dependency relationship within a distributed application.

Under the dataflow interface, we use a dataflow engine to explore the graph to

schedule tasks across distributed resources and automatically handle the

cumbersome problems, such as scalable performance, fault tolerance, load

balancing, etc. Within this process, users do not need to worry about the details

of processes, threads and explicit communication.

The main contributions of this work are: 1) A simple and powerful dataflow

programming model, which supports the composition of parallel applications for

deployment in a distributed environment; 2) An architecture and runtime

machinery that supports scheduling of the dataflow computation in dynamic

environments, and handles failures transparently; 3) A detailed analysis of

dataflow model using two sample applications over a Desktop Grid.

The remainder of this paper is organized as follows. Section 2 provides a

discussion on related work. Section 3 describes the dataflow programming

model with examples. Section 4 presents the architecture and design for a

dataflow system over .NET platform. Section 5 presents experimental evaluation

results. Section 6 concludes the paper with pointer to future work.

2. Related Work

Dataflow concept was first presented by Dennis et al. [19]. Since then several

researchers have investigated various aspects of dataflow models for parallel and

distributed systems and applications. As the pure dataflow is fine-grained, its

practical implementation has been found to be an arduous task. Thus optimized

versions of dataflow models have also been presented, including dynamic

dataflow model and synchronous dataflow model [10]. Its usage continued to

investigate for coarse-grained parallel applications.

River [13] provides a dataflow programming environment for scientific

database like applications on clusters through a visual interface. River focuses

on solving transient heterogeneity problems rather than fault tolerance problem

in dynamic environment.

Grid systems such as Condor [4], Gridbus Workflow Engine [21], and

Pegasus [20] provide mechanisms for workflow scheduling. Workflow systems

are trying to seek opportunities for concurrency at the level of tasks. However,

how to easily achieve the concurrency within each task has been ignored. Kepler

[15] provides a graph based interface for scientific workflow scheduling, and

Grid superscalar [14] allows users to write their applications in a sequential way.

However they do not focus on handling failures.

MapReduce [7] is a cluster middleware designed to help programmers to

transform and aggregate key-value pairs by automating parallelism and failure

 3

recovery. Their programming model can also be taken as a fixed static dataflow

graph.

3. Programming Model

Dataflow programming model abstracts the process of computation as a

dataflow graph consisting of vertices and directed edges.

The vertex embodies two entities:

a) The data created during the computation or the initial input data;

b) The execution module to generate the corresponding vertex data.

The directed edge connects vertices, which indicates the dependency

relationship between vertices. A vertex, takes its dependent vertices as its inputs.

A vertex is an initial vertex if there are no edges pointing to it but it has

edges pointing to other vertices; correspondingly, a vertex is called a result

vertex if it has no edges pointing to other vertices and there are some edges

pointing to it. An initial vertex does not have an associated execution module.

Our current programming model focuses on supporting a static dataflow

graph for SPMD (Single Program Multiple Data) applications, which means the

number of vertices and their relationships are known before execution. We

expect the graph to be a Directed Acyclic Graph (DAG).

3.1. Namespace for vertices

Each vertex has a unique name in the dataflow graph. The name consists of 3

parts: Category, Version and Space. Thus, the name is denoted as <C, T, S>.

Category denotes different kinds of vertices; Version denotes the index for the

vertex along the time axis during the computing process; Space denotes the

vertex’s index along the space axis during execution. In the following text, we

call vertex name as name.

3.2. Dataflow library API

3.2.1. Specifying Execution Module

To specify instructions/code to be executed, which is called execution module

and used to generate the output for each vertex, users need to inherit the Module

class in dataflow library for writing each vertex’s execution code. In particular,

users need to implement 3 virtual functions:

• ModuleName SetName() : specify a name for the execution module,

which is used as an identifier during editing the data dependency graph.

• void Compute(Vertex[] inputs) : implemented by users for generating

output taking input vertex data. The input data is denoted by inputs.

Each element of inputs consists of a name and a data buffer.

• byte[] SetResult():called by the system to get the output data after

Compute() is finished.

 4

3.2.2. Composing Dataflow Graph

The dataflow API provides two functions for composing the static data

dependency graph:

• CreateVertex(vertex, ModuleName) : is used to specify the name and

corresponding execution module for each vertex.

• Dependency(vertex, InputVertex): is used to add y as x’s dependent

vertex.

Two functions are provided to set the initial and result vertices as follows:

• SetInitialVertex(vertex, file)

• SetResultVertex(vertex, file)

3.3. Example

Given the matrix vector iterative multiplication, V
t
=M*V

t-1
. We partition the

matrix and vector by rows into m pieces respectively, as . .

M0 V
t
0 M1 V

t
1 Mm-1 V

t
m-1

V
t+1

i

Multiplication

Sum

Matrix Piece Vector Piece Multiplication Result

I
t
i,0 I

t
i,1 I

t
i,m-1

Figure 1: Dataflow graph for the i-th vector piece.

The corresponding dataflow graph is illustrated by Figure 1. To name

vertices, Category = M denotes the matrix vertices and Category = V denotes the

vector vertices. For i-th vector vertex, the data relationship should be specified

as: <V, t, i>←{<M, 0, i>, <V, t-1, j>} (j=1…m).

4. Architecture and Design

This section describes a dataflow architecture designed for a Windows Desktop

Grid consisting of commodity PCs based on .NET platform. The environment

consists of idle desktops that are used for computing but drop out of the system

as soon as interactive programs are started by the users on them. Such nodes can

rejoin the system when they are idle again.

4.1. System Overview

The dataflow system consists of a single master and multiple workers as

illustrated in Figure 2. The master is responsible for accepting jobs from users,

organizing multiple workers to work cooperatively, sending executing requests

to workers and handling failures of workers. Each worker contributes CPU and

disk resources to the system and waits for executing requests from the master.

∑
=

−

==

m

j

t

ji

t

i miVMV
1

1
)...1(*

 5

4.2. The Structure of the Master

The master is responsible for monitoring the status of each worker, dispatching

ready tasks to suitable workers and tracking the progress of each job according

to the data dependency graph. On the master, there are 4 key components:

• Membership component: maintains the list of available worker nodes. When

some nodes join or leave the system, the list is updated correspondingly. The

membership is maintained through heartbeat signal between master and

workers. The heartbeat signal also carries the status information about the

worker, such as CPU, memory and disk usage.

• Registry component: maintains the location information for available vertex

data. In particular, it maintains a list of indices for each available vertex data.

Each vertex has an index, which lists workers that hold its data.

• Dataflow Graph component: maintains the data dependency graph for each

job, keeps track of the availability of vertices and explores ready tasks.

When it finds ready tasks, it will notify the scheduler component.

• Scheduler component: dispatches ready tasks to suitable workers for

executing. For each task, the master notifies workers of inputs & initiates the

associated execution module to generate the output data.

Control Flow

Publishing Traffic

Data Traffic

Executor

Storage

Executor

Storage

Worker 1

Worker 2

Executor

Storage

Worker n

User Dataflow Model

Master

Scheduler Registry Dataflow Graph

Desktop Grid

Figure 2: Architecture of dataflow-based desktop Grid computing system.

4.3. The Structure of a Worker

Workers work in a peer to peer fashion. To cooperate with the master, each

worker has two functions: executing upon requests from master and storing the

vertex data. Correspondingly there are 2 important components on each worker:

• Executor component: receives executing requests from the master, fetches

input from the storage component, generates output to the storage

component and notifies master about the available vertex of the output data.

• Storage component: is responsible for managing and holding vertex data

generated by executors and providing it upon requests. Actually the storage

components across workers run as a distributed storage service. To handles

failures, upon request from master, the storage component can keep data

 6

persistently locally or replicate some vertices on remote side to improve the

reliability and availability.

4.4. System Interaction

Upon receiving submission from users, including the dataflow graph and

execution modules, the master node will create an instance as a thread for each

module. Based on .NET platform, the master serializes the execution module as

an object, and then sends it to workers when dispatching vertices executing.

To begin the execution, master node first sends the initial vertex to workers.

When a worker receives the vertex, its storage component will keep it, and then

notifies the registry component through an index publishing message.

Every time the registry component receives an index publishing message for

vertex x, it updates x’s index and then notifies the dataflow graph component to

check if there is a vertex execution waiting x. If so, the ready vertex will be

scheduled as an executing task. The scheduling component sends the executing

request to candidate workers. The execution request carries the serialized object

of corresponding execution module, and the location information of the input

vertex data. After receiving it, the worker first fetches the input data, and then

un-serializes the execution object and executes it.

To improve the scalability of the system, workers transfer vertex data in a

P2P manner. Whenever the executor component receives an executing request

from master node, it sends a fetch request to the local storage component. If

there is non local copy for the requested data, the storage component will fetch

the data from remote worker according to the location specified in the executing

request. After all the input data is available on the worker node, the executor

component creates a thread instance for the execution module based on the

serialized object from the master, feeds it with the input vertices and starts the

thread. After the computation finishes, the executor component saves the result

vertex into local storage component and notify the registry component.

The storage component keeps hot vertex data in memory while holding cold

data on disk. The vertex data will be dumped to disk asynchronously when there

is a need to reduce memory space. Worker schedules the executing and network

traffic of multiple tasks as a pipeline to optimize the performance.

4.5. Fault Tolerance

In our Desktop Grid environment, besides physical failure (node cannot work

due to software or hardware problems), we frequently face soft failure. Soft

failure occurs when higher priority users demand node resources and the

dataflow system yields. We use same mechanisms handling both failures.

4.5.1. Worker Failure

The master monitors status for each task dispatched to workers. Each vertex task

has 4 statuses: unavailable, executing, available and lost. Unavailable and lost

means no any copy exists in the dataflow storage for the vertex. the difference

between these two statuses is unavailable is specified to the vertex which is

 7

never generated before, while lost means the vertex has been generated before

but now lost due to worker failures. Available means that at least one copy for

the vertex is held by some storage component in the dataflow system. Executing

the vertex has been scheduled to some worker but still not finished.

The failure of a worker/node leads to termination of the task it is processing

and the master needs to re-schedule such tasks elsewhere. Furthermore, since the

vertex data on the failure worker will not be accessible again, the master node

will need to regenerate them if there are some unavailable tasks are eventually

dependent on them.

When the master detects that a worker has failed, it notifies the registry

component to remove the failed worker from indices. During the removing

process, status of some of the vertices will change from available to lost. For the

lost vertices, if they are directly dependent by some executing or unavailable

vertex tasks, we need to regenerate them to continue the execution. The

rescheduled tasks may be dependent on other lost vertices, and eventually cause

domino effects. For some extreme cases, the master node may need to re-send

the initial vertices to continue the execution.

Generally, rescheduling due to the domino effect will takes considerable

time. The system replicates vertices between workers to reduce rescheduling.

This is a feature triggered by the configuration of the master. If replication

feature is set, the registry component will choose candidate workers to replicate

the vertex after it receives the first publishing message for that vertex.

Replication algorithm needs to take load balancing into consideration.

Replication causes additional overhead. If we take vertices under same

version as a checkpoint for the execution, it is not necessary for us to replicate

every checkpoint. It is better for users to specify a replication step. It is called as

n step replication if users want to replicate the vertices every n versions. Under

failure cases, there is a tradeoff between replication steps and executing time.

4.5.2. Master Failure

Generally master is running over a dedicated node, it may experience physical

failures, but seldom has soft failures. To handle this, it frequently writes its

internal status, including data structure in registry component, scheduler

component and graph component to disk and then replicate the internal status to

other node. After the master node fails, we could use the backup version to start

a new master and continue the computation.

4.6. Scheduling

In the current design, the scheduling is performed by the master giving priority

to locality of data [11] and performance history of workers [17]. For an efficient

scheduling, the size of each input vertex data and computing power, i.e. CPU

frequency, are taken as the measure for load balancing. The scheduler collects

the related performance information for each execution module, such as the

input data size and time consumed. Based on this history information, we can

predict the execution time for the execution module which has been scheduled.

 8

5. Performance Evaluation

In this section, we evaluate the performance of the dataflow system through two

experiments running in a Windows Desktop Grid deployed in Melbourne

University and shared by students and researchers.

5.1. Environment Configuration

The evaluation is executed in a Desktop Grid with 9 nodes. During testing, one

machine works as master and the other 8 machines work as workers. Each

machine has a single Pentium 4 processor, 500MB of memory, 160GB IDE disk

(10GB is contributed for dataflow), 1 Gbps Ethernet and ran Windows XP.

5.2. Testing Benchmarks

We use two examples as testing programs for the evaluation. These examples

are built using the dataflow API.

(a) Matrix Multiplication

In this benchmark one matrix is multiplied with another one. Each matrix

consists of 4000 by 4000 randomly generated integers. We partition matrix into

square blocks with two granularities: 250 by 250 block and 125 by 125 block.

The firs granularity of partition generates 16*16 blocks (255KB per block),

and, the second one generates 32*32 blocks (63KB per block).

(b) Matrix Vector Iterative Multiplication

In this benchmark, one matrix is multiplied with one vector in an iterative

manner. The matrix consists of 16000 by 16000 random integers, and the vector

consists of 16000 random integers. The matrix is about 1GB and the vector is

64KB. The matrix and vector are partitioned by rows. Two granularities for

partition are adopted in the evaluation: 24 stripes and 32 stripes.

For 24 stripes, the matrix and the vector are respectively partitioned by rows

into 24 pieces. So there are 1200 vertices are generated. For 32 stripes, there are

1600 vertices are generated.

5.3. Scalability of Performance

Figure 3 illustrates the speedup of performance with an increasing number of

workers. We can see that under same vertex partition settings as more workers

are involved in the computation, better performance is obtained. On the other

hand, overheads such as connections with the master also increase with the

number of workers. So the speedup line is not ideal.

The matrix vector multiplication benchmark illustrates a super linear

speedup phenomenon for one worker. The reason is one computer has only

500MB memory and is not enough to hold 1GB matrix. The swapping overhead

causes reduction in performance, where this is not the case with parallelism as

data is distributed across multiple workers.

One expectation of partition granularity is that more partitions will introduce

additional overhead during execution.

 9

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Workers #

S
p

e
e

d
u

p

Scalability of Performance for Matrix Multiplication

Ideal Case
Matrix * Matrix (16)
Matrix * Matrix (32)

1 2 3 4 5 6 7 8

2

4

6

8

10

12

14

Workers #

S
p
e
e
d
u
p

Scalability of Performance for Matrix Vector Multiplication

Ideal Case
Matrix * Vector (24)
Matrix * Vector (32)

Figure 3: Scalability of performance.

5.4. Handling Worker Failure

This section evaluates the mechanisms dealing with worker failure, including

replication and rescheduling. We use iterative matrix vector multiplication with

24 partitions and 100 iterations. In total, 2400 vertices are generated during the

testing. As vertices created have same size, we measure the vertices number.

8 workers and 1 master involve in the testing. We first collect the number of

vertices without worker failures and replication, as the first line in Figure 4. The

whole testing lasts for about 4 minutes. Within the initial phase, where the line is

nearly flat, the master node sends initial vertices to workers. It is a sequential

process. After that, the execution begins and the slope of vertices number line

increases heavily. After all vertices are created, the line changes to flat.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

Time (second)

V
e
rt

e
x
 #

Replication and Re−execution

No Failure
Failure
Failure (Step = 1)
Failure (Step = 2)

Figure 4: Handling worker failures with replication and re-execution.

Next we add one worker failure in the testing. We unplug one worker’s

network cable to simulate its failure at around the 4th minute. When we do not

take replication, one worker failure causes some vertices to be lost, illustrated by

the 2nd line. Once the master detects the failure, it will dispatch live workers to

regenerate lost vertices and then continue the execution. So there is a big drop at

 10

the 230th second in the 2nd line. After generation of lost vertices, only 7

workers are available, so the slope is smaller than the one before the drop point.

Then we add replication mechanism to handle the failure. We test two

settings: 1-step and 2-step replication. Compared with no replication, 2-step

replication has only a small drop during the failure while 1 step replication has

no drop. Eventually we can see replication mechanism effectively reduces the

time consumed for regenerating lost vertices.

6. Conclusion

We presented a dataflow computing platform within shared cluster environment.

Through a static dataflow interface, users can freely express their data parallel

applications and easily deploy applications in distributed environments. The

mechanisms adopted in our system support scalable performance and

transparent fault tolerance. We plan to incorporate dataflow model into Alchemi.

Acknowledgments

We would like to thank Yu Chen, Krishna Nadiminti, Srikumar Venugopal,

Hussein Gibbins, Marcos Dias de Assuncao, Xingchen Chu and Marco A. S.

Netto for their support. This work is partially supported by grants from the

eWater CRC and DEST International Science Linkage Program.

References

1 A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Alchemi: A .NET-

Based Enterprise Grid Computing System. 6th International Conference on

Internet Computing, 2005, Las Vegas, USA.

2 Arvind and R. Nikhil. Executing a program on the MIT tagged-token

dataflow architecture. IEEE Transaction Computers. 39, 3, 300–318, 1990.

3 D. P. Anderson. BOINC: A System for Public-Resource Computing and

Storage. Proceedings of the Fifth IEEE/ACM International Workshop on

Grid Computing, R. Buyya (ed.), IEEE CS Press, USA, 2004.

4 D. Thain, T.Tannenbaum, et al. Distributed computing in practice: The

Condor experience. Concurrency and Computation: Practice and

Experience, 17(2-4), February/April 2005.

5 G. Fedak, C. Germain, et al. Xtremweb: A generic global computing

system. Proceedings of the 1
st
 International Symposium on Cluster

Computing and the Grid (CCGrid 2001), Brisbane, Australia, 2001.

6 I.Foster and C.Kesselman. The Grid Blueprint for a Future Computing

Infrastructure. Morgan Kaumann Publishers, USA, 1999.

7 J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Proceedings of the 6
th

 Symposium on Operating Systems

Design and Implementation (OSDI’04), San Francisco, CA, 2004.

8 J.F.Cantin and M.D.Hill. Cache Performance for Selected SPEC CPU2000

Benchmarks. Computer Architecture news (CAN), 2001.

 11

9 J. Verbeke, N. Nadgir, et al. Framework for peer-to-peer distributed

computing in a heterogeneous, decentralized environment. Proceedings of

the 3
rd

 International Workshop on Grid Computing, 2002.

10 E. Lee and D. Messerschmmitt. Static scheduling of synchronous dataflow

programs for digital signal processing. IEEE Transactions Computers. C-

36, 1, 24–35, 1987.

11 C. Polychronopoulos and D. Kuck. Guided self-scheduling: A practical

scheduling scheme for parallel supercomputers. IEEE Transactions on

Computers, 36 (12), 1425–1439, 1987.

12 R.Agrawal, T.Imielinski, et al. Database mining: A Performance

Perspective. IEEE Transactions on Knowledge and Data Engineering,

5(6):914-925, 1993.

13 R.H.Arpaci-Dusseau, Eric Anderson. Noah Treuhaft, et al. Cluster I/O with

River: Making the fast case common. Sixth Workshop on I/O in Parallel

and Distributed Systems, May 5, 1999, Atlanta, GA, USA. ACM, 1999.

14 Rosa M. Badia, J. Labarta, et al. Programming Grid Applications with

GRID superscalar, Journal of Grid Computing, Volume 1, Issue 2, 2003.

15 S. Bowers, B. Ludaescher,et al. Enabling Scientific Workflow Reuse

through Structured Composition of Dataflow and Control-Flow. IEEE

SciFlow: The IEEE International Workshop on Workflow and Data Flow

for Scientific Application, 2006.

16 S. Altschul, T. Madden, et al. Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. In Nucleic Acids

Research, pages 3389-3402, 1997.

17 W. Smith, V. Taylor, and I. Foster. Using Run-Time Predictions to

Estimate Queue Wait Times and Improve Scheduler Performance.

Proceedings of the 5
th

 Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP '99), Springer-Verlag, 1999.

18 T.L.Lancaster. The Renderman Web site. http://www.renderman.org, 2002.

19 W. M. Johnston, J. R. Hanna, et al. Advances in Dataflow Programming

Languages. ACM Computing Surveys, 36(1):1–34, March 2004.

20 E. Deelman et. al. Pegasus: a Framework for Mapping Complex Scientific

Workflows onto Distributed Systems. Scientific Programming Journal, Vol

13(3), 2005, Pages 219-237.

21 J. Yu and R. Buyya. Scheduling Scientific Workflow Applications with

Deadline and Budget Constraints using Genetic Algorithms. Scientific

Programming Journal, 14(3-4), 2006, pp. 217 – 230.

