
604 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 4, APRIL 2024

Multi-Agent Deep Reinforcement Learning
Framework for Renewable Energy-Aware Workflow

Scheduling on Distributed Cloud Data Centers
Amanda Jayanetti , Saman Halgamuge , Fellow, IEEE, and Rajkumar Buyya , Fellow, IEEE

Abstract—The ever-increasing demand for the cloud computing
paradigm has resulted in the widespread deployment of multiple
datacenters, the operations of which consume very high levels
of energy. The carbon footprint resulting from these operations
threatens environmental sustainability while the increased energy
costs have a direct impact on the profitability of cloud providers.
Using renewable energy sources to satisfy the energy demands
of datacenters has emerged as a viable approach to overcome
the aforementioned issues. The problem of scheduling workflows
across multi-cloud environments powered through a combination
of brown and green energy sources includes multiple levels of
complexities. First, the general case of workflow scheduling in a
distributed system itself is NP-hard. The need to schedule work-
flows across geo-distributed cloud datacenters adds a further layer
of complexity atop the general problem. The problem becomes
further challenging when the datacenters are powered through
renewable sources which are inherently intermittent in nature.
Consequently, traditional workflow scheduling algorithms and
single-agent reinforcement learning algorithms are incapable of
efficiently meeting the decentralized and adaptive control required
for addressing these challenges. To this end, we have leveraged
the recent advancements in the paradigm of MARL (Multi-Agent
Reinforcement Learning) for designing and developing a multi-
agent RL framework for optimizing the green energy utilization of
workflow executions across multi-cloud environments. The results
of extensive simulations demonstrate that the proposed approach
outperforms the comparison algorithms with respect to minimizing
energy consumption of workflow executions by 47% while also
keeping the makespan of workflows in par with comparison algo-
rithms. Furthermore, with the proposed optimizations, the multi-
agent technique learnt 5 times faster than a generic multi-agent
algorithm.

Index Terms—Deep reinforcement learning, cloud computing,
workflow scheduling, green computing.

I. INTRODUCTION

IN RECENT times, cloud computing has become a frequently
used platform for running resource-intensive workloads of
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commercial as well as scientific applications owing to its inher-
ent ability of provisioning compute and network resources in an
on-demand manner. Cloud computing services are offered by
service providers via multiple geographically distributed data-
centers for improving the Quality of Service (QoS) experienced
by geographically dispersed consumers as well as for other
requirements such as disaster recovery and high availability.

The excessive demand for cloud computing services has given
rise to an exponential rise in the power consumption of cloud
datacenters [1], hence adversely impacting the sustainability of
the computing paradigm. Furthermore, high power consumption
levels also increase the operational costs of datacenters which
in turn reduces the profitability of service providers. As a step
towards mitigating the adverse impacts of high power consump-
tion and associated effects such as CO2 emissions, increasingly
more renewable energy sources (such as solar power and wind
power) are leveraged by cloud providers for satisfying the power
requirements of cloud datacenters.

Geographically dispersed datacenters can be powered through
locally available renewable energy sources thereby minimizing
the use of brown energy. However, due to the intermittent na-
ture of renewable energy sources, their utilization for powering
cloud datacenters gives rise to several challenges. Variations in
weather conditions and other location-dependent factors could
drastically impact the levels of power generated by renewable
energy sources. Distribution of workloads among geographi-
cally distributed datacenters while considering the renewable
energy generation levels as well as diverse QoS requirements
of heterogeneous workloads makes it possible to handle the
intermittent nature of renewable energy sources in an efficient
manner.

Workflow is a popular application model which can be used
to represent a wide variety of workloads ranging from sci-
entific to commercial applications. Cloud computing environ-
ments are widely used for the execution of resource-intensive
workflows. As opposed to scheduling individual workloads,
workflow scheduling in cloud computing environments is more
complex due to the presence of precedence relations between
workflow tasks. The problem becomes even more challeng-
ing when workflows are to be scheduled across multiple ge-
ographically distributed datacenters some of which are oper-
ating on renewable energy sources. Only very few studies in
existing literature have simultaneously attempted to tackle the
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aforementioned challenges. The scheduling frameworks pro-
posed in these studies have primarily used heuristic, meta-
heuristic or contemporary techniques for achieving the desired
objectives. These approaches generally suffer from problems
such as high computational complexity, low adaptability to
dynamically changing conditions, and so on.

Reinforcement Learning (RL) has emerged as a promising
solution for dealing with highly dynamic and unpredictable
problems. In particular, the more recent combination of Deep
Neural Networks (DNN) with Reinforcement Learning which
gave rise to the Deep Reinforcement Learning (DRL) paradigm,
is proven to have the potential of solving complex problems in
highly stochastic environments [2]. DRL agents operate with no
prior knowledge of the environment, and they learn by inter-
acting with the environment and gathering rewards for actions
performed. The rewards enable the agents to learn desirable and
undesirable behaviour in different situations, thus enabling them
to identify the actions that result in the maximization of overall
rewards.

DRL techniques have been used in several studies for handling
resource management problems in cloud computing environ-
ments [3], [4]. However, a vast majority of these works have
proposed straightforward adaptations of popular RL algorithms
such as Deep Q Learning for designing single-agent scheduling
frameworks that are more suited for satisfying the centralized
scheduling requirements of the traditional cloud computing
paradigm. Such approaches are not suitable when workloads are
to be scheduled across more complex distributed infrastructures
such as federated clouds and emerging fog computing environ-
ments [5]. Accordingly, Multi-Agent Systems (MAS) in which
interactions between multiple agents are leveraged, are proven
to be a better fit for problem-solving in highly distributed and
stochastic environments compared to its single-agent counter-
part [6].

The direct implementation of single agent RL algorithms in
multiple agents leads to a non-stationary environment which pre-
vents such methods from converging to an optimal solution [7].
Therefore, the design of efficient multi-agent RL (MARL) al-
gorithms requires overcoming multiple challenges including
nonstationarity and partial observability of the environment,
scalability issues that arise as the joint action space grows with
the increasing number of agents, and communication between
agents which is particularly challenging in partially observable
environments [7]. As the name implies, in partially observable
environments, the agent does not perceive the complete state
of the environment, instead only a partial observation is visible
based on which the agent takes an action. The existing works
that have proposed DRL-based scheduling techniques in multi-
cloud environments have assumed full observability. However,
realistically, most multi-cloud environments tend to be partially
observable since it is unlikely that local information about all
the clouds will be globally available at all times.

To overcome the aforementioned challenges and design an
RL framework that can efficiently schedule workflows across
partially observable and highly distributed multi-cloud envi-
ronments, we leveraged the multi-agent coordination technique
proposed by R. Lowe et al. [8]. In this technique, the traditional

actor-critic method is extended to a multi-agent setting by pro-
viding the critic with extra information about the actions and
observations of other agents during the training process. During
execution, the agents operate based on local observations. Ac-
cordingly, the proposed technique conforms to the paradigm of
centralized training and distributed execution which is proven
to be highly effective in multi-agent systems [9]. A drawback of
the aforementioned multi-agent coordination technique is that
the Q function grows linearly with the number of agents, and
this in turn could adversely impact the learning process of the
agents. To overcome the potential impediment to agent learning,
we leveraged domain-specific characteristics of the problem to
design multi-agent coordination in a hierarchical manner. This
in turn leads to the achievement of better training efficacy as
evidenced by the empirical results from extensive simulations.

The following are the main contributions of this work:
� A hierarchical design for the multi-cloud workflow

scheduling problem in which a global RL agent assigns
tasks to datacenters and local RL agents assign tasks to
nodes. Coupled with this, we present a novel formulation
of the agent environment comprising state space, action
space, and reward as a Partially Observable Markov Deci-
sion Process (POMDP).

� Design of a MARL framework capable of scheduling work-
flows across the partially observable and highly distributed
multi-cloud environments in an efficient manner by sharing
extra information during training, and operating solely
based on local information during execution. Furthermore,
we propose a shared reward structure that motivates agents
to act cooperatively for achieving a common goal.

� Design of a novel approach to handling the curse of di-
mensionality and thereby improving training efficiency by
leveraging the hierarchical nature of multi-cloud scheduler
for limiting the observations shared by agents to a local
neighborhood.

The rest of the paper is organized as follows: In Section II
we review relevant literature, and in Section III we present the
formulation of the workflow scheduling problem in multi-cloud
environments. The proposed RL framework is presented in
Section IV and its performance evaluation results are discussed
in Section V. Finally, the conclusion of this work is presented
in Section VI along with future work.

II. RELATED WORK

In this section, we review workflow scheduling algorithms
that are related to the problem considered in this work. Several
different techniques are proposed in academia for enhancing the
energy-efficiency of workflow executions in cloud computing
environments. Amongst the solutions that have been identified,
techniques such as Dynamic Power Management (DPM) in
which workloads are consolidated into a minimum of servers,
and unused servers and networking elements are hibernated
to achieve energy efficiency [10], Dynamic Voltage and Fre-
quency Scaling (DVFS) based methods [11] which operate by
dynamically adjusting the supply voltage or operating frequen-
cies of computing elements (CPU, memory) to reduce energy
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consumption, and powering datacenters with renewable energy
sources [12] are predominantly used for minimizing datacenter
power consumption.

A number of studies have focused on the problem of schedul-
ing workflows across federated clouds [13], [14], [15]. In [13], a
heuristic-based technique is proposed for scheduling workflows
across multiple datacenters with the objective of minimizing
electricity costs. They propose strategies for sorting workflows
and sequencing workflow tasks, and also for allocating resources
to tasks such that the resulting framework can achieve the desired
objectives. [14], [15] also proposed algorithms for scheduling
workflows across federated cloud datacenters with the objectives
of minimizing cost and improving reliability.

Several works in existing literature have focused on the prob-
lem of scheduling workflows across geo-distributed datacenters
powered through renewable energy sources [12], [16]. In [12],
a hierarchical scheduling framework is proposed for scheduling
workflows across multiple geo-distributed datacenters powered
via renewable energy partially. High-level scheduler allocates
workflows to datacenters while a low-level scheduler assigns
tasks of workflows to compute resources for achieving the
overall objectives of improved energy efficiency, makespan, and
deadline hits. [16] used a genetic algorithm to design a workflow
scheduling framework that maximizes the use of renewable
energy while minimizing the cost of electricity.

Renewable energy aware scheduling of independent
tasks/jobs across multi-cloud environments is also studied in
a number of works [17], [18], [19]. In [17] Integer Linear
Programming (ILP) is used for designing a task scheduling
framework for minimizing the use of brown energy in datacen-
ters while satisfying user-defined time constraints and electricity
budgets. An obvious drawback of the proposed approach is
the high time complexity associated with ILP based problem
formulation. [18] used simulated annealing coupled with bees
algorithm for scheduling tasks across distributed cloud com-
puting environments with the objective of minimizing energy
consumption. In [19] a job allocation algorithm is proposed to
assign transactional and batch jobs to datacenters such that the
power consumption of datacenters can be altered to suit variable
conditions such as green energy availability.

While considerable research efforts have been focused on
designing RL-based algorithms for scheduling workloads within
a single datacenter [20], [21], [22], not much work has been
done with RL in multi-cloud scheduling scenarios. Only a few
works have leveraged the advanced capabilities of RL for de-
signing workload scheduling algorithms across distributed cloud
computing environments [4], [23]. In [23], Proximal Policy
Optimization (PPO) [24] was used for designing a scheduling
policy capable of determining if the job should be executed in
a particular server of a private datacenter or offloaded to a VM
of a certain type in the public cloud depending on multiple fac-
tors including predicted renewable energy availability, deadline
constraints, and cost. C. Xu et al. [4] proposed an RL-based
algorithm for migrating jobs across multiple datacenters with
the objective of minimizing energy cost.

A majority of existing studies have used single agent RL in
workflow scheduling algorithms [25], [26] and these methods
are designed to operate within a single cloud datacenter rather

than across multiple datacenters. However, multi-agent RL is
likely to be a better candidate for multi-cloud environments due
to the need for decentralized decision-making. Owing to the
inherently distributed nature of edge and fog computing envi-
ronments, multi-agent RL is likely to be an efficient candidate for
schedulers that operate in such environments as well. However,
a majority of existing works have proposed single agent RL
methods for scheduling problems in edge and fog computing
environments [27], [28]. Only few works have designed de-
centralized execution and/or training based techniques for these
environments [5], [29], [30]. In [5], IMPALA framework is used
for training distributed brokers which are responsible for making
placement decisions of applications in a fog computing environ-
ment. In [30], multiple actor networks are trained with a common
critic network. [29] uses a value decomposition network coupled
with centralized training and distributed execution method for
handling the non-stationarity of environment arising due to
the presence of multiple agents. Table I presents a high-level
comparison of proposed method with relevant literature.

The design of multi-agent systems is more complicated since
the presence of multiple agents could make the environment
nonstationary [7]. Despite the complexities, multi-agent RL
frameworks are likely to be more effective in such environments
since they can be used for developing decentralized scheduling
policies which are more suited for environments benefiting from
decentralized control. However, none of the existing works have
efficiently leveraged the power of multi-agent RL for scheduling
workflows across multi-cloud environments.

III. SYSTEM MODEL

Directed Acyclic Graphs (DAG) are used for modeling the
workflows that are scheduled by the proposed hierarchical
scheduling framework. The tasks of a workflow are represented
by the set of nodes, V = {v0, v1..vn} and the precedence con-
straints between tasks are represented by the set of edges, E =
{(vi, vj)|vi, vj ∈ V } of a DAG, G = (V,E). It is also assumed
that workflows are containerized (each task is a container).

Workflows are to be scheduled across a federation of geo-
distributed datacenters DC = {dc1, dc2, ..dcn} which are pow-
ered through a combination of green energy from renewable
energy sources and brown energy from the grid. Therefore, at any
instance, the total power consumption, Ptotal of the datacenter
federation is the sum of green power, Pgreen and brown power,
Pbrown consumed by the underlying cloud infrastructures and
operations. The datacenter, dci comprises of a set of λi hetero-
geneous severs, {m1,m2, ..mλi

}. Power consumed by a server,
mi is calculated using the CPU utilization-based power model
presented in [31] as follows:

Pmi
=

{
P idle
mi

+
(
P dynamic
mi

− P idle
mi

)
.umi

, if umi
> 0

0, otherwise
(1)

whereP idle
mi

is the idle power consumption of the server which is
a constant regardless of its current utilization andP dynamic

mi
is the

dynamic power consumption which is dependent on the current
server utilization, umi

. Accordingly, the total power consumed
by the datacenter, dci during the kth time interval is computed
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as follows:

P total
i (k) =

λi∑
i=1

Pmi
(k) (2)

The objective of the proposed hierarchical scheduling frame-
work is to minimize total brown energy utilization of the cloud
datacenter federation while also optimizing workflow execution
time. The total brown energy consumption at the datacenter dci
during the kth time interval can be represented as:

P brown
i (k) = P total

i (k)− P green
i (k) (3)

where P green
i (k) is the total green energy available at the

datacenter dci during the kth time interval. Accordingly, the
primary objective of the global scheduler which mainly focuses
on minimizing the brown energy usage during the kth time
interval can be represented as follows:

Min: P brown
total (k) =

N∑
i=1

P brown
i (k) (4)

Once a task is assigned to a datacenter dci, the local scheduler
allocates the task to a server that jointly minimizes the total
energy consumption and execution time of the task. Hence, the
objective of the local scheduler during the kth interval can be
represented as follows:

Minimize:
N∑
j=1

αTtj + (1− α)Etj (5)

where N is the total number of tasks executed during the kth
time interval. Ttj and Etj denotes the total execution time and
total energy consumption associated with the execution of task
tj , respectively. The execution time Ttj includes the maximum
data transfer time from predecessor nodes, computation time
of the task as well as the waiting time of the task at the node
(WTtj ) before the task is actually executed. It can be computed
as follows:

Ttj =
Ltj

F
+WTtj + max

ti∈pred(tj)
DTti,tj (6)

where, Ltj is the size of the task tj , and F is the processing

rate of the node to which task is assigned. The ratio
Ltj

F is the
computation time of the task. DTti,tj is the data transfer time
from the node in which predecessor ti executed to the execution
node of task tj . If tasks are in the same datacenter, then DTti,tj

can be expressed as the ratio
Dti,tj

Bin
where Dti,tj is the size

of data to be transferred from ti to tj and Bin is the network
bandwidth within the same datacenter. If data transfer is between
nodes in different datacenters, DTti,tj can be represented as
Dti,tj

Bout
, where Bout represents the network bandwidth between

datacenters. Total energy consumed during the execution of task
tj is computed as follows:

EEtj = Ttj × [U × Pactive + Pidle] (7)

where U is the current CPU utilization level of the execution
node, and the rates of power consumption at active and idle states

of the processors are denoted by Pactive and Pidle, respectively.
Considering the power consumption associated with the trans-
mission of data to be Pcomm, the energy consumed during the
transfer of data from predecessor nodes is computed as follows:

ET (tj) =
∑

ti∈pred(tj)

Dti,tj

B
× Pcomm (8)

The total energy consumedEtj is the sum of computation and
communication energy, and is computed as:

Etj = EEtj + ET (tj) (9)

IV. REINFORCEMENT LEARNING

A. Background

Reinforcement Learning (RL) is a branch of the broader ma-
chine learning paradigm that operates by training an intelligent
agent to learn a desired behavior in a given environment by
learning through its interactions with the environment. The
learning process is governed by the rewards which are received
by the agent in return for the actions that it chooses to perform
in the environment. Rewards serve as an indication of the degree
of desirability of the action taken under the prevalent conditions
toward achieving a pre-defined goal. RL problems are commonly
modelled using the mathematical framework, Markov Decision
Process (MDP).

At each decision epoch, the immediate situation the agent
encounters, which is referred to as the current state (st) of the
environment is taken into account by the agent for taking an
action (at), which then results in a state transition from the
current state (st) to the next state (st+1). Depending on the
impact of the action on the environment, a reward (rt) is given
to the agent. Reward serves as a measure of the success of the
agent’s action in the given situation. As the agent progresses
through the learning process, it learns to produce actions that
result in the maximization of cumulative rewards over time. The
strategy the agent employs to determine actions in this manner
is called a policy (π(at|st)).

Despite the advanced capabilities of RL, the traditional RL
paradigm suffers from the problem of dimensionality curse
which makes its application to complex problems with very
large state spaces practically infeasible. The combination of
RL with deep learning which is referred to as Deep Reinforce-
ment Learning (DRL) has successfully proven to overcome the
aforementioned issue through function approximation, thereby
eliminating the need for agents to visit all states during the
training process and for storing state transition data in space-
consuming tabular formats. Accordingly, a neural network is
used for representing the policy (π(at|st)) as a parameterized
function with respect to an adjustable parameter θ. The resulting
parameterized policy can be denoted as (πθ(at|st)).

Policy Gradients is a family of RL algorithms that oper-
ate by directly updating policy parameters for maximizing a
performance objective, J(θ) that is defined as the expected
cumulative discounted reward as shown in (10). This is achieved
by repeatedly updating the policy parameters in the direction
of the gradient of performance objective, ∇θJ(θ). Gradient of
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Fig. 1. High-level overview of hierarchical workflow scheduling in multi-cloud environments.

performance objective, J(θ) can be expressed as in (11).

J(θ) = Eπθ

[ ∞∑
t=1

γtrt

]
(10)

where γ is a discounting factor that is used for discounting future
rewards, and γ ∈ (0, 1).

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ (s, a)] (11)

where Qπθ (s, a) is the state-action value function (Q function)
which indicates the desirability of an action, a in a state, s with
a policy πθ. Different policy gradient algorithms use different
techniques for estimating the Q function. For the scheduling
problem addressed in this work, we use the Actor-Critic tech-
nique in a multi-agent scenario as described in the next section.

B. Proposed Multi-Agent Actor-Critic Scheduling Framework

In actor-critic methods, the actor takes the current state of
the environment as input and outputs a probability distribution
over the actions that can be taken from this state. It does so by
directly learning the policy function πθ(at|st). Critic estimates
the Q valueQπθ (s, a) based on the reward received for the action
by the actor and the next state of the system. It then computes
the Temporal Difference (TD) error which is used for updating
the policy parameters of the actor-network in the direction of
improvements, and for updating the network parameters of the
critic so it can predict the Q function more accurately.

We propose a hierarchical scheduling framework for the
workflow scheduling problem in which a global scheduler as-
signs workflow tasks to datacenters and the local scheduler
in each datacenter assigns the tasks to the physical machines.
Fig. 1 shows a high-level overview of the proposed framework.

A single-agent DRL framework is inappropriate for the afore-
mentioned scenario owing to its inherently distributed nature.
Therefore, in this work, we propose a multi-agent DRL frame-
work in which one global agent acts as the global scheduler and
multiple local agents act as local schedulers.

In comparison to single-agent problems, multi-agent prob-
lems are much more complex since the actions of other agents
cause the environment to be non-stationary. Therefore, the
changes in the environment observed by an agent are not solely
due to its own actions, but also due to the actions of other agents
on the environment. Furthermore, due to the distributed nature
of the multi-cloud environment, it is impractical to assume each
agent has complete information about the real-time status of
the entire environment. Partially Observable Markov Decision
Process (POMDP) provides the flexibility of modelling the RL
environment without requiring the agents to directly observe the
actual state of the environment. Rather, what the agent receives
is an observation which is in fact a belief over the environment’s
actual state. In order to model the multi-agent DRL framework
proposed in this work, we use Partially Observable Markov
games [32].

A Markov game can be defined by a 7-tuple (N, S, φ, {Ai},
P, {Oi}, {Ri}):
� N: A finite set of agents
� S: A finite set of states
� φ: Initial state distribution
� Ai: A finite set of actions available to agent i
� P: State transition function which determines the probabil-

ity of joint action A1 × A2 ×· · ·× Ai in state St leading
to a transition to state St+1. The actions of each agent are
governed by a policy πθi

� Oi: A finite set of observations of agent i
� Ri: S × Ai → R is the reward function of agent i
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Fig. 2. Multi-agent actor-critic architecture in which every critic is augmented with actions and observations of other agents.

Fig. 3. Proposed multi-agent actor-critic architecture where shared actions and observations are limited to a local neighborhood.

High variance in gradient estimates is an inevitable weakness
of naive policy gradients. This effect is intensified in multi-agent
scenarios since the reward received by an agent may not be solely
due to its own actions but also the actions of other agents [8].
Therefore, in such a setting, ignoring the impact of the actions of
other agents, and conditioning the rewards only on agents’ own
actions inevitably leads to high variability which in turn results in
gradient updates with high variance. Since naive policy gradients
are not capable of handling multi-agent problems efficiently, we
adapt the decentralized actor and centralized critic technique
proposed in [8] for the multi-agent setting in our problem. This
method focuses on providing the critic with extra information,
at training time, about the policies of other agents. Accordingly,
in a Markov game with N agents, the gradient of the perfor-
mance objective of agent i, J(θ) in (11) can be expressed as

follows:

∇θiJ(θi) = Eπθi
[∇θi log πθi(ai|Oi)Q

πθi (x, a1, a2, . . ., aN )]
(12)

In the above equation, Qπθi (x, a1, a2, . . ., aN ) is the Q func-
tion estimated by the critic. Note that different from the Q
function of the naive actor-critic technique which takes as inputs
the state of the agent and the action, in this case along with
the state of the environment (x) the critic takes as input the
actions (a1, a2, . . ., aN ) of all agents as well. The state of the
environment, x may include the observations of all the agents
and any additional state information. With this approach, each
agent could have different reward structures since Q functions
are learned separately.
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Algorithm 1: Actor-Critic Based Training Process of Global
Scheduler.

1: Initialize actor network πθ(a|s) and critic network
Qω(s, a) with random weights

2: for episode = 1 to N do
3: Reset the environment
4: Input the initial state of the environment to actor

network πθ(a|s)
5: for step = 1 to T do
6: Select action aglobal from the actor-network based

on the current policy πθ(a|s), and observe the
corresponding reward Rglobal

7: Rlocal, alocal =
SendTaskToSelectedLocalScheduler(tj )

8: Rt = Rglobal +Rlocal

9: at = aglobal + alocal
10: Update network parameters of critic
11: Update network parameters of actor
return

Fig. 2 shows the aforementioned multi-agent coordination
technique. One obvious drawback of this method is the input
space of the Q function increases with the increasing number of
agents. To overcome this problem, we leverage the characteris-
tics of the hierarchical scheduler design proposed in this work.
Accordingly, we provide the Q function of each local agent only
its observation and action since the actions and observations of
other local agents have no impact on the reward it receives or the
next observation. To the Q function of the global agent, at each
scheduling step, we only provide the action of the local agent to
which it assigns the current task in addition to its own action and
observation. Fig. 3 shows the proposed multi-agent coordination
technique that restricts communications to a local neighborhood.
Limiting the shared experiences to a local neighborhood in this
manner allows us to prevent the expansion of the input space
of all agents substantially. Where the dimensions of state and
action spaces of the local agents are different, a state encoding
technique [33] can be used to extract a representation with a fixed
dimensionality for providing as an input to the state information
of the global agent.

Global Scheduler. A workflow consists of multiple container-
ized tasks the execution of which is constrained by precedence
relations. Therefore, when a workflow is submitted, all the tasks
in it cannot be scheduled for execution at once. The global
scheduler identifies the tasks that can be executed directly, and
the rest of the tasks will be pending execution until the tasks that
they have precedence relations with complete execution. Upon
the receipt of a task completion notification, the global scheduler
executes the DRL agent multiple times with each of the tasks
that can now be scheduled for execution due to their precedence
relations being satisfied. The state of the global agent comprises
of the following:
� An array (Pdc1 , Pdc2 , ..Pdci ) where each element Pdci

represents green energy surplus or deficit levels of the ith
datacenter.

Algorithm 2: Actor-Critic Based Training Process of Local
Schedulers.

1: Initialize actor network πθ(a|s) and critic network
Qω(s, a) with random weights

2: Reset the environment
3: Input the initial state of the environment to actor

network πθ(a|s)
4: for every tj assigned by global scheduler do
5: Select action at from the actor-network based on the

current policy πθ(a|s)
6: Execute action at and observe the corresponding

reward Rt and next state of the system st+1

7: Update network parameters of critic
8: Update network parameters of actor
9: SendRewardAndActionToGlobalScheduler(at, Rt)
return

� An array (Fdc1 , Fdc2 , ..Fdci ) where each element Fdci rep-
resents the average processing speed of a server in the ith
datacenter.

� An array (Udc1 , Udc2 , ..Udci ) where each element Udci

represents the current utilization level of the ith datacenter.
� CPU requirement of jth task, tcpuj
� Memory requirement of jth task, tmem

j

Action corresponds to the selection of a datacenter (hence
a local scheduler) to which the task will be submitted for
execution. It can be represented as follows:

A = {dci|dci ∈ {dc1, dc2, .., dcn}} (13)

The reward, Rglobal comprises of two components; The first
component corresponds to the current green energy deficit or
surplus of the selected datacenter and the second component
corresponds to the reward received by the local scheduler that
allocated the task to a node for execution. Incorporation of
a component that reflects the desirability of the local agent’s
action in the global agent’s reward in this manner enhances the
learning process of the global agent. Reward can be represented
as follows:

Rglobal =
[
P green
dci

− P total
dci

]
+Rlocal (14)

Algorithm 1 summarizes the steps included in the training
process of the global scheduler.

Local Scheduler. At each cloud datacenter, the tasks that
are submitted to it by the global scheduler are immediately
scheduled for execution. If the DC has no free capacity for task
execution, then the global scheduler is notified. The allocation
of a task to a node is an action performed by the local DRL
agent, based on the characteristics of the task and the status of
servers in the datacenter provided to it through state information.
Upon the allocation of a task to a server, an immediate reward
is received by the local agent which reflects the success of the
allocation with respect to the objective, which in this case is
energy efficiency and time minimization. The global scheduler is
notified upon the completion of task execution. Since the reward
received by the local agent also contributes to the global agent’s
reward, it is communicated along with the results of execution
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TABLE I
COMPARISON OF RELEVANT LITERATURE WITH PROPOSED WORK

to the global scheduler. The state of the local agent comprises
of the processing power and utilization levels of the servers and
task size.
� An array (F1, F2, ..Fλi

) where each element Fi represents
the processing speed of λith server in datacenter, dci.

� An array (U1, U2, ..Uλi
) where each elementUλi

represents
the current utilization level of the λith server in datacenter,
dci.

� CPU requirement of jth task, tcpuj
� Memory requirement of jth task, tmem

j

Action is the selection of a server, mi in which the task will
be executed, and is represented as follows.

A = {mi|mi ∈ {m1,m2, ..,mλi
}} (15)

The reward, Rlocal indicated below is a weighted function
of the execution time of the task and corresponding energy
consumption as indicated in (6) and (9), respectively.

Rlocal = αTtj + (1− α)ETtj (16)

where, α is a co-efficient that can be adapted to suit system
preferences. Algorithm 2 summarizes the steps included in the
training process of the local schedulers. Different from tradi-
tional algorithms, reinforcement learning based algorithms have
two phases: an online execution phase and an offline training
phase. During execution it only takes few milliseconds for the
trained model to produce an action, and the impact of problem
size (no. of data centers, no. of nodes) on computation time
is insignificant. However, the size of the problem has a direct
impact on training process of DRL agents (summarised in Al-
gorithms 1 and 2) and large state and action spaces can lead
to the problem of ’curse of dimensionality’. As the number of
datacenters and servers increase, the size of state and action
spaces of the DRL model increase and along with that the
training time increase. This is because, with increasing problem
size and complexity, more layers and more neurons per layer are
needed in the underlying neural networks. Also, more episodes
of training are required for the agent to learn the problem. The
time complexity of Algorithms 1 and 2 can be approximated
to the time complexity of training the underlying neural net-
works [34]. If the neural networks have L layers and ul neurons
in layer l, then the time complexity of Algorithms 1 and 2 can be

specified as O(NTΣL−1
l=0 ulul+1), where N is the total number

of episodes and T is the number of steps in each episode [34].

V. PERFORMANCE EVALUATION

A. Experimental Setup

The proposed multi-agent deep reinforcement learning-
oriented workflow scheduling framework was tested using an
extension of the CloudSim simulation toolkit [36]. For deep
learning-related implementation, Keras library was integrated
with the simulation environment [37]. For the simulation envi-
ronment, we used 10 datacenters each with 25 heterogeneous
servers. The resource specifications of the servers including
processing power, memory, power consumption etc. are derived
from the popular SPECpower_ssjÂ 2008 benchmark suite [35].
Table II indicates the specifications of the servers used in the
experiments. Renewable energy data for the simulations were
obtained from the actual solar energy generated by multiple
photovoltaic (PV) sites installed at the Gatton campus of the
University of Queensland [38].

B. Dataset

For evaluation of the proposed algorithm, a dataset comprising
of 1000 workflows was derived from the synthetic workflow
structures provided by the popular Peagusus workflow frame-
work [39]. The size of data dependencies among tasks and the
sizes of tasks were randomly selected from the ranges 0.1 k to
10 k and 0.5 k to 1000 k respectively. A Poisson distribution was
used for modeling workflow arrival times since it is shown to be
an effective way of modeling datacenter job arrivals [40].

C. Comparison Algorithms

For evaluating the performance of the proposed multi-agent
framework, three comparison algorithms were used. Random
algorithm is a baseline that allocates workflow tasks to data-
centers in a random manner. In the datacenters, the selection
of hosts for task execution is also performed randomly with-
out any consideration on the impact of such allocations on
execution time or energy consumption. This algorithm is used
for comparisons since it provides a baseline to compare the
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TABLE II
HOST CONFIGURATIONS DERIVED FROM SPEC BENCHMARK [35] FOR EXPERIMENTAL SETUP

Fig. 4. Comparison of learning efficiency of the proposed framework and a generic algorithm (as evidenced through the number of episodes required for reward
convergence).

improvements achievable with the DRL method proposed in this
work. Green-Opt is an algorithm that operates with the objective
of minimizing brown energy usage by allocating workflow tasks
to the datacenters with the highest accumulated green energy.
The algorithm is designed to favour task allocations to ’active’
hosts with sufficient capacity for executing new tasks. The selec-
tion of active hosts rather than idle ones leads to higher energy
savings which are reflected in the results of the experiments in
the next section. This algorithm is used for comparisons since it
provides a means to evaluate the improvements achievable with
the proposed DRL method in comparison to a heuristic that is
specifically aimed at brown energy minimization. The third com-
parison algorithm Common-Actor is a DRL-based multi-agent
actor-critic algorithm. As the algorithm name implies, multiple
actor networks are guided by a common critic. This algorithm
provides a way of evaluating the manner in which the novel DRL
method proposed in this work outperforms a generic multi-agent
DRL technique with respect to relevant objectives.

D. Experimental Results

The number of episodes required for a reinforcement learning
algorithm to converge directly impacts the training time of the
model. In order to ensure that the learned model remains up to

date with the highly dynamic conditions in multi-cloud envi-
ronments, it may be required to train and re-train the reinforce-
ment learning agents incorporated in the resource schedulers.
Therefore, convergence speed is an important factor that should
be taken into account when designing reinforcement learning-
oriented cloud resource schedulers. As evidenced through Fig. 4,
the local neighborhood-based multi-agent method proposed in
this work is capable of achieving a significantly improved con-
vergence speed in comparison to generic reinforcement algo-
rithms. The generic multi-agent DRL technique has required
500 episodes of training for convergence, whereas the proposed
model has converged in less than 100 episodes, this proves
that the learning efficiency of the local neighborhood-based
approach is more than five times better than that of the generic
approach.

The performance of the algorithms was evaluated in three
different experimental workload settings with respect to to-
tal energy consumption incurred during workflow execu-
tions, the total energy surplus of all the datacenters post
to the execution of workflows and the total time taken for
workflow executions. We normalised results prior to per-
forming the numerical comparison based performance eval-
uation, and the comparisons are presented in Figs. 5, 6,
and 7.
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Fig. 5. Comparison of performance of scheduling algorithms on an experimental dataset derived from the synthetic workflow structures provided by the popular
Peagusus workflow framework [39].

Fig. 6. Comparison of performance of scheduling algorithms as workflow arrival rate varies.

Fig. 7. Comparison of performance of scheduling algorithms as the size of computational workload varies.

Graphs in Fig. 5 depict the performance of the algorithms on
the experimental dataset. The Random algorithm has consumed
the highest amount of energy since it completely disregards the
impact of allocations on energy-efficiency as well as time. Ac-
cordingly, as demonstrated in Fig. 5(b) and (c), workflows sched-
uled with Random algorithm results in the lowest energy surplus
and consume the longest execution duration, respectively. In
comparison to the Random algorithm, the Green-Opt algorithm
has produced much better results in energy consumption and
surplus. This is the expected behavior since it operates with
the greedy objective of minimizing brown energy consumption.

And also, the selection of active hosts over idle ones further
contributes to improving energy-efficiency. Common Actor and
Proposed Algorithms both use the same reward structures and
as previously mentioned the difference between the two is that
in the common actor method, one critic network is used to
guide multiple actor networks. As evident through the results,
the performance of the proposed algorithm is better than all
comparison algorithms with respect to all three metrics. This
is because the proposed multi-agent reinforcement algorithm is
capable of finding the most efficient balance between energy
consumption and execution time during the training process.
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Graphs in Fig. 6 demonstrate the performance of the algo-
rithms as the workflow arrival rate varies. The Random algorithm
has again failed to deliver favorable results signalling the impor-
tance of more fine-tuned algorithms for scheduling workflows
in cloud computing environments. It is clearly evident that
the proposed algorithm significantly outperforms all the other
algorithms at all arrival rates with respect to energy-efficiency
while also maintaining comparable performance with respect
to total execution time. This indicates the fact that the learned
model is capable of adapting the scheduling decisions to perform
equally well under highly dynamic conditions. The difference
in performance between the common actor and the proposed
method clearly highlights the fact that the multi-agent coordina-
tion achieved through the proposed local neighborhood-based
technique leads to better learning which in turn leads to better
performance.

Fig. 7 depicts the performance of the algorithms as the
computational workload varies. In the Random algorithm, very
significant degradation in energy-efficiency is observable at high
workloads. All the other algorithms are better capable of main-
taining energy consumption levels at considerably moderate lev-
els despite the increasing workload. The proposed algorithm has
yet again managed to outperform all the other algorithms with
respect to energy consumption as well as energy surplus, while
performing equally well with respect to time total execution
time.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a hierarchical multi-agent scheduling frame-
work for scheduling workflows across geo-distributed cloud
datacenters with the objectives of minimizing brown energy
usage, while also keeping execution times in par with com-
parison algorithms. The agent environment is modelled as a
POMDP, and the paradigm of centralized training and dis-
tributed execution is adopted by allowing the agents to share
extra information during training and operating solely based on
local information during execution. Furthermore, a novel ap-
proach for limiting observation sharing to a local neighborhood
is presented for overcoming the curse of dimensionality and
thereby improving training efficiency. As evidenced through the
empirical results, the incorporation of domain-specific charac-
teristics for designing the multi-agent coordination in a local
neighborhood-oriented manner reduced training time by 5 times
compared to a generic multi-agent technique. The results also
clearly demonstrated that the proposed algorithm outperformed
the generic DRL algorithm with respect to minimizing total
energy consumption by 47%, while outperforming the baseline
algorithms with even larger margins.

As part of future work, we intend to integrate the proposed
scheduling algorithm into an open-source workflow engine and
thereafter apply the proposed algorithm to a real multi-cloud
environment. Furthermore, the characteristics of the proposed
method such as decentralized execution and ability to efficiently
operate in partially observable environments makes it a viable
candidate for handling the complexities associated with edge
computing environments. Therefore, it is worth exploring how

the proposed approach can be adapted in workflow schedulers
designed to operate across edge computing infrastructures.
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