
Future Generation Computer Systems 143 (2023) 277–292

T
M

l
o
T
o
t
l
r
u
t
o
o
c

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Deep reinforcement learning for application scheduling in
resource-constrained,multi-tenant serverless computing
environments
Anupama Mampage ∗, Shanika Karunasekera, Rajkumar Buyya
he Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
elbourne, Australia

a r t i c l e i n f o

Article history:
Received 25 September 2022
Received in revised form 26 December 2022
Accepted 6 February 2023
Available online 9 February 2023

Keywords:
Serverless computing
Resource cost efficiency
Function scheduling
Resource contention
Reinforcement learning
Practical experiments

a b s t r a c t

Serverless computing has sparked a massive interest in both the cloud service providers and their
clientele in recent years. This model entails the shift of the entire matter of resource management
of user applications to the service provider. In serverless systems, the provider is highly motivated
to attain cost efficient usage of their infrastructure, given the granular billing modules involved.
However, due to the dynamic and multi-tenant nature of the serverless workloads and systems,
achieving efficient resource management while maintaining function performance is a challenging task.
Rapid changes in demand levels for applications cause variations in actual resource usage patterns
of function instances. This leads to performance variations in co-located functions which compete
for similar resources, due to resource contentions. Most existing serverless scheduling works offer
heuristic techniques for function scheduling, which are unable to capture the true dynamism in these
systems caused by multi-tenancy and varying user request patterns. Further, they rarely consider the
often contradicting dual objectives of achieving provider resource efficiency along with application
performance. In this article, we propose a novel technique incorporating Deep Reinforcement Learning
(DRL) to overcome the aforementioned challenges for function scheduling in a highly dynamic
serverless computing environment with heterogeneous computing resources. We train and evaluate
our model in a practical setting incorporating Kubeless, an open-source serverless framework, deployed
on a 23-node Kubernetes cluster setup. Extensive experiments done on this testbed environment show
promising results with improvements of up to 24% and 34% in terms of application response time and
resource usage cost respectively, compared to baseline techniques.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The paradigm shift in cloud computing caused by the server-
ess computing concept implies that the provider handles all the
perational tasks related to application resource management.
his include instance selection, resource allocation and scaling
f cloud resources for multiple applications belonging to mul-
iple end users. Further, in contrast to managing resources for
ong-running applications in traditional cloud computing envi-
onments, the ephemeral nature of serverless functions poses a
nique set of challenges to the providers. Function instances need
o be created and scaled up and down in an adhoc manner based
n request arrivals, where a majority of function requests would
nly last a maximum execution duration of one second, which
reates complex system dynamics.

∗ Corresponding author.
E-mail address: mampage@student.unimelb.edu.au (A. Mampage).
ttps://doi.org/10.1016/j.future.2023.02.006
167-739X/© 2023 Elsevier B.V. All rights reserved.
Serverless systems are also multi-tenant environments where
multiple applications of different users could reside on the same
server or more specifically on the same Virtual Machine (VM).
Thus, resource contention among these applications, when com-
peting for the same set of resources, is quite a prevalent issue.
Moreover, the majority of open-source serverless platforms [1–3],
consist of a system architecture where a single function instance
serves multiple concurrent requests, which is the serverless en-
vironment in consideration for our work. Under such a system
model, the situation is further aggravated when rapid changes
in request rates cause the resource consumption of individual
function instances to fluctuate over time. Regardless of these
factors, each end user expects the cloud provider to guarantee
satisfactory performance for their applications.

Early research works in this area, highlight performance lim-
itations caused by contention among co-resident function in-
stances on the same VM on commercial serverless platforms [4].

https://doi.org/10.1016/j.future.2023.02.006
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.02.006&domain=pdf
mailto:mampage@student.unimelb.edu.au
https://doi.org/10.1016/j.future.2023.02.006

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

p
f
m
a
i
f
b
t
s
i
r
p
d
p
m
i
s
t
c
f
a
p
i

u
a
1
t
w
l
t
r
R
s
c
m
a
i
o
r
O
o

In subsequent research works, a few have studied resource con-
gestion which is a major barrier on achieving the desired per-
formance objectives in serverless systems [5,6]. On the other
hand, an often disregarded factor when focusing on application
performance on serverless systems is the cost efficiency of the
underlying resources on the provider side. The serverless billing
model charges the user only for the resource-time consumed
during function execution with a millisecond level granularity.
Regardless of that, cloud vendors maintain their infrastructure
throughout, even with partial utilization. Thus, this billing model
necessitates the cloud vendors to focus heavily on the optimum
utilization of their resources [7,8].

Existing commercial serverless platforms mostly follow sim-
le heuristics in function scheduling. AWS Lambda treats the
unction placement decision as a bin packing problem which
aximizes VM memory utilization [4]. Azure Functions follow
spread placement policy to avoid co-location of concurrent

nstances of the same function on the same VM [4]. A hash-based
irst-fit heuristic is employed by IBM OpenWhisk, aimed at a
etter cache hit rate and instance re-use [9]. In research litera-
ure many have attempted at presenting techniques for function
cheduling. Most of the existing works focus primarily on satisfy-
ng application latency requirements of users and managing the
esource cost for the end user [10,11], but not on optimizing cloud
rovider infrastructure costs. Further, their efforts are mostly
irected towards articulating heuristic solutions for the simpler
roblem of individual request scheduling, based on a system
odel which serves only a single concurrent request per function

nstance. Many works also fail to attain overall workload and
ystem awareness, which is detrimental to the effectiveness of
he provided solutions in a highly dynamic serverless system. In
ontrast, our work addresses the complex problem of scheduling
unction instances which serve multiple concurrent requests, in
cost efficient manner with complete awareness of workload
atterns and system dynamics, so that application performance
s not hindered by resource contention.

Reinforcement Learning (RL) techniques are increasingly being
sed for solving problems related to serverless resource man-
gement as seen from a few contemporary research works [12,
3]. The approach of learning through experience suits well,
he unpredictable nature of serverless workloads and systems
here an individual function request would have a millisecond

evel duration [14] and the co-residency of different applica-
ions on a VM would change swiftly over time with changing
equest arrival rates for deployed functions. Further, although
L techniques have been extensively explored for general cloud
cheduling problems in literature, almost all these works in-
orporate simulator environments for training and testing their
odels, which have only a limited capability in capturing the
ctual resource congestion situation in a practical setting. Thus
n this work we design an actual test-bed to train and evaluate
ur DRL models, which capture the fine details of application
esource characteristics, workload patterns and the environment.
ur model evaluations show promising results which outperform
ther baseline techniques. The key contributions of our work are

as follows:

1. We formulate and present a RL oriented model of the
problem of function instance scheduling in a resource con-
strained, multi-tenant serverless computing environment.

2. We propose a multi-step Deep Q Learning (DQN) model
for developing a workload and system aware scheduling
framework for serverless functions, aimed at optimizing
application response time latency and provider cost effi-
ciency. Since these two are conflicting goals, we add flex-
ibility to the model to establish a trade-off between these

goals as desired by the users.

278
3. We design a practical training environment for the DRL
agent, integrated with the open-source serverless platform
Kubeless [15], which is deployed on a Kubernetes [16]
cluster composed of heterogeneous VMs.

4. We conduct extensive experiments using real world sin-
gle and multi-function serverless applications [17,18] and
function traces captured from Microsoft Azure Functions
[19], to evaluate the performance and scalability of the pro-
posed DRL model and compare it with baseline schedulers.

The rest of the paper is organized as follows: Section 2 reviews
existing related works. Section 3 presents the system model
and the mathematical formulation of the problem. Section 4
introduces the DRL oriented framework for function scheduling,
followed by the design details of the agent training environment
in Section 5. Sections 6 and 7 discuss the performance evaluation
of the proposed technique and the potential for future work,
respectively.

2. Related work

We focus our discussion on related works under two key
areas as, serverless function scheduling and the application of
RL techniques for resource management in serverless computing
environments.

2.1. Serverless function scheduling

The problem space of serverless function scheduling has
emerged as a new research area in recent times. Various solutions
are presented in existing literature for the problem of finding
a suitable host node for scheduling a function instance, which
may accommodate either a single request or multiple concurrent
requests, based on the system architecture.

A package-aware scheduler for serverless functions is pro-
posed in [10]. They try to bundle function requests requiring
similar packages to the same node, with a focus on reducing
function cold start latency. Other than the package dependencies,
they do not consider any other workload characteristics in the
scheduling decision. [26] presents a locality-aware scheduler to
reduce function latencies. A preliminary design for a centralized
scheduler is presented in [20], which assigns each function execu-
tion to an individual CPU core. They aim to reduce overloading of
cores and co-located function interference. A similar scheduling
policy coupled with request queuing is evaluated in [25]. [21]
uses a first-fit heuristic for request load balancing in their server-
less setup. A supervised Machine Learning (ML) based approach
is presented in [22], for selecting a VM for scheduling single
function applications. Their objectives are to reduce function
execution time and user cost by improving function through-
put. The presented approach requires the platform to possess a
comprehensive prior understanding of the behavior of an appli-
cation and thus will not have the flexibility to adapt to dynamic
workloads. [23] also explores a greedy scheduling approach to
improve cluster utilization. A heuristic based on function latency
in each VM is used in [5] to schedule function requests. A re-
quest priority and a deadline based greedy heuristic is proposed
in [6] to choose a VM. [14] studies an architecture with semi-
global schedulers in a serverless system using a spread-placement
approach for function instance placement. A cost, function load,
and locality-aware heuristic solution for function scheduling is
proposed in [27], where the solution lacks overall system aware-
ness. Another heuristic solution which includes an excessively
time consuming manual profiling of function co-location patterns
based on their resource usages is discussed in [29]. An input

sensitive container allocation and request scheduling policy is

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

u
f
h
a
t

2

s
A
b
d
t
f
o
c
l
o
s
t
c
t
a
p
i
r
r
o
w
s

t
c

Table 1
Summary of literature review.

Work Application model Scheduling Decision parameters Request concurrency VM
technique

Single Function Optimization objective Workload Overall system Single Multiple Heterogeneity

function chain Response Provider cost awareness awareness request requests
time efficiency

[10] ✓ Heuristic ✓ ✓

[20] ✓ Heuristic ✓ ✓

[21] ✓ Heuristic ✓ ✓

[22] ✓ ML ✓ ✓ ✓

[11] ✓ Heuristic ✓ ✓ ✓

[23] ✓ Heuristic ✓ ✓

[5] ✓ Heuristic ✓ ✓ ✓

[6] ✓ Heuristic ✓ ✓ ✓

[14] ✓ Heuristic ✓ ✓

[24] ✓ DRL ✓ ✓ ✓

[25] ✓ Heuristic ✓ ✓

[26] ✓ Heuristic ✓ ✓ ✓ ✓

[27] ✓ Heuristic ✓ ✓ ✓ ✓

[28] ✓ Heuristic ✓ ✓ ✓ ✓

[29] ✓ Heuristic ✓ ✓ ✓ ✓

Our proposed ✓ ✓ DRL ✓ ✓ ✓ ✓ ✓ ✓

work
presented in [30], where their focus is mostly on request batch-
ing and reordering to minimize SLO (Service Level Objective)
violations.

A hybrid scheduling framework is presented in [11], which
ses a greedy algorithm to determine the order and placement of
unctions in either the private or the public cloud. [28] presents a
euristic approach for scheduling function workflows in a feder-
ted serverless environment. Their focus is limited to improving
he makespan of function executions.

.2. Application of RL for serverless resource management

A number of works have explored RL techniques for task
cheduling in traditional cloud computing environments. [31–35].
ll of these existing works present experimentation done solely
ased on simulator environments. As opposed to experiments
esigned on a practical setting, training a model on a simula-
or environment often times incorporates assumptions such as
ixed execution times for tasks on a given machine irrespective
f resource pressure, uniform resource consumption by appli-
ations throughout the experiment etc. These assumptions pose
imitations in creating a realistic image of the actual behavior
f a cloud environment, specially under resource constrained
cenarios which is the focus of our work. Further, unlike the
raditional long running monolithic application workloads in the
loud, serverless functions are designed to have very short run
imes which result in the level of resource contention among
pplications to change rapidly within seconds. Thus, solutions
resented for generic cloud applications have little or no usability
n serverless computing environments in achieving satisfactory
esults [23]. For these reasons, here we extensively focus on
eviewing existing works utilizing RL solutions in the context
f serverless computing environments. A few recent research
orks have demonstrated the applicability of RL techniques for
erverless resource management as discussed below.
In [12] the authors present a Q-learning based RL approach

o determine the best level of function request concurrency per
ontainer in order to achieve better performance in terms of
279
system throughput and mean function latency. A Proximal Policy
Optimization (PPO) algorithm is leveraged in [13] to dynamically
manage resource configurations of each function container. CPU
and memory resources from idle functions are harvested and
allocated to under-provisioned functions, after assessing the clus-
ter state with each function request arrival. A Q-learning based
approach is used in [36] to minimize serverless function cold start
frequency. A multi-agent Proximal Policy Optimization (PPO) ap-
proach is studied in [37] for horizontal and vertical scaling of
serverless functions. In [24], a policy gradient algorithm is used to
calculate a score function for each server, in order to determine a
suitable node for scheduling an individual function request. They
focus only on reducing the completion time for each function
and also does not pay attention to workload dynamics. Except
for this work, all other existing works exploring RL techniques
for serverless resource management focus on resource scaling and
not function scheduling.

Table 1 summarizes the reviewed works related specifically to
serverless function scheduling, in terms of the application model,
technique used, optimization objective, workload-awareness
(awareness on request arrival patterns), overall system awareness
(complete awareness on the cluster VM resource usage metrics
related to CPU, memory, network and disk I/O), request concur-
rency (ability to serve multiple concurrent requests by a function
instance) and VM heterogeneity. Most of the existing works focus
only on a specific aspect of the application or the system, in
the scheduling decision making. Our work in contrast is focused
on gaining a comprehensive understanding on the status of the
system and the dynamic function workload parameters at any
given time. This knowledge is then used in determining the VM
node most capable of hosting a function instance. We also strive
to achieve a balance between the two conflicting objectives of
application performance in terms of function response time, and
provider side cost efficiency, which was generally seen to be

ignored in prior works.

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

V
n

Fig. 1. The system model of the serverless application scheduling environment.

3. Time and cost optimized function scheduling

This section discusses the system model and formulate the
problem of application scheduling in a serverless computing en-
vironment with a flexible trade-off between response time and
provider cost optimization.

3.1. System model

We formulate our system model around the system architec-
ture of majority of the existing open-source serverless frame-
works serving many enterprise users [1–3]. In this work, we
consider a serverless application to be composed of either a single
or multiple functions. Multi function applications are composed
of chained functions whose execution sequences are determined
by user input.

Fig. 1 illustrates the high level system model used in this work.
We consider a cluster made up of heterogeneous VMs with vary-
ing compute and memory capacities as the set of worker nodes.
An instance of a single function is the smallest resource unit of
computing, that could be scheduled and managed, also referred to
as a pod. A pod consists of a single container holding the function
code and its dependencies. We consider at least a single instance
of a function to be always present in the system. A function
instance can handle multiple concurrent requests received from
end users.

Additional instances of the same function (replicas) are de-
ployed to the cluster depending on the request demand. This
process is called function auto-scaling and is handled by the
function auto-scaler. Auto-scaling of a particular function is trig-
gered whenever the average CPU utilization level across all of its
instances goes above a particular set utilization threshold. The
number of new replicas to be created is decided based on the
current and the desired CPU utilization levels. Each new function
replica needs to be scheduled on a suitable VM for meeting the
request load for that function. This is handled by the function
scheduler, which is the focus of our work.

The load balancer is responsible for distributing the incom-
ing function requests among the existing function replicas. We
consider that these requests are forwarded to the relevant de-
ployed function instances in a round robin manner. An instance
of a particular function could receive requests originating from
multiple user applications, depending on the nature of function
280
chaining. Arrival times of user requests for each application are
stochastic and the cluster will have no prior knowledge of the
workload arrival patterns. This means that the request arrival rate
for each function can vary randomly within short periods of time.
Depending on the nature of its operation, each function instance
would compete for different levels of resources in terms of CPU,
memory, network and disk I/O bandwidth. The actual resource
consumption of a function instance at a given time is determined
by the total arrival rate of dependent requests and also on the
number of instances of the function present in the system at the
time. Based on this actual level of resource consumption of each
function instance running on a node at a time, the performance
of user requests will vary depending on the extent of resource
pressure. Thus the placement decision of a scaled function needs
to incorporate the workload and the system resource usage dy-
namics, while also focusing on the resource cost efficiency of the
worker nodes in the cluster. The cluster controller coordinates
the actions of the function auto-scaler, scheduler, and the load
balancer, whilst maintaining communication with the worker
pool.

3.2. Problem formulation

Consider a set V = {v1, v2,, vN}, to be the set of available
Ms in a serverless cluster environment, where N is the total
umber of VMs and vi, 1 ≤ i ≤ N is the ith VM. Each VM is

defined by a two-dimensional vector representing the resource
capacities in terms of CPU and memory denoted as vc

i and vm
i

respectively. Hence we have, vi =< vc
i , v

m
i >. The total CPU

capacity in a VM is determined by the number of virtual cores
(vCPUs) and the memory capacity is measured in Mega Bytes
(MBs). The available free CPU and memory resources in VM, vi
at time t is denoted by, vC

i (t) and vM
i (t) respectively.

Consider ε = {1, 2, 3, . . . ,Q } to be the index set of all the
different functions deployed in the cluster. Let Pk

= {pk1, p
k
2, . . . ,

pkMk
} be the sequence of pod (function instance) scheduling re-

quests received at the scheduler for the kth function, where
1 ≤ k ≤ Q and Mk is the total number of scheduling requests.
Also pkj , 1 ≤ j ≤ Mk is the jth request. Each pod request
carries four attributes, i.e., pkj =< pkcj , pkmj , pktj , rk0 >. pkcj and
pkmj denote the requested minimum CPU and memory resources
for the pod. pktj refers to the pod request arrival time and rk0 is
the standard response time for a request of the function k. Note
that here pkcj and pkmj are set as soft resource requests which
denote the minimum guaranteed resources a pod of a particular
function needs to be allocated with, in order to handle a defined
number of function requests at a time. In line with the Docker
CPU shares [38] policy for resource allocation to containers, these
values determine the proportion of CPU and memory each pod
would get when faced with resource contention in a node. But
when at ease without resource pressure, a pod is free to use as
much CPU and memory of the nodes, as it requires. The standard
response time for a function request, rk0 is the average request
response time obtained by running a function pod in isolation on
a dedicated VM.

When scheduling a function instance on a worker node, the
following CPU and memory resource demand and capacity con-
straints have to be considered.

pkcj ≤ vC
i (t) (1)

pkmj ≤ vM
i (t) (2)

i.e., the CPU and memory request of pod pkj should not exceed
the available (unallocated) CPU and memory of the VM at time t .

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

t
(

m
b

r
p
b
f
a
r
q
r

f
c
m
p
e

M

w
t
V
o
i
t
t
o

m
o
t
w
j
a

M

p

4

t
s

Table 2
Definition of symbols.
Symbol Definition

v A VM or compute node available for function execution
N Total number of available VMs
δ Index set of all the available VMs, δ = {1, 2, . . . ,N}

vc
i Total CPU capacity of a VM, i ∈ δ

vm
i Total memory capacity of a VM, i ∈ δ

vC
i Available CPU in a VM, i ∈ δ

vM
i Available memory in a VM, i ∈ δ

ε Index set of different functions, ε = {1, 2, . . . ,Q }

Mk Total number of instance scheduling requests for a
function, k ∈ ε

pkj jth instance scheduling request of function pk , k ∈ ε

pkcj Requested minimum CPU for the function instance, pkj
pkmj Requested minimum memory for the function instance, pkj
pktj Arrival time of the function instance, pkj for scheduling

pkCon Request concurrency on a pod belonging to function
pk , k ∈ ε

kr Request arrival rate for a function, k ∈ ε

kn Deployed number of replicas for a function, k ∈ ε

rk0 Standard response time for a function request, k ∈ ε

γ Index set of different applications, γ = {1, 2, . . . , A}

Lb Number of user requests received by an application, b ∈ γ

Rb
q Total response time of the constituent functions of the

qth request of an application, b ∈ γ

Rb
q0 Total standard response time of the constituent functions

of the qth request of an application, b ∈ γ

pricei Unit price of VM, vi
ti Total active time of VM, vi

We identify a VM’s available CPU and memory resource levels as
follows:

vC
i (t) = vc

i −

Q∑
k=1

Mk∑
j=1

ukji(t)pkcj (t) (3)

vM
i (t) = vm

i −

Q∑
k=1

Mk∑
j=1

ukji(t)pkmj (t) (4)

where we define a binary variable ukji to indicate whether pod pkj
is currently placed in vi or not, i.e., ∀i ∈ δ, we have;

ukji(t) =

{
1, if pod pkj is deployed on vi at time t
0, otherwise

(5)

Even though pkcj and pkmj represent the resource constraints to
be met when assigning a pod to a host node, the actual resource
consumption of a single function instance at time t will depend
on the number of concurrent requests that it accommodates at
the time. Request concurrency on a pod belonging to the kth
function, pkCon(t) is determined by the request arrival rate kr (t)
and the deployed number of replicas kn(t) at time t . This value
of request concurrency is an important parameter for modeling
the level of resource contention on host nodes. Due to the round
robin nature of request distribution among replicas, we derive
pkCon(t) as follows:

pkCon(t) =
kr (t)
kn(t)

(6)

Note that kr (t) above is a resultant of the cumulative arrival
rate of requests of all user applications consuming the kth func-
ion. The time t in the above expressions: (1), (2), (3), (4), (5) and
6) refers to the time that a pod is taken in for scheduling.

A primary objective of this work is to minimize the perfor-
ance degradation of the execution of user requests, caused
y resource contention in multi-tenant host nodes. We consider
 s

281
the overall application response time latency to be the metric
most reflective of the performance of an application workload.
Consider γ = {1, 2, 3, . . . , A} to be the index set of all the
different applications receiving user requests and Lb, 1 ≤ b ≤ A
be the number of requests received by bth application. Rb

q is the
total response time of the constituent functions of the qth request
of application b, 1 ≤ q ≤ Lb. Rb

q0 is the total standard response
time of the constituent functions of the same. Thus we define
the ratio of these two values averaged over the total requests
for a particular application as the relative application response
time (RART). For a given workload, our target is to minimize the
sum of the RART across all the user applications over the duration
of the workload. Considering RART instead of the response time
itself, removes any bias in our target objective due to varying
execution times of serverless functions when working in a multi-
tenant environment. Accordingly we formulate the application
performance optimization objective as follows:

Minimize : Sum RART =

A∑
b=1

1
Lb

Lb∑
q=1

Rb
q

Rb
q0

(7)

When calculating Rb
q and Rb

q0 we consider only the sum of
esponse times of the individual functions involved with the
articular execution sequence of the application. This is possi-
le since chained functions simply act as triggers for the next
unction in sequence, and hence this process does not involve
ny communication delay. Note that we denote the total standard
esponse time for an application’s request (Rb

q0) as a function of
, since the relevant constituent functions will depend on the
equest input.

Further, we aim to minimize the provider expenses incurred
or the execution of serverless workloads. Since our deployed
luster is formed of heterogeneous VMs with varying CPU and
emory capacities, the cost incurred depends on the VM instance
ricing. Thus, the provider cost optimization objective could be
xpressed as follows:

inimize : CostTotal =

N∑
i=1

pricei × ti (8)

here pricei is the unit price of VM vi and ti is the total active
ime of the ith VM over the duration of workload executions. A
M is considered to be in active mode when it is serving requests
f at least a single function. Thus our target is to release cluster
nfrastructure after experiencing high utilization levels during
heir active life time. In the rest of the paper at times, we use
he term resource efficiency to refer to the cost optimization
bjective.
Overall, the focus of this study is to minimize both the perfor-

ance degradation of functions and to enable efficient utilization
f VMs. These two are generally known to be conflicting objec-
ives. Therefore, we introduce a system parameter β ∈ [0, 1],
hich is adjustable by users to prioritize each optimization ob-

ective as required. Accordingly, we present our target objective
s follows:

inimize : β × Sum RART + (1 − β) × CostTotal (9)

Table 2 summarizes the important notations and descriptions
resented in this section.

. Deep reinforcement learning model

In this section we first introduce the RL paradigm and discuss
he application of RL in the context of the serverless function
cheduling problem discussed above. Then we elaborate on the

pecific RL techniques we have incorporated in this work.

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

t
v
a
a
d
s
p
t
a
π

o

l
e
o
t
a
T
e
b
i
b
t
r
a
a
s
d
t

u

i
f

i
p
i
Q
r
a
Q

Q

t
t
c
t
p
t
a
w
i
t
t
t

b
u

L

4.1. Application of RL for function scheduling

RL is a form of machine learning, which is quite distinct from
he traditional machine learning techniques identified as super-
ised and unsupervised learning. The primary goal of supervised
nd unsupervised learning is to find and comprehend patterns or
hidden structure in collections of labeled or unlabeled training
ata. In contrast, a RL agent learns to map actions in the action
pace, to different states from the environment, in the best way
ossible in order to maximize a reward signal over time. During
he learning process, the agent interacts with the environment
nd at each time step, takes an action based on the current policy
(at |st) and in turn receives a reward rt+1. st is the current state
f the environment and at is the action taken.
In this paper, we apply the concepts of RL to solve the prob-

em of scheduling function instances in a serverless computing
nvironment with dynamic incoming workloads. In the context of
ur problem, the function scheduler acts as the RL agent and each
ime-step of our agent training model corresponds to scheduling
function instance from the function scheduling request queue.
he cluster environment composed of the worker nodes form the
nvironment with which the agent interacts. The state is a com-
ination of all the resource usage statistics of each worker node
n the cluster and the workload nature of the function instance to
e scheduled. The set of VMs form the action space from which
he agent chooses a suitable action. The reward that the agent
eceives for each action is based on the scheduling objectives of
pplication performance and provider cost optimization. The task
ssigned to the scheduling agent is to choose the best VM to
chedule a function instance while satisfying the basic resource
emand and capacity constraints of the system. Below we define
he key components of our RL model.

State Space: The state metrics that are considered in the
formation of the state space st at time t with function instance
pkj waiting to be scheduled, are as follows:

1. The actual CPU, memory, network (sum of network bytes
received and transmitted) and disk I/O (sum of disk read and
write bytes) bandwidth utilization of each of the nodes in the
cluster at time t

2. The CPU and memory capacities of each of the nodes in the
cluster

3. Unit price of each cluster node
4. The total of minimum CPU and memory requested by func-

tion instances running in each node at time t
5. The active status of each node. A node is considered to be

active at time t if it contains instances of functions for which user
requests are received at the cluster at the time

6. The number of replicas of function of type pk already de-
ployed on each node at time t

7. The minimum CPU and memory requested by the function
instance, pkj

8. Sum of network bytes received and transmitted during a
single request execution of kth function on average

9. Sum of disk read and write bytes during a single request
execution of kth function on average

10. Request concurrency on each function instance of type pk
calculated using Eq. (6)

11. Relative function response time (RFRT) of function of type
pk in the cluster at time t . This is the ratio between the actual and
standard response time (rk0) for the function

12. The request arrival rates for each different function de-
ployed in the cluster at time t

Action space: The action space represents the index set of the
VMs available for scheduling the function instance.

Reward: As per the optimization objectives discussed in Sec-
tion 3, we define the reward r for each action a as follows:
t+1 t

282
1. R1: The sum of RFRT calculated across all the deployed
functions in the cluster, just before implementation of the next
action, at+1. This is a good measure of our performance opti-
mization objective of RART in Eq. (7), since application response
time is directly dependent on that of its constituent functions.
Also, it presents a reward more identifiable with each function
scheduling action of the DRL agent.

2. R2: The difference in the cumulative cost of cluster VM
sage just before the implementation of the action, at and just

before the implementation of the next action, at+1, calculated as
in Eq. (8).

For training purposes we take normalized values of both these
rewards at each time step so that the scale of each parameter does
not bias the training process. The minimum and maximum values
for normalizing are arrived at by observing samples across time
steps in multiple episodes. Accordingly, the reward awarded to
the agent after each scheduling decision is:

Reward = −(β × (
R1 − R1min

R1max − R1min
)+ (1−β)× (

R2 − R2min

R2max − Rmin
)) (10)

The negative sign is required to encourage minimization of
both the function response time and VM usage cost.

4.2. Proposed DRL technique for function scheduling

We adapt a variation of the DRL based algorithm, DQN to solve
the problem of scheduling function instances in the proposed RL
environment.

Background: The objective of a reinforcement learning agent
is to find the optimal policy, which is the policy that maximizes
the expected cumulative reward over time.

E[

∞∑
t=0

γ t rt] = E[r0 + γ r1 + γ 2r2 + γ 3r3 + · · ·] (11)

Here, γ is the discounting factor, which determines the signif-
cance of future rewards. r is the reward received at each step by
ollowing the policy π (at |st).

Q-Learning: Q-Learning is a temporary difference algorithm
n RL, and it works by assessing the ‘Quality’, or how good a
articular action is, with regard to gaining future rewards. This
s represented by means of the Q-function for a state–action pair,
(s, a). The optimal Q-function, Q ∗(s, a) denotes the maximum
eward that can be obtained by following the optimal policy
t each step. The Bellman optimality equation for the optimal
-function is defined as follows:
∗(s, a) = E[r + γ max

a′
Q ∗(s′, a′)] (12)

Deep Q Learning (DQN): Due to the high-dimensional na-
ure of the environment modeled in our work, it is infeasible
o incorporate tabular Q-learning solutions. This is owing to the
omputational and space restrictions associated with maintaining
he data and also the difficulty in exploring all the state–action
airs by the agent during the training process. We can overcome
hese shortcomings by training a neural network and using it as
function approximator to determine the Q values. Accordingly,
e parameterize our Q function by an adjustable parameter θ ,

.e., Q (s, a; θ) ≈ Q ∗(s, a). We then feed the environmental state
o the neural network, which in turn returns the Q value of all
he possible actions for that state. Subsequently, the action with
he maximum Q-value is selected by the agent.

Thus in DQN, the objective is to predict the Q value, which is
asically a regression task. Mean Squared Error (MSE) is generally
sed as the loss function for performing regression.

(θ) =
1
K

K∑
(yi − ŷi)2 (13)
i=1

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

1

1

Algorithm 1 DQN Based Function Scheduling Algorithm
1: Initialize the main network parameter θ with random weights
2: Initialize the target network parameter θ ′ by copying the

weights from the main network
3: Initialize the N-step buffer D′ and replay buffer D
4: Initialize the training parameters ϵ, α, γ
5: for episode = 1 to E do
6: Reset the environment
7: for step = 1 to T do
8: Observe the state s
9: Select an action a using the ϵ-greedy policy

10: Execute the action a, move to the next state s′ and
observe the reward r

11: Store the transition (s, a, r, s′) in the buffer D′

2: if size of D′
= N then

13: Translate and move the N-step transition data to D
4: Randomly sample a mini-batch of K transitions from D

15: Compute the loss L(θ)
16: Update the main network:
17: θ = θ − α∇θL(θ)
18: Update the target network every P steps

return

where y is the target value, ŷ is the predicted value and K is
the number of training samples involved. The target value is the
optimum Q value. Accordingly,

y = r + γ max
a′

Q ∗(s′, a′)

ŷ = Qθ (s′, a′)

As per the dynamic nature of our function scheduling envi-
ronment and unprecedented delays in action executions at each
time step in a practical training environment, we observed that
the straightforward application of vanilla DQN algorithm did not
work well for our problem. Hence we used its variant, multi-
step DQN to train the agent. This involves a multi-step buffer
which considers longer trajectories in storing the state transitions
in memory, resulting in a more effective and efficient learning
process for the agent. In contrast to a single step buffer, a multi-
step buffer is known to give the agent a better view of the future
rewards and also helps to propagate newly observed rewards to
earlier visited states faster [39]. This technique is summarized in
Algorithm 1.

The scheduling environment is reset at the beginning of each
episode (line 6). Each time step corresponds to scheduling a
function instance from the pod queue. At the start of each step,
the environmental state is retrieved and the agent selects an
action (line 9). After performing the selected action and receiving
the reward, we store the agent’s experience in memory. Due
to the multi-step nature, every transition is first stored in a
temporary buffer D’ and then the most recent N transitions are
summarized and moved to the replay buffer D (lines 11–13).
Once the experiences are stored, we randomly sample a mini-
batch of transitions from the buffer and train the network. The
neural network training is done by finding the optimal network
parameter θ which minimizes the loss function. Accordingly, we
compute the gradient of our loss function ∇θL(θ) and update our
network parameter θ (lines 14–18).

If we use the same neural network to calculate the target
Q value of the next state–action pair, and also the predicted Q
values, this causes instability in the loss function and the network
learns poorly. To avoid this issue, we use a separate neural net-
work for calculating the target values, keep its network parameter
static for a while and periodically update its value referring to the
main network.
283
Algorithm 2 Online Scheduling

1: upon event Submission of a new poddo
2: Enqueue pod in pod-waiting queue
3: while P dood-waiting queue is not empty
4: Dequeue a pod from queue
5: Retrieve current cluster state info
6: Retrieve function resource requirements and behavioral

status
7: Compose the state space
8: Action a = Agent(state)
9: Create pod in the selected worker node

return

Algorithm 2 presents the specific steps of the agent’s behavior
during online scheduling of function instances in the context of
our modeled environment.

5. DRL agent training environment design and implementa-
tion

We investigate the problem space of time and cost optimized
scheduling of serverless functions by designing and implement-
ing an experimental framework using the serverless framework
Kubeless, deployed on a Kubernetes cluster. From among the
many existing open-source frameworks, we chose Kubeless for
our work since it works with minimal changes to the underlying
Kubernetes core components, and thus makes our entire setup
compatible for easy resuse with any other framework utilizing
Kubernetes for container orchestration, such as OpenFaas [1],
Knative [2], Fission [3]. In this section we discuss the fundamental
architectural setup of the designed system.

5.1. System architecture

Fig. 2 presents the overall architecture of our system. We have
deployed this framework using 23 VM nodes on the Melbourne
Research Cloud [40] which is part of the ARDC Nectar Research
Cloud, the national research cloud of Australia [41]. Kubernetes
is initially deployed on the cluster nodes, on top of which we
deploy the serverless framework, Kubeless. As illustrated in the
figure, our setup consists primarily of a control cluster, a worker
cluster and the DRL agent which communicates with the control
cluster.

The control cluster is made up of two nodes, each with 4
vCPUs and 16 GB of memory. One control cluster node contains
all the core components of the Kubernetes control plane, which
are responsible for the creation, management and auto-scaling
of pods in a basic Kubernetes cluster. The controller component
of the Kubeless framework resides on the second control plane
node. It communicates with the Kubernetes controller manager
in order to handle the function deployment, scheduling and auto-
scaling processes. It also acts as the gateway for new application
deployments and incoming function requests. Kubeless uses a
Kubernetes Custom Resource Definition (CRD) to be able to create
functions as custom Kubernetes resources. Given the application
logic of a function via the CLI, the Kubeless controller coordinates
with Kubernetes’ components and automatically manages the
deployment of an instance of the function in the cluster, as a pod.

We have also deployed Apache CouchDB [42] database as a
cluster on the control plane nodes for persisting function data as
required. CouchDB is an open source NoSQL database with fast
querying and scaling capabilities which suit the requirements of
a serverless environment. The database consumes the disk space

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

v
t
a
i
f
t
c
t

i
o
t
u
c
w
a
s

Fig. 2. The proposed system architecture of the practical testbed for training
and evaluating the DRL agent.

(30 GB each) of the control plane nodes. The Prometheus metrics
monitoring tool [43] is installed in our cluster setup, and the
Prometheus server is deployed on the second node along with
the Kubeless components. Prometheus periodically scrapes the
configured set of metrics from the cluster and aggregates them on
the Prometheus server. We have configured it to scrape system
metrics associated with resource usage levels of each node and
pod. We also gather metrics related to the incoming function
request workloads such as the request arrival rates and request
execution times, by observing the Kubeless controller gateway
and the Kubernetes core components. We have also installed
Apache JMeter [44], a load testing tool, in order to simulate a
large number of user requests to functions as required. This tool
too resides on the control cluster and is able to generate HTTP
requests to multiple destinations simultaneously, at a given rate
for a given time duration. At the start of each episode, a function
request workload is created and sent to the worker cluster using
this tool.

The worker cluster consists of 20 VM instances, each with
arying number of vCPUs and memory capacities, described fur-
her under experimental settings. As per the nodes selected by the
gent, function instances are deployed on worker nodes. Incom-
ng requests for a function are forwarded to the relevant deployed
unction instances in a round robin manner as discussed under
he systemmodel. The response for each request is received at the
ontrol cluster. Each worker node also exposes scraped metrics to
he Prometheus server.

The DRL agent which executes Algorithm 1 in our framework,
s implemented in Python using Keras [45] and Tensorflow2 [46],
n a VM with 8 vCPUs and 32 GB of memory. We have replaced
he default Kubernetes pod scheduler with our custom sched-
ler which is incorporated into the agent’s implementation. The
ustom scheduler uses a python client for the Kubernetes API,
hich watches for new pod requests. During each time step, the
gent retrieves the state and reward metrics composed of the

ystem and workload characteristics from the Prometheus server

284
Fig. 3. The communication process flow of the DRL agent with the cluster during
the training phase.

via HTTP APIs. The agent’s selected action is communicated to the
control cluster for implementation. The agent’s process flow is
explained in detail in the next section.

5.2. DRL agent’s process flow

At the start of an episode, a concurrent request workload to
multiple applications is created and sent to the worker cluster
using the JMeter tool. These requests are served by the existing
instances of the function in a round-robin manner. Once the auto-
scaler triggers scaling up of function instances, the agent’s process
flow commences. Fig. 3 illustrates the sequence of actions that
takes place at each subsequent time step. A new time step for
the agent is triggered once a new pod scheduling request is seen
by the Kubernetes watch API. The monitoring tool periodically
scrapes and stores cluster metrics. At each new time step, the
agent crawls the state metrics from the Prometheus server via
HTTP APIs. Next a node is selected for scheduling the pod as per
the agent’s logic, and the control cluster is notified of the decision.
Once the pod is scheduled on the selected node, we wait for a few
seconds for the environment to react to the implementation done.
Next the agent retrieves the reward metrics and moves on to the
next pod scheduling request.

6. Performance evaluation

In this section we discuss the evaluation process of our pro-
posed DRL framework for scheduling serverless function
instances. We compare our solution with several state-of-the-art
baseline algorithms under different scenarios.

6.1. Experimental settings

6.1.1. Cluster setup
We use the cluster setup described in Section 5 for both the

training and evaluation experiments of our DRL model. As the set
of worker nodes, we have used 20 VM instances with various
pricing models, in line with the AWS EC2 instance pricing (in
Australia) [47]. This enables us to recreate a real-life public cloud
setting in order to train our agents to optimize provider cost. We
conduct experiments under two cluster sizes of 10 VMs and 20
VMs in order to test model scalability. Table 3 summarizes the
overall resource details of the worker cluster. The 10 VM cluster
is composed of 2, 6 and 2 VMs with 2, 4 and 8 vCPUs respectively.
We maintain the scrape interval of monitoring metrics at two
seconds, in order to maintain the accuracy and relevance of the
stored metrics.

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292
Table 3
Worker cluster resource details.
Instance type vCPU cores Memory (GB) Quantity Price (AUD/h)

t4g.large 2 8 6 0.086
t4g.xlarge 4 16 10 0.172
t4g.2xlarge 8 32 4 0.344

6.1.2. Workload specifications
Serverless Applications: We refer to the ServiBench [18] and

FunctionBench [17] benchmarking suites and choose 12 different
single and multi-function real-world serverless applications and
use them in all our experiments. The selected applications have
a varying demand on CPU, memory, network and disk I/O band-
width resources and thus different sensitivities to contention on
node resources. After the deployment of an instance of each new
function of an application in the cluster for the first time, we send
multiple requests to the function in isolation on a VM to deter-
mine the average response time for a single request when not
subject to resource pressure. This is used as the standard response
time r0, for the function in model training and for application
performance evaluation. Further, we obtain approximate values
for pkcj , pkmj introduced in Section 3 and the network and disk
I/O bandwidth consumed by a single request using this profiling
step, to be used as reference values in deriving state parameters
during agent training. Table 4 presents details on the nature of
these applications.

Workload Creation: In addition to the inherent resource sen-
sitivities of these applications, we also use function inputs to
create additional variations of resource usage by them. Further,
applications with chained functions would have varied execu-
tion paths based on the input values. We leverage the publicly
available function traces from Microsoft Azure’s serverless plat-
form [19] to derive average function response times and request
arrival rates when formulating the workloads for both training
and evaluation of the model. Since Azure functions are already
grouped in to applications, for multi-function applications we
filter and use traces of matching applications.

The input parameters to individual functions are varied as re-
quired to attain the execution times extracted from these traces.
For the 10 and 20 VM cluster scenarios, we maintain the re-
quest arrival rates at 5–20 and 5–60 requests per second and
the maximum pod replicas for scaling at 4 and 6 respectively,
for each function. Further, we configure the standard response
time r0 for a function request to be below one second, pod
CPU requirements between 0.05–0.5 vCPUs and pod memory
requirements within 50–500 MBs. These parameters were chosen
so as to create enough request traffic in each of the VM cluster
scenarios, while not overloading the system. We combine Azure
Function traces spanning over two days and filter function traces
that fall within these specified ranges of the function response
time and request arrival rate parameters. We use the average
function execution times from the traces as the function response
times for our experiments. This could be done without causing
any inaccuracy, since we have observed that the instance creation
time for all our applications is quite similar and thus the evalu-
ation of relative application performance is not affected by this
delay. The request arrival rates are obtained by translating the per
day total invocations for a function in the data set to a per second
value. Accordingly, multiple variations of the selected benchmark
applications are created by adjusting their function input values
and request loads are created. A single episode consists of a
set of different applications receiving simultaneous requests at a
time for a particular duration, and each application would have
requests arriving at different arrival rates.
285
The request load is generated in real time by the JMeter HTTP
load generator. The R1min, R1max, R2min and R2max values for train-
ing the DRL models, are determined after running the created
workloads multiple times and recording the calculated R1 and R2
values at each time step.

6.1.3. Hyper-parameter configurations
Table 5 highlights the hyper-parameters used in training the

DRL agents. All the parameters for both the cluster scenarios were
decided on a trial and error basis. The size of the N-step buffer
was chosen so as to improve the agent’s convergence speed with-
out breaking the training progress. We use 600 function traces
in total, derived from Azure Functions data set, in creating the
workloads required for model training. The number of neurons
in each hidden layer in the neural network for the 10 VM and 20
VM cluster scenarios are 100 and 200 respectively.

6.2. Performance metrics

We use the below metrics to evaluate the performance of our
model.

Relative Application Response Time ratio: The sum of the rela-
tive response times of all the user applications during the span of
the experiment, calculated using Eq. (7). At the end of a workload
execution, we use the request response times recorded in the
JMeter test report for each function, to arrive at this value.

Average Number of Nodes: The average number of VMs actively
involved in request execution during a single episode. This is
calculated by retrieving the number of active VMs in the cluster
every two seconds and taking the average over the total duration
of the workload.

VM Usage Cost: The total cost incurred for keeping the VMs
active during a scheduling episode. This is calculated as shown
in Eq. (8). We use the active nodes parameter together with the
instance pricing given in Table 3 to arrive at this value.

Throughput: The average number of successfully served requests
per second during an episode.

6.3. Baselines schedulers

We compare the performance of our DRL based scheduling
framework with six baseline algorithms.

Round Robin (RR): Each incoming function instance is scheduled
in a different VM with sufficient resources, in a cyclic manner.

Bin packing First-Fit (BPFF): This is a greedy scheduler similar
to AWS Lambda’s strategy of packing function invocations to
improve VM resource utilization [4]. Nodes are numbered from
1–12 and pod requests are directed to the first VM which satisfies
the minimum resource requirements.

Static Time Cost Aware (STCA): A scheduler which uses state
parameters derived by the DRL agent in a static manner to select
a VM. A separate rank and accordingly a score is given to each
VM based on each parameter. Then the node with the highest or
lowest overall score would be selected for function placement,
based on the target objective. The state parameters taken into
consideration are, CPU, memory, network and disk I/O utilization
of each node, ratio of CPU and memory requests of running
functions against their capacity in each node and the active status
of the nodes. Based on the nature of these parameters choosing
a VM with lower overall score (STCA-L) resembles better func-
tion performance while a higher score (STCA-H) promotes higher

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

b
m
S
s
(

a
w
(

L
s
i
g
i
f
s
I
z
s

K
a
s
w
V
u
t

Table 4
Serverless application details.
Name Resource sensitivity # of functions

CPU Memory Disk I/O Network

Primary High High – – 1
Float High High – – 1
Matrix multiplication High High – – 1
Linpack High High – – 1
Load Low Low – High 1
Dd High Medium High – 1
Gzip-compression High Medium High – 1
Thumbnail generator Low Medium Low Low 2
Facial recognition Medium Medium Low Low 5
Todo API Low Low Low Low 5
Image processing Medium Medium Low Low 2
Video processing High High Medium High 2
s
(
(
t
w
r
o

Table 5
Hyper-parameters used for DRL model training.
Parameter Value

General
Discount factor (γ) 0.95
Mini-batch size 64
Replay buffer size 2000
N-step buffer size 5
Target network update rate 100
Replay memory size to start training 100
Epsilon max (ϵmax) 1
Epsilon min (ϵmin) 0.04
Epsilon decay factor at each time step 0.999

Neural network parameters
Learning rate (α) 0.001
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 100/200
Optimizer Adam

resource efficiency. This is an approach often followed in cluster
scheduling scenarios to help resolve congestion [48].

Dynamic Time Cost Aware (DTCA): A scheduler similar to STCA
ut uses state parameters derived by the DRL agent in a dynamic
anner to select a VM. Ranking and scoring of VMs is done as in
TCA but the decision of choosing the highest or lowest overall
core is taken based on the Relative Function Response Time
RFRT) and pkcon calculated using Eq. (6), at the time of scheduling
the function instance. If either RFRT or pkcon is higher than the
verage value of all the deployed functions, we choose the VM
ith the lowest overall score (DTCA-L) and else, the highest one
DTCA-H).

Z-based: We adapt ENSURE’s [5] latency zone based request
cheduling policy for our instance scheduling problem. Accord-
ngly, if RFRT of the function in consideration is lower than a
iven latency threshold (we consider a value of 1.25), the cluster
s considered to be in a safe/prewarning zone (with regard to that
unction) and the maximum number of replicas of that function
cheduled on a VM is limited to the number of vCPU cores it has.
f RFRT is higher than that, the cluster is pushed to a warning
one and only a maximum of a single replica of that function is
cheduled on each VM.

C: We use the K-means ++ unsupervised machine learning
lgorithm [49] to derive a cluster interpretation of function in-
tances based on their resource consumption. During scheduling,
e avoid co-locating those belonging to the same cluster on a
M. We collect the CPU, memory, network and disk I/O resource
tilization metrics of function instances of the selected applica-
ions under varying request arrival rates and input parameters,
 a

286
normalize them and use this data to perform clustering. The
number of clusters is determined using the elbow method.

6.4. Convergence of the DRL model

For each cluster size, we train the DRL model under five
scenarios defined by the parameter β (as given in Eq. (9)), which
identifies the level of trade-off between the two optimization
objectives. A higher value of β indicates that the agent is in-
centivized more for improving the function response time, while
a lower value indicates increased reward for the agent for op-
timizing VM usage cost. Accordingly, β = 1 implies that the
awarded reward is solely dependent on function response time
while the focus is only on improving VM cost efficiency when
β = 0. Figs. 4 and 5 illustrate the step by step progress achieved
by the DRL agents under each scenario, in the process of learning
to take actions which lead to the accomplishment of the desired
objectives. The training progress is demonstrated in terms of
episodic reward, sum of relative application response time ratio,
VM usage cost and the average number of nodes used during
an episode. Note that in each of these graphs we have plotted
the average value over 20 iterations for ease of observation of
the training progress. We train the model for five times under
each scenario using the hyper-parameters stated in Table 5 and
select the model that gives the best results for conducting the
evaluation experiments.

Figs. 4(a) and 5(a) show how the total reward captured during
an episode improves and gradually converges under varying β
parameters. In the 10 VM cluster, when β = 1, the model
converged around the 600th episode, and the training took about
60 h. In the 20 VM cluster, the same model converged around
the 800th episode, requiring approximately 80 h of training due
to the expanded state space. Since here the full focus is on
improving the function response time, we see a steady decrease
in RART in the corresponding graphs in 4(b) and 5(b) as training
progresses. In contrast, in the corresponding graphs in 4(c), 5(c)
and 4(d), 5(d) we see a gradual increase in the VM usage cost
and the average number of nodes used. This is because the agent
learns through experience that using more nodes with higher
resource availability to host different function instances leads to
lesser resource congestion. This results in higher VM costs with
the partial usage of nodes with higher resource capacities and
hourly charges. Similarly, in the β = 0 scenario we observe a
teady reduction in VM usage costs and the number of nodes
Figs. 4(c), 5(c) and 4(d)), 5(d) while the RART deteriorates visibly
Figs. 4(b) and 5(b)). It is also seen that during this scenario in
he 10 VM cluster, the model convergence is relatively faster,
ith reward getting stabilized around the 300th episode which
equired about 30 h of training. This is because, the cost efficiency
bjective is easily achieved by primarily learning to use already

ctive nodes more frequently. In comparison, finding the best

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

p
l
d
e
f

Fig. 4. Convergence process of the trained DRL models in the 10 VM cluster in terms of reward, RART ratio, total VM cost, and the average node number.
Fig. 5. Convergence process of the trained DRL models in the 20 VM cluster in terms of reward, RART ratio, total VM cost, and the average node number.
b
a
t
i
β
p
h
c
r
h
w

o
p
a
i
H
t
(
o
f
e
V
a
o
K
o
b
r
a
t
t
n
i
d
m

olicy to improve application performance requires the agent to
earn the different congestion levels created by the co-location of
ifferent functions with dynamic workload patterns, and also the
ffects of various environmental parameters. The three models
ocused on improving both the target objectives (β = 0.75,
β = 0.5, β = 0.25) too converge around the 600th episode for
the 10 VM scenario while the 20 VM cluster requires training for
approximately 800 iterations for the same models. Since these
two are conflicting objectives, giving a higher significance to
one, impedes the training progress of the other as seen in the
convergence graphs for these scenarios in 4(b), (c), (d) and 5(b),
(c), (d). When β = 0.75, a significant improvement is seen
in RART at convergence, while the improvement in VM cost is
marginal. In contrast, the β = 0.25 scenarios record a notable
improvement in VM cost, while the corresponding optimization
of response time is minimal. The models converge with average
improvements in both the parameters when β = 0.5.

6.5. Analysis of model performance on the evaluation data sets

The performance evaluation of the trained models under the
two clusters of VMs, is conducted across different request traffic
levels. We create dynamic workloads for model evaluation by us-
ing 900 function traces from Azure Functions data set, extracted
using the same mechanism as described in Section 6.1.2. These
traces are used to create 150 different workloads in total with 50
workloads each having request arrival rates ranging between 5–
20, 20–40 and 40–60 requests per second respectively. The 10 VM
cluster is evaluated using the set of workloads with arrival rates
between 5–20, while the 20 VM cluster is tested with all three
sets of workloads. Each individual workload comprises of con-
current requests arriving for multiple applications (comprising
of single or multiple functions), at varying arrival rates (ranging
between 5–60 requests/s overall), for a duration of 5 min. All the
evaluation parameters in Figs. 6 and 7 represent averaged values
over runs of the 50 different workloads under each scenario. The
separate analyses of model performance under the two cluster se-
tups demonstrate the scalability and robustness of the proposed
model across expanded state parameters. Overall, the perfor-
mance of our proposed model in comparison with the baseline
algorithms, is discussed under the two optimization objectives of

application response time and resource cost efficiency.

287
6.5.1. Evaluation of application response time
We discuss application response time performance in associ-

ation with the RART ratio and system throughput.

10 VM Cluster: Fig. 6(a) demonstrates the comparison of the
performance of our trained models with the baselines in terms
of the total RART ratio. The DQN (β = 1) model shows the
est performance in terms of application performance among
ll the algorithms, with a 24% improvement in RART ratio over
he next best performing algorithm STCA-L. This is also reflected
n the corresponding throughput graphs in Fig. 6(b). Under the

= 1 scenario, the agent is constantly incentivized to avoid
erformance degradation caused by resource pressure. Thus it
as developed a superior understanding of the congestion levels
aused by each function instance on the host node at different
equest traffic levels and various node resource conditions. This
as led to establishing the best policy to choose the host node
ith minimum contention.
As expected, our DQN (β = 0) model performs worst in terms

f response time since the agent is trained to fully focus on im-
roving resource cost efficiency and thus largely compromises on
pplication performance. This is demonstrated by the RART ratio
n Fig. 6(a) and the throughput graph in Fig. 6(b). BPFF and STCA-
algorithms too show poor performance in terms of response

ime and STCA-H has the lowest system throughput next to DQN
β = 0). Both these methods tend to place new function instances
n VMs that are most congested, causing increased competition
or node resources. RR algorithm performs relatively better as
ach consecutive function instance is spread among the cluster
Ms. But since this only leads to randomly balancing the load
mong the nodes without an understanding on specific function
r system characteristics, the achieved results are sub-optimal.
C shows similar performance to RR. At lower load levels, we
bserved that most data points in the K-means clustered data
ased on resource usage, belonged to the same cluster, thus
esulting in a RR like function scheduling pattern. The STCA-L
lgorithm depends on static state parameters of the system in
aking scheduling decisions. Although the decisions made under
his method leads to relatively good results, this technique is
ot competitive enough to find the most optimum solution since
t possesses no overall understanding on the complex system
ynamics. The performance of DTCA and LZ-based strategies are
ostly comparable with that of DQN(β = 0.75, β = 0.5, β =

0.25) models since they try to balance both the objectives. Out of

these DQN(β = 0.75) outperforms the rest but is closely followed

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

i

2
t
a
l
r
a
s

i
r
a
t
t
R
R

Fig. 6. Comparison of the RART ratio, throughput, total VM cost and the average number of used nodes in the system during an episode, by the DRL model and the
baseline algorithms in the 10 VM cluster.
by DTCA and LZ-based since the response time delays still get
priority in their scheduling decisions whereas DQN(β = 0.5) is
ncentivized to optimize both equally.

0 VM Cluster: Fig. 7 exhibits the relative performance of our
rained models on the 20 VM cluster in comparison to baseline
lgorithms. On this cluster we conduct experiments under three
evels of request arrival rates to applications as shown. As the user
equest rates increase, an overall increase in resource congestion
nd as a result, a degradation of application response times is
een (Fig. 7(a)).
At the lowest request traffic level of 5–20 req/s, the cluster

s able to serve all the requests with minimum pressure on its
esources. In this situation when the cluster is relatively relaxed,
complex understanding on the underlying application charac-

eristics seem to provide only minimal added benefits. As a result,
he STCA-L algorithm gives the best performance in terms of
ART, while the DQN (β = 1) model closely follows. DTCA and
R algorithms show similar performance to DQN (β = 0.75)

and DQN (β = 0.5) models, followed by KC. LZ-based algorithm
shows poor performance since a fixed latency threshold for appli-
cations regardless of the request arrival rates, is not able to make
good decisions under dynamic load conditions. DQN (β = 0)
model shows worst performance since it only focuses on resource
cost efficiency. The throughput graph for the 5–20 request range
too reflect the RART performance, but since the request arrivals
are sparse, the difference seen among the scheduling algorithms
is less significant.

With the increase in the load level at 20–40 req/s, DQN (β = 1)
model shows a 17% improvement in RART over the next best
performing algorithm STCA-L. Since the DQN agent is trained to
identify application resource characteristics at a given load level
and the cluster status, it is able to avoid resource contention on
host nodes in the most optimum way. STCA-L algorithm performs
well due to its inherent tendency to choose host nodes with least
request traffic. LZ-based algorithm too performs fairly well in
this scenario since with the increased load level, the considered
latency threshold has been able to make comparatively better
decisions. Results indicate that scheduling functions based on
identified cluster patterns in the KC algorithm is not granular or
robust enough to understand system reactions to resource pres-
sure well, and hence is not able to manage the resulting impact on
application performance. DTCA algorithm suffers from poor deci-
sion making when the overall cluster resource pressure increases,
due to its dependency on average cluster RFRT and request con-
currency. It is also observed that with increased traffic levels,
DQN (β = 0.75), (β = 0.5) and DQN (β = 0.25) models which
aim at balancing the dual objectives, show relatively distinct per-
formances with regard to application performance. Throughput
graphs for this scenario too show more significant improvements
in line with the response time performance, compared to the
previously discussed low load level scenario.
288
At the highest level of request rates, DQN (β = 1) model
demonstrates a 20% improvement in RFRT compared to STCA-
L. The response time behavior of the other baseline scheduling
algorithms under this scenario is mostly similar to that of the
20–40 load level.

6.5.2. Evaluation of resource cost efficiency
The efficiency in resource usage is primarily measured in

terms of the total VM usage cost.

10 VM Cluster: Fig. 6(c) illustrates the performance of our trained
models when compared with the baseline solutions in terms of
resource cost. When β = 0, the DQN agent is encouraged solely
to use low cost resources and maintain higher utilization levels of
the used resources, which results in overall lower VM usage cost.
The derived policy from training the agent, tries to strategically
place new functions to already used, low cost VMs as much as
possible. The results from DQN (β = 0.25) model too closely
resonates with that of DQN (β = 0), and together they show
the best performance. DQN (β = 0) model results in a 11% and
15% lesser VM usage cost compared to the next best performing
non-DRL techniques of STCA-H and BPFF. The lower resource
consumption is also reflected in the average number of used VMs
as shown in Fig. 6(d), where the average number of used VMs for
DQN (β = 0) is among the lowest.

STCA-L algorithm shows the highest VM usage cost and also
rank high in terms of the average number of nodes used, which
reflect worst performance. That is because its strategy is to use
the system parameters to determine high capacity nodes with
least number of running functions and minimum resource utiliza-
tion, and use them for function scheduling. This leads to more
cluster nodes often operating drastically below their capacities.
The next highest resource cost is seen in RR, KC and in DQN
(β = 1) algorithms. RR algorithm understandably results in
low resource efficiency since it is not sensitive to any variations
in incoming workloads or cluster resource conditions. It simply
schedules functions on VMs cyclically, and this inadvertently
results in most VMs being active throughout the experiment. KC
algorithm behaves mostly in a similar manner due to irregu-
larities in cluster formations at low load levels. DQN (β = 1)
on the other hand is trained to focus fully on avoiding resource
contention among functions and thus consumes more resources
in the process. BPFF naturally tries to pack as many functions
as possible to one VM before moving on to the next one, while
STCA-H manoeuvres system parameters to find low cost VMs that
already have a high utilization. The result is lower VM usage cost
overall since this minimizes under-utilization of VMs, specially
with high capacities. STCA-H and BPFF also result in the lowest
average number of VMs being used, even lower than that of
DQN (β = 0). Even though in comparison to DQN (β = 0),
these techniques incur a higher resource cost, this could still
occur because the lower number of used nodes could be having

higher unit time cost. DQN (β = 0.75) is high in VM cost due

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

b
o

2

m
f
t
D
c
V
t
D
B
o
a
D

f
n
b
e
n
c
a

Fig. 7. Comparison of the RART ratio, throughput, total VM cost and the average number of used nodes in the system during an episode, by the DRL model and the
baseline algorithms in the 20 VM cluster.
to being biased towards response time improvement, while DQN
(β = 0.5) is the best at balancing both the objectives, performing
etter than the other non-DRL dual objective oriented techniques
f DTCA and LZ-based algorithms in terms of cost efficiency.

0 VM Cluster: The resource cost efficiency of the 20 VM cluster
under varying load levels is illustrated in Fig. 7(c). In the first
scenario with request rates ranging from 5–20, DQN (β = 0)
odel demonstrates a 34% reduction in VM usage costs, outper-

orming the best among the baseline algorithms, BPFF. In contrast
o minimal improvements to application response time by the
QN agents at lower traffic levels as discussed earlier, the high
ost savings is due to increased opportunity to keep high cost
Ms from running since the cluster has plenty of other resources
o accommodate the incoming requests. STCA-H, LZ-based and
TCA algorithms incur slightly higher VM costs compared to
PFF. At lower traffic levels, these baselines are not able achieve
ptimum resource efficiency without the combined knowledge of
pplication workload characteristics and cluster resource levels.
QN (β = 1) agent shows the highest resource cost since it

uses its workload and system awareness on spreading function
instances on VMs with the highest free resource capacities (high
cost VMs). The average number of VMs used in a scheduling
episode under this scenario (Fig. 7(d)) mostly reflect a behavioral
pattern comparable with VM costs, although there are deviations
since the used VM count will not move directly in line with the
objective of cost reductions in a heterogeneous cluster.

At 20–40 req/s, DQN (β = 0) still achieves the best per-
ormance with a 25% reduction in VM costs compared to the
ext best performing baseline algorithms of BPFF, STCA-H and LZ-
ased. An interesting observation is that as the load levels grows,
ven the DQN (β = 0.25) and DQN (β = 0.5) agents achieve
oticeably high cost benefits, compared to baselines. This is be-
ause, as these DQN agents try to optimize dual objectives, the

chieved response time improvements too contribute to lowering

289
the infrastructure costs, as the applications require lesser time for
their executions. RR and STCA-L algorithms result in high node
costs due their inherent quality of spreading function instances
among VMs without an elaborate understanding on workload
and system interactions. KC scheduling policy is focused only on
avoiding VM resource pressure and thus performs poorly in terms
of resource efficiency.

At the highest level of request traffic under the 3rd scenario,
surprisingly the DQN (β = 0.25) model outperforms its coun-
terpart DQN (β = 0) agent which is solely focused on cost
improvements. As discussed previously, this is further evidence
that under high pressure on node resources, taking both objec-
tives into consideration leads to training a policy which is better
at optimizing cost more effectively in the long run. The relatively
poor performance of BPFF and STCA-H algorithms which are
generally good at packing function instances to save costs, also
demonstrate the underlying indirect effect of application perfor-
mance on cost performance in an overloaded cluster. Further,
compared to baselines such as BPFF and STCA-H, the DQN (β = 0)
and DQN (β = 0.25) agents show only a marginal difference in
the average number of VMs in usage. This further establishes the
fact that during high load levels, the achieved cost efficiencies
are largely due to the intelligent placing of different application
instances on suitably low cost host nodes, since simply packing
them on to fewer VMs has only a limited ability to improve costs.

6.5.3. Evaluation of multiple reward maximization
Fig. 8(a) and (b) illustrate the movement of the optimized

objectives with the change in the β parameter in the 2 cluster
scenarios. The blue lines exhibit the effects on application re-
sponse time while the orange lines present the effects on resource
cost. On the 20 VM graph, the solid lines, dashed lines and the
dotted lines represent the obtained results with regard to 5–20,
20–40 and 40–60 request load levels. As seen, the DQN agents

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292

a
o
b
v
s
i

6

t
b
t
a
t
a
a
u
t
a
T
t
w
t
r
e
a
c
c

d
p
m
r
d
u

o
b
t
s
3
T
t
b

Fig. 8. The effect of the β parameter in optimizing dual objectives in DRL model training.
7

r
u
v
m
c
t
i
o
p
u
h
h
i
a
r
d
o
g
i
e

i
c
t
s
o
o

C

w
v
i
a
s

D

c
t

D

re able to achieve stable results while optimizing one or more
bjectives as desired. Higher the β value, the trained agents are
etter at improving application response time, while lower β

alue indicates better ability to control VM usage costs. In each
cenario, at β = 0.5, the agents display a balanced policy which
s able to optimize both the objectives to a satisfactory level.

.6. DRL model training and serving overhead

In this work all our DRL models are trained on a practical
estbed. Unlike in a simulator where the time steps will generally
e determined by an event based clock, in our practical set up,
he time consumed is equivalent to the actual resource creation
nd execution times of the applications. Accordingly, the model
raining time is composed of these actual environmental set up
nd function run times, coupled with the overhead of using
neural network for deep learning, for each training episode
ntil model convergence. The neural network overhead for model
raining is dependent on the modeled environment’s state size,
ction space and the complexity of the agent’s reward structure.
hus, as described under Section 6.4, we observe varying model
raining times with changing cluster sizes and the β parameter,
hich determines the reward structure. For the 10 VM cluster,
he β = 1, β = 0.75, β = 0.5 and β = 0.25 scenarios all
equire approximately 60 h of training while the β = 0 scenario
xperiences faster convergence at half that time owing to having
simpler reward structure. Due to increased state exploration

osts, the model requires 80 h of training on average to reach
onvergence for the 20 VM cluster.
In order to observe optimum scheduling results under more

iverse function resource requirements, request arrival rates, ex-
anded cluster sizes and changed optimization objectives, the
odel could be easily retrained by providing the required explo-

ation data to the agent. Model scalability in this manner is largely
emonstrated in our experiments which analyze its adaptability
nder cluster size and reward structure variations.
Model serving for the proposed DRL agent refers to mapping

f the current environmental state to an action, which is derived
ased on the state–action values of the available actions in the
rained model. Since model training takes place offline, we ob-
erve that this mapping consumes an insignificant time of about
3 ms on average, which is the scheduling overhead imposed.
he model evaluation experiments show that this value is similar
o the time spent on scheduling decisions of the other non-DRL

aselines as well.

290
. Conclusions and future work

The serverless computing model gives rise to flexibility in
esource management for both the cloud provider and the end
sers. However, the multi-tenant nature of these computing en-
ironments could cause complex variations in function perfor-
ance, when application demand levels are subject to rapid
hanges over time, due to resource constraints. At the same
ime, efficient usage of the underlying infrastructure has become
ncreasingly important for the cloud providers with the advent
f the ‘‘pay as you execute’’ billing modes. In this work we
roposed a DRL based technique, which is trained and eval-
ated on a practical cloud setup, for efficiently understanding
ow the various system parameters of a VM cluster and the
ighly dynamic parameters of an incoming serverless workload
nteract with each other and affect application performance. We
lso strived to achieve a second objective of maintaining high
esource cost efficiency, where the users are at liberty to set a
esired level of significance to each of these often conflicting
bjectives. As evidenced by our experiments, we see that such
ranular approaches to understanding the system dynamics could
mmensely help both users and cloud providers to achieve their
nd goals.
As part of the future work, we will explore the possibility of

ncorporating a multi-agent DRL architecture to improve the effi-
iency of the training process and enhance the model adaptability
o changing cluster conditions. This would allow us to investigate
trategies to reduce the dependence of model training complexity
n the scale of the cluster, and hence focus more on objective
ptimization.

RediT authorship contribution statement

Anupama Mampage: Conceptualization, Methodology, Soft-
are, Validation, Resources, Writing - original draft, Writing - re-
iew & editing. Shanika Karunasekera: Conceptualization, Writ-
ng - review & editing, Supervision. Rajkumar Buyya: Conceptu-
lization, Writing - review & editing, Supervision, Funding acqui-
ition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292
References

[1] OpenFaaS, Home | OpenFaaS - Serverless functions made simple, 2022,
https://www.openfaas.com/. (Accessed on 04/08/2022).

[2] T.K. Authors, Home - knative, 2022, https://knative.dev/docs/. (Accessed on
04/08/2022).

[3] F. Project, Fission, 2022, https://fission.io/. (Accessed on 04/08/2022).
[4] L. Wang, M. Li, Y. Zhang, T. Ristenpart, M. Swift, Peeking behind the

curtains of serverless platforms, in: Proceedings of the USENIX Annual
Technical Conference, ATC, 2018, pp. 133–146.

[5] A. Suresh, G. Somashekar, A. Varadarajan, V.R. Kakarla, H. Upadhyay, A.
Gandhi, ENSURE: Efficient scheduling and autonomous resource manage-
ment in serverless environments, in: Proceedings of the IEEE International
Conference on Autonomic Computing and Self-Organizing Systems, ACSOS,
IEEE, 2020, pp. 1–10.

[6] A. Mampage, S. Karunasekera, R. Buyya, Deadline-aware dynamic resource
management in serverless computing environments, in: Proceedings of the
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), IEEE, 2021, pp. 483–492.

[7] M. HoseinyFarahabady, Y.C. Lee, A.Y. Zomaya, Z. Tari, A qos-aware resource
allocation controller for function as a service (faas) platform, in: Pro-
ceedings of the International Conference on Service-Oriented Computing,
Springer, 2017, pp. 241–255.

[8] Y.K. Kim, M.R. HoseinyFarahabady, Y.C. Lee, A.Y. Zomaya, Automated fine-
grained cpu cap control in serverless computing platform, IEEE Trans.
Parallel Distrib. Syst. 31 (10) (2020) 2289–2301.

[9] M. Stein, Adaptive Event Dispatching in Serverless Computing Infrastruc-
tures (Ph.D. thesis), Brunel University London, 2018.

[10] G. Aumala, E. Boza, L. Ortiz-Avilés, G. Totoy, C. Abad, Beyond load balanc-
ing: Package-aware scheduling for serverless platforms, in: Proceedings of
the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID, IEEE, 2019, pp. 282–291.

[11] A. Das, A. Leaf, C.A. Varela, S. Patterson, Skedulix: Hybrid cloud scheduling
for cost-efficient execution of serverless applications, in: Proceedings of
the 13th IEEE International Conference on Cloud Computing, CLOUD, IEEE,
2020, pp. 609–618.

[12] L. Schuler, S. Jamil, N. Kühl, AI-based resource allocation: Reinforcement
learning for adaptive auto-scaling in serverless environments, in: Proceed-
ings of the IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), IEEE, 2021, pp. 804–811.

[13] H. Yu, H. Wang, J. Li, S.-J. Park, Harvesting idle resources in serverless
computing via reinforcement learning, 2021, arXiv preprint arXiv:2108.
12717.

[14] A. Singhvi, A. Balasubramanian, K. Houck, M.D. Shaikh, S. Venkataraman,
A. Akella, Atoll: A scalable low-latency serverless platform, in: Proceedings
of the ACM Symposium on Cloud Computing, 2021, pp. 138–152.

[15] Kubeless, Kubeless, 2021, https://kubeless.io/. (Accessed on 01/13/2022).
[16] Kubernetes, Kubernetes, 2022, https://kubernetes.io/. (Accessed on

04/08/2022).
[17] J. Kim, K. Lee, Functionbench: A suite of workloads for serverless cloud

function service, in: Proceedings of the IEEE 12th International Conference
on Cloud Computing, CLOUD, IEEE, 2019, pp. 502–504.

[18] J. Scheuner, S. Eismann, S. Talluri, E. Van Eyk, C. Abad, P. Leitner, A. Iosup,
Let’s trace it: Fine-grained serverless benchmarking using synchronous
and asynchronous orchestrated applications, 2022, arXiv preprint arXiv:
2205.07696.

[19] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E.
Laureano, C. Tresness, M. Russinovich, R. Bianchini, Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud
provider, in: Proceedings of the USENIX Annual Technical Conference, ATC,
2020, pp. 205–218.

[20] K. Kaffes, N.J. Yadwadkar, C. Kozyrakis, Centralized core-granular schedul-
ing for serverless functions, in: Proceedings of the ACM Symposium on
Cloud Computing, 2019, pp. 158–164.

[21] W. Ling, L. Ma, C. Tian, Z. Hu, Pigeon: A dynamic and efficient serverless
and faas framework for private cloud, in: Proceedings of the International
Conference on Computational Science and Computational Intelligence,
CSCI, IEEE, 2019, pp. 1416–1421.

[22] N. Mahmoudi, C. Lin, H. Khazaei, M. Litoiu, Optimizing serverless comput-
ing: introducing an adaptive function placement algorithm, in: Proceedings
of the 29th Annual International Conference on Computer Science and
Software Engineering, 2019, pp. 203–213.

[23] J.R. Gunasekaran, P. Thinakaran, N.C. Nachiappan, M.T. Kandemir, C.R.
Das, Fifer: Tackling resource underutilization in the serverless era, in:
Proceedings of the 21st International Middleware Conference, 2020,
pp. 280–295.

[24] H. Yu, A.A. Irissappane, H. Wang, W.J. Lloyd, FaaSRank: Learning to
schedule functions in serverless platforms, in: Proceedings of the IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems, ACSOS, IEEE, 2021, pp. 31–40.
291
[25] P. Żuk, B. Przybylski, K. Rzadca, Call scheduling to reduce response time
of a faas system, 2022, arXiv preprint arXiv:2207.13168.

[26] A. Fuerst, P. Sharma, Locality-aware load-balancing for serverless clusters,
in: Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, 2022, pp. 227–239.

[27] K. Kaffes, N.J. Yadwadkar, C. Kozyrakis, Hermod: principled and practical
scheduling for serverless functions, in: Proceedings of the 13th Symposium
on Cloud Computing, 2022, pp. 289–305.

[28] S. Ristov, P. Gritsch, FaaSt: Optimize makespan of serverless workflows
in federated commercial FaaS, in: 2022 IEEE International Conference on
Cluster Computing, CLUSTER, IEEE, 2022, pp. 183–194.

[29] H. Tian, S. Li, A. Wang, W. Wang, T. Wu, H. Yang, Owl: Performance-
aware scheduling for resource-efficient function-as-a-service cloud, in:
Proceedings of the 13th Symposium on Cloud Computing, 2022, pp. 78–93.

[30] V.M. Bhasi, J.R. Gunasekaran, A. Sharma, M.T. Kandemir, C. Das, Cypress:
input size-sensitive container provisioning and request scheduling for
serverless platforms, in: Proceedings of the 13th Symposium on Cloud
Computing, 2022, pp. 257–272.

[31] A. Asghari, M.K. Sohrabi, F. Yaghmaee, A cloud resource management
framework for multiple online scientific workflows using cooperative
reinforcement learning agents, Comput. Netw. 179 (2020) 107340.

[32] A. Asghari, M.K. Sohrabi, F. Yaghmaee, Task scheduling, resource provi-
sioning, and load balancing on scientific workflows using parallel SARSA
reinforcement learning agents and genetic algorithm, J. Supercomput. 77
(3) (2021) 2800–2828.

[33] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, H. Xie, Multi-
objective workflow scheduling with deep-Q-network-based multi-agent
reinforcement learning, IEEE Access 7 (2019) 39974–39982.

[34] Y. Qin, H. Wang, S. Yi, X. Li, L. Zhai, An energy-aware scheduling algo-
rithm for budget-constrained scientific workflows based on multi-objective
reinforcement learning, J. Supercomput. 76 (1) (2020) 455–480.

[35] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, W. Lin, Random task scheduling scheme
based on reinforcement learning in cloud computing, Cluster Comput. 18
(4) (2015) 1595–1607.

[36] S. Agarwal, M.A. Rodriguez, R. Buyya, A reinforcement learning approach
to reduce serverless function cold start frequency, in: Proceedings of the
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), IEEE, 2021, pp. 797–803.

[37] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z.T. Kalbarczyk, T. Başar,
R.K. Iyer, Reinforcement learning for resource management in multi-tenant
serverless platforms, in: Proceedings of the 2nd European Workshop on
Machine Learning and Systems, 2022, pp. 20–28.

[38] Docker, Runtime options with memory, CPUs, and GPUs | Docker
documentation, 2021, https://docs.docker.com/config/containers/resource_
constraints/. (Accessed on 10/16/2020).

[39] P.-H. Chiang, H.-K. Yang, Z.-W. Hong, C.-Y. Lee, Mixture of step returns in
bootstrapped DQN, 2020, arXiv preprint arXiv:2007.08229.

[40] MRC, Melbourne research cloud documentation, 2022, https://docs.cloud.
unimelb.edu.au/. (Accessed on 07/22/2022).

[41] ARDC, ARDC nectar research cloud - ARDC, 2022, https://ardc.edu.au/
services/nectar-research-cloud/. (Accessed on 07/22/2022).

[42] A.S. Foundation, Apache CouchDB, 2022, https://couchdb.apache.org/.
(Accessed on 07/22/2022).

[43] Prometheus, Prometheus - Monitoring system & time series database,
2022, https://prometheus.io/. (Accessed on 09/08/2022).

[44] A.S. Foundation, Apache JMeter - Apache JMeter™, 2021, https://jmeter.
apache.org/. (Accessed on 11/08/2021).

[45] Keras, Keras: the Python deep learning API, 2021, https://keras.io/.
(Accessed on 01/20/2022).

[46] TensorFlow, TensorFlow, 2021, https://www.tensorflow.org/. (Accessed on
01/20/2022).

[47] AWS, AWS pricing calculator, 2022, https://calculator.aws/#/addService/
EC2. (Accessed on 07/25/2022).

[48] A. Kuriata, R.G. Illikkal, Predictable performance for QoS-sensitive, scalable,
multi-tenant function-as-a-service deployments, in: Proceedings of the
International Conference on Agile Software Development, Springer, 2020,
pp. 133–140.

[49] R.C. Chiang, Contention-aware container placement strategy for docker
swarm with machine learning based clustering algorithms, Cluster Comput.
(2020) 1–11.

Anupama Mampage is a Ph.D. student at the Cloud
Computing and Distributed Systems (CLOUDS) Lab-
oratory, Department of Computing and Information
Systems, The University of Melbourne, Australia. She
received her B.Sc. Engineering (Hons) degree, special-
ized in Electronic and Telecommunication Engineering
from the University of Moratuwa, Sri Lanka, in 2017.
Her research interests include Serverless Computing,
Internet of Things (IoT), Distributed Systems and
Reinforcement Learning.

https://www.openfaas.com/
https://knative.dev/docs/
https://fission.io/
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb12
http://arxiv.org/abs/2108.12717
http://arxiv.org/abs/2108.12717
http://arxiv.org/abs/2108.12717
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb14
https://kubeless.io/
https://kubernetes.io/
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb17
http://arxiv.org/abs/2205.07696
http://arxiv.org/abs/2205.07696
http://arxiv.org/abs/2205.07696
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb24
http://arxiv.org/abs/2207.13168
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb37
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
http://arxiv.org/abs/2007.08229
https://docs.cloud.unimelb.edu.au/
https://docs.cloud.unimelb.edu.au/
https://docs.cloud.unimelb.edu.au/
https://ardc.edu.au/services/nectar-research-cloud/
https://ardc.edu.au/services/nectar-research-cloud/
https://ardc.edu.au/services/nectar-research-cloud/
https://couchdb.apache.org/
https://prometheus.io/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://keras.io/
https://www.tensorflow.org/
https://calculator.aws/#/addService/EC2
https://calculator.aws/#/addService/EC2
https://calculator.aws/#/addService/EC2
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00047-X/sb49

A. Mampage, S. Karunasekera and R. Buyya Future Generation Computer Systems 143 (2023) 277–292
Shanika Karunasekera is currently a Professor with
the School of Computing and Information Systems,
University of Melbourne, Australia. She received her
B.Sc. degree in Electronic and Telecommunications En-
gineering from the University of Moratuwa, Sri Lanka,
in 1990 and the Ph.D. degree in Electrical Engineering
from the University of Cambridge, U.K., in 1995. Her re-
search interests include distributed computing, mobile
computing, and social media analytics.
292
Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He has authored over
625 publications and seven text books including ‘‘Mas-
tering Cloud Computing’’ published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for Indian,
Chinese and international markets respectively. He is
one of the highly cited authors in computer science
and software engineering worldwide (h-index=149,
g-index=322, 116,700+ citations).

	Deep reinforcement learning for application scheduling in resource-constrained, multi-tenant serverless computing environments
	Introduction
	Related Work
	Serverless Function Scheduling
	Application of RL for Serverless Resource Management

	Time and Cost Optimized Function Scheduling
	System Model
	Problem Formulation

	Deep Reinforcement Learning Model
	Application of RL for Function Scheduling
	Proposed DRL Technique for Function Scheduling

	DRL Agent training Environment Design and Implementation
	System Architecture
	DRL Agent's Process Flow

	Performance Evaluation
	Experimental Settings
	Cluster Setup
	Workload Specifications
	Hyper-parameter Configurations

	Performance Metrics
	Baselines Schedulers
	Convergence of the DRL Model
	Analysis of Model Performance on the Evaluation Data Sets
	Evaluation of application response time
	Evaluation of resource cost efficiency
	Evaluation of multiple reward maximization

	DRL Model Training and Serving Overhead

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

