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Abstract—Microservices have transformed monolithic applica-
tions into lightweight, self-contained, and isolated application com-
ponents, establishing themselves as a dominant paradigm for ap-
plication development and deployment in public clouds such as
Google and Alibaba. Autoscaling emerges as an efficient strategy
for managing resources allocated to microservices’ replicas. How-
ever, the dynamic and intricate dependencies within microservice
chains present challenges to the effective management of scaled mi-
croservices. Additionally, the centralized autoscaling approach can
encounter scalability issues, especially in the management of large-
scale microservice-based clusters. To address these challenges and
enhance scalability, we propose an innovative distributed resource
provisioning approach for microservices based on the Twin Delayed
Deep Deterministic Policy Gradient algorithm. This approach en-
ables effective autoscaling decisions and decentralizes responsibil-
ities from a central node to distributed nodes. Comparative results
with state-of-the-art approaches, obtained from a realistic testbed
and traces, indicate that our approach reduces the average response
time by 15% and the number of failed requests by 24%, validating
improved scalability as the number of requests increases.

Index Terms—Cloud computing, Kubernetes, microservice,
reinforcement learning, distributed resources management.

I. INTRODUCTION

M ICROSERVICE architecture has emerged as a trans-
formative approach in the field of software design

and development. It is characterized by its modular and

Manuscript received 1 May 2024; revised 27 June 2024; accepted 10 July
2024. Date of publication 25 July 2024; date of current version 30 December
2024. This work was supported in part by the National Key R & D Program
of China under Grant 2021YFB3300200, in part by the National Natural Sci-
ence Foundation of China under Grant 62072451, Grant 62102408, and Grant
92267105, in part by the Guangdong Basic and Applied Basic Research Foun-
dation under Grant 2023B1515130002 and Grant 2024A1515010251, in part by
Guangdong Special Support Plan under Grant 2021TQ06X990, and in part by
Shenzhen Basic Research Program under Grant JCYJ20220818101610023 and
Grant KJZD20230923113800001. (Corresponding author: Minxian Xu.)

Haoyu Bai was with the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518172, China. He is now with the School of
Computing and Information Systems, University of Melbourne, Melbourne, VIC
3052, Australia.

Minxian Xu and Kejiang Ye are with the Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518172, China (e-mail:
mx.xu@siat.ac.cn).

Rajkumar Buyya is with the School of Computing and Information Systems,
University of Melbourne, Melbourne, VIC 3052, Australia.

Chengzhong Xu is with the State Key Lab of IOTSC, University of Macau,
Macau 999078, China.

Digital Object Identifier 10.1109/TSC.2024.3433388

decentralized structure, where complex applications are broken
down into smaller, independently deployable services [1], [2].
Each microservice focuses on a specific business capability,
allowing teams to work on distinct components simultaneously
and enabling rapid development, deployment, and scalability.
This architecture promotes flexibility, resilience, and maintain-
ability by minimizing the impact of changes within one ser-
vice on the overall system [3]. As microservices communicate
through well-defined APIs, they facilitate seamless integration
and support heterogeneous technology stacks. The cloud service
providers, such as Amazon, Google, Microsoft, and Alibaba,
have embraced microservice to develop and deploy their appli-
cations in cloud computing environment [4].

The rapid growth of the microservices paradigm has intro-
duced challenges in resource management [5]. As the number
of microservices increases within a system, ensuring optimal
resource allocation and utilization becomes complex. Microser-
vices autoscaling has emerged as a viable solution to address
these challenges [6]. Autoscaling involves dynamically adjust-
ing the number of instances or resources allocated to microser-
vices based on real-time demand, ensuring efficient resource
utilization while maintaining desired performance levels [7].
This technique encompasses both horizontal scaling, which
involves adding or removing replicas of a service, and vertical
scaling, which involves adjusting the resources allocated to each
instance. Autoscaling mechanisms utilize various metrics and
triggers, such as CPU usage, memory consumption, and request
rates, to make decisions about scaling actions [8]. Implementing
effective autoscaling strategies enhances system responsiveness,
minimizes operational costs, and optimizes resource allocation
in dynamic and unpredictable environments.

Moreover, the intricate interdependencies among microser-
vices often give rise to critical paths and key nodes that
significantly impact performance. Efficiently implementing
autoscaling for microservices is confronted with its own set
of challenges and intricacies. The dynamic nature of these
dependencies necessitates a profound understanding of the
application’s behavior, workload patterns, and their implications
for system performance. Identifying the optimal scaling strategy,
striking a balance in resource allocation across interconnected
services while maintaining overall system stability, proves to be
a non-trivial undertaking [9]. Additionally, the real-time nature
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of scaling decisions and the imperative to minimize disruptions
to service quality and user experience further contribute to the
complexity.

Reinforcement learning (RL) [10] has the potential to op-
timize the scaling of microservices, taking into account their
intricate interdependencies. Nevertheless, the majority of RL
solutions adopt a centralized decision-making approach, which
poses scalability challenges. This centralized structure encoun-
ters difficulties with the increasing complexity and interde-
pendencies of microservices, resulting in adverse effects on
scalability, response times, and reliability. Centralized man-
agement approaches such as Borg [11] permit users to over-
provision resources while assigning jobs to machines, leading to
resource wastage and consequently diminishing overall perfor-
mance in resource-limited environments. In addition, centralized
approaches can compromise system performance as microser-
vices scale up, given the continuous communication between
huge amount of services and the central node may introduce
bottlenecks and latency.

In this paper, we explore novel approaches to address these
limitations and propose a distributed reinforcement learning
framework for microservices automatic scaling. This framework
aims to enhance scalability, improve decision-making efficiency,
and ensure the adaptability of microservices scaling strategies
to dynamic and evolving environments. By decentralizing the
decision-making process, we aim to mitigate the challenges
associated with centralized approaches and unlock the full po-
tential of RL in optimizing microservices resource allocation
and scalability.

The main contributions of this paper can be summarized as
follows:
� We design a distributed reinforcement learning framework

for resource provisioning for container-based autoscaling
(DRPC). This framework facilitates precise modelling of
system resources and their scalable allocation to address
the dynamic demands of microservices.

� We propose a method for selecting optimization strategies
based on reinforcement learning and a distributed algo-
rithm that incorporates domain knowledge through deep
imitation learning. This approach facilitates efficient and
adaptive decision-making, optimizing the choice of scaling
strategies across clusters of microservices.

� We perform comprehensive testing and validation of our
proposed model and policies, utilizing real-world traces
and a dedicated testing platform. These experiments are
conducted to thoroughly assess the effectiveness and per-
formance of our distributed reinforcement learning frame-
work for microservices autoscaling.

II. RELATED WORK

In this section, we discuss the current autoscaling methods
for microservices, categorizing them into three groups accord-
ing to their key mechanisms: threshold-based and heuristic
approaches, machine learning (ML) based approaches, and deep
learning (DL) based approaches.

A. Threshold-Based and Heuristic Autoscaling

The threshold-based heuristic approach for microservice re-
source allocation relies on predefined rules, scaling resources
up when utilization surpasses a predetermined threshold (e.g.,
75%). This method proves efficient in scenarios with abundant
resources and stable request patterns. He et al. [12] leveraged
both genetic and heuristic algorithms to determine the optimized
microservice deployment location within an edge-cloud envi-
ronment. Horizontal pod auto-scaler (HPA) [13] is a scaling
technique adopted in Kubernetes, primarily focusing on horizon-
tal scaling. It is capable of dynamically adjusting the number of
replicas based on resource variations, such as CPU and memory,
within the existing servers. The primary objective of HPA is to
determine the number of replicas to be added or removed based
on system running status. Kannan et al. [14] conceptualized
multi-stage tasks using a Directed Acyclic Graph (DAG). By
leveraging the DAG, they could predict the task’s completion
duration. Their method continually adapts thresholds and algo-
rithms for each microservice. As a result, every microservice
can manage its loads autonomously, incurring minimal commu-
nication expenses.

B. Machine Learning Based Autoscaling

The ML-based autoscaling for microservices dynamically
adjusts resources through ML algorithms that analyze historical
data and workload patterns. This method optimizes resource uti-
lization and ensures consistent performance by scaling services
as required. Hou et al. [15] proposed an autoscaling approach
that emphasizes both power and latency considerations for re-
source provisioning at micro and macro levels. By employing
decision trees and a tagging methodology, they were able to
expedite the resource-matching process. Yu et al. [16] introduced
a framework called Microscaler that utilizes a service mesh to
monitor resource usage patterns. By integrating online learning
and heuristic methods, the framework achieves near-optimal
solutions to satisfy resource needs and quality of service (QoS)
requirements. Liu et al. [17] undertook a detailed analysis of
bottlenecks in prevalent microservice applications and incor-
porated various machine learning models to facilitate resource
scheduling. Meanwhile, Gan et al. [18] harnessed predictive
methodologies to detect QoS violations. They leveraged a com-
bination of machine learning models and expansive historical
data to pinpoint the microservices responsible for these QoS
infractions, enabling better resource reallocation to mitigate QoS
degradation.

C. Deep Learning Based Autoscaling

The emphasis has shifted towards employing DL for mi-
croservice autoscaling, utilizing neural networks for decision-
making and pattern analysis. This approach dynamically adjusts
resource allocation based on real-time demand and optimizes
provisioning by learning from historical and current data,
thereby minimizing resource wastage. Autopilot [19] accumu-
lates historical server data and then utilizes two scheduling
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TABLE I
COMPARISON OF RELATED WORK

techniques: the sliding window algorithm based on past data,
and the meta-algorithm inspired by RL. CoScal [20] classifies
resource usage into four representative levels. It then applies an
approximated Q-learning algorithm to these segments, estab-
lishing an estimated policy. This policy encompasses horizontal
and vertical scaling, as well as brownout [24] capabilities that
can dynamically activate and deactivate application component.
With gated recurrent unit (GRU), CoScal predicts upcoming
workloads and refers to the trained lookup table to determine
the suitable scaling action for each pod, ensuring optimization
across all pods. FIRM [21] employs a systematic approach to
allocating resources in cloud systems. It pinpoints the crucial
path in the microservice dependency by carefully examining the
connections between components. Once this path is identified,
FIRM employs a specialized Support Vector Machine (SVM)
tailored to operate on both a per-critical-path and per-micro-
service-instance basis. This helps in identifying specific mi-
croservice instances that require optimization. Zhang et al. [22]
introduced a predictive RL algorithm for horizontal container
scaling, which combines the Autoregressive Integrated Moving
Average (ARIMA) model with a neural network model, ensures
the predictability and precision of the scaling procedure. Rossi
et al. [23] developed RL-based strategies to manage both hor-
izontal and vertical scaling for containers. This approach en-
hances system adaptability in the face of fluctuating workloads
and hastens the learning phase by harnessing varying levels of
environmental knowledge.

D. Critical Analysis

Although the existing representative methods have brought
valuable contributions, our proposed method advances the
relevant area in several key points. First, unlike HPA and
other threshold-based approaches that primarily focus on
horizontal scaling, our approach leverages multi-faceted
scaling approaches (horizontal, vertical and brownout that can
dynamically activate or deactivate optional microservices [24]),
ensuring optimal resource allocation even during non-overload-
states. Second, compared with the machine learning-based ap-
proach, we have applied deep learning to capture the features of
workloads and utilized RL to make scaling decisions to achieve
more accurate and efficient resource provisioning decisions. The
compared differences with the related work are highlighted in
Table I.

Our approach is most similar to CoScal [20] and FIRM [21]
based on RL to auto-scale microservices while having significant
differences compared with them. In contrast to CoScal’s large-
grained segmentation of system states, our method employs a
deep neural network, offering nuanced decision-making and
the capability for simultaneous multiple scaling actions, crucial
for sudden load changes. Compared to FIRM, which focuses
on optimizing resources of the critical path and nodes, our
method ensures comprehensive optimization, with the advantage
of supporting both horizontal and vertical scaling, and brownout.
Furthermore, our advanced resource allocation framework pro-
vides precise solutions, overcoming the scalability limitations
inherent in FIRM’s centralized reinforcement learning approach,
especially under a high volume of requests.

III. MOTIVATION

In this section, we perform motivational experiments with a
use case that requests increase quickly to explore the system
scalability under a centralized design, such as the centralized
database capturing the dynamic change of microservices
(FIRM) [21] and the centralized RL-based approach
(CoScal) [20]. The investigation focuses on response time as
the number of requests significantly increases. For these exper-
iments, we utilize the TrainTicket [25] microservice application
comprising approximately 40 services, including user, station,
price, and route. The experiments are conducted on two nodes:
one for the initial TrainTicket deployment and another for scal-
ing, with a configuration of up to 8 CPU cores and 8 GB memory.

Fig. 1 shows the performance of FIRM and CoScal when
the number of requests increases from 200 to 800 per second
within a short time (e.g. 1 minute), and we can notice apparent
performance fluctuations. For instance, for the FIRM approach,
the response time increases from 160 ms to 290 ms when
requests increase from 200 to 400 per second. This resulted
from the limitation of the centralized design of FIRM in that its
central node contains functionalities including data collection,
training, inference, and service provisioning. The CoScal based
on centralized RL design also suffers from the same issue when
the number of requests increases significantly within a short
time, CoScal might over-provision into the system to ensure
response time but also incurs resource wastage. For instance,
several replicas are added to provision resources when the num-
ber of requests increases and the response time is also reduced.
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Fig. 1. Response time of centralized approaches when the number of requests
increases significantly.

In this work, our objective is to provision resources efficiently
via an RL-based approach, and utilize a distributed framework
to overcome the limitation of centralized design, e.g. system
performance bottleneck. A centralized module responsible for
data collection and inference can exhibit drawbacks such as
unreliability under a container-based environment, slow perfor-
mance, and inability to adjust system resources asynchronously.
The system could also potentially fail to adjust resources if the
central nodes experience performance degradation. Hence, we
propose a distributed framework utilizing multiple lightweight
neural networks on distributed nodes to execute the operations
sent from the central node to relieve the burden of the central
node. This approach can potentially hasten resource allocation,
and provide a more accurate resource usage prediction of the
cloud system’s behaviour. Moreover, it could facilitate differ-
ential resource adjustment, accommodating services with rapid
changes more frequently than others. In the subsequent sections,
we will introduce our detailed solution.

IV. SYSTEM MODEL

In this section, we will introduce the system model of DRPC,
which adheres to the Monitor-Analyze-Plan-Execute framework
over a shared Knowledge pool (MAPE-K), as depicted in Fig. 2.
The model is composed of three key components: (1) a Workload
Processor and Predictor that preprocess the raw workloads and
predicts the future workloads, (2) a Central Teacher Network
that aims to learn the globally optimal policy, and (3) a Per-
Deployment1 Distributed Student Network responsible for data
collection as well as asynchronous for imitation learning.

A. Workload Processor and Predictor

The Workload Processor is composed of key components
including a Workload Preprocessor, a Load Generator (e.g.
Locust [26]), and a Historical Database containing historical
workloads. It functions to extract necessary workload data and

1Please note that the term Per-Deployment is inherited the naming conventions
module of Kubernetes, which consists a set of pods to run an application
workload, usually does not need to maintain state.

attributes from the Historical Database, preprocesses the dataset
via Workload Preprocessor, and handles realistic user interac-
tions with the Load Generator. It transforms these interactions
into requests allocated to the microservice-based cluster. The
Historical Database stores the historical data derived from real-
istic traces (e.g. Alibaba traces [27]). Detailed dataset informa-
tion such as timestamps, machine identifiers and different types
of resources are contained in these workloads. The Workload
Predictor is a critical component, responsible for forecasting
future loads coming into the system. It communicates to the
auto-scaler about the required amount of resources to be scaled-
in or scaled-out. The Workload Predictor obtains preprocessed
workload data from the Workload Processor and employs pre-
dictive models such as Long Short-Term Memory (LSTM) [28]
or Gated Recurrent Unit (GRU) to forecast future workloads.
The responsibilities of the Workload Predictor include managing
the training process of the model, updating the trained model
when necessary, and deploying the trained models in their final
stages. This module interacts with the Workload Analyzer and
Workload Generator, receiving historical system data as input.

B. Central Teacher Network

The use of multi-agent RL often achieves sub-optimal so-
lutions [29], indicating a need for a central agent (“teacher”)
module that suggests actions to another agent (“student”) [30].
This module investigates the global state, formulating an optimal
policy function to enhance system performance. The collected
data is employed to train the decentralized student network via
the technique of imitation learning [31].

Existing performance modelling-based or heuristic-based
strategies suffer several limitations, including struggles with
model reconstruction and retraining due to their inability to adapt
to dynamic system statuses [32]. These strategies require consid-
erable expert knowledge [33], demanding extensive efforts for
the interpretation of microservice workloads and infrastructure.
Compared with them, RL is suitable for formulating resource
provisioning policies due to its capabilities of offering a close
feedback loop, exploring scaling actions, and formulating opti-
mal policies independent of erroneous assumptions. This allows
for learning directly from actual various workloads and opera-
tional conditions, providing deeper insights into how changes in
low-level resources influence application performance. We have
incorporated two techniques below to achieve our objective:

1) Twin Delayed Deep Deterministic Policy Gradient
(TD3) [34]: To overcome the limitation of overestimation of Q
value due to the flexible cloud environment, we utilize the TD3
algorithm, an advanced model-free, actor-critic RL framework.
Our RL formulation provides two distinct advantages:
� The model-free RL eliminates the need for precise mod-

elling of the complete distribution of states or the environ-
ment dynamics (transitions between states). In the event of
microservice updates, the simulations of state transitions
used in model-based RL become inefficient.

� The actor-critic framework, merging policy-based and
value-based methods, is suitable for continuous stochas-
tic environments. This accelerates convergence, reduces
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Fig. 2. System Model of DRPC.

variance, and provides a robust and efficient solution for
managing the dynamic nature of container-based environ-
ments.

2) Retraining Notifier: The Retraining Notifier signals when
the system requires retraining. There are instances where the
imitation learner might not make efficient decisions, triggering
the Retraining Notifier and initiating a retraining state. This is
typically initiated by the following scenarios:
� Insufficient exploration by the teacher network: If the

teacher network encounters a rarely seen state about which
it lacks confidence, it might fail to guide the student ap-
propriately. This can potentially result in the cloud service
scaler misjudging the system’s scaling needs.

� Sub-optimal learning state of the student deployment net-
work: In this case, despite the central network learning
an optimal policy function, the distributed deployment
network fails to establish a correlation between the optimal
policy and the domain information it possesses. This can
occur if the information provided by the central teacher
network is over-complex, requiring an adjustment in the
number of epochs that the distributed deployment net runs
to achieve convergence.

� Outdated knowledge held by the student deployment net-
work: For instance, if the majority of users previously
searched for tickets, the student net may over-rely on
this pattern. If the request composition changes, such as
users predominantly purchasing tickets, the deployment of
student nets would require retraining.

C. Distributed Student Deployment Network

The Distributed Student Deployment Network module op-
erates in a distributed fashion, enabling the parallel execution
of scaling actions for microservices. Rather than maintaining

global states, it relies on local information to function. This
module consists of two key components: the Deployment Buffer,
which stores the policies communicated by the teacher node for
training the student network, and the Imitation Learner, which
scales each deployment independently.

1) Deployment Buffer: It maintains the policy transmitted
by the Central Module, and stores the state of the deployment
when the policy is recorded. This policy-state pairing is utilized
to train the Deployment Student Network via imitation learning,
which aims to ensure replicas’ successful behaviours in a given
context.

2) Imitation Learner: The Distributed Student Deployment
Net is characterized by its lightweight nature and lower resource
requirements compared to the Central Teacher Network. This
characteristic facilitates more frequent and adaptable decision-
making. The system operates in two distinct modes: learning
mode, where it receives guidance from the Central Network,
and acting mode, where it autonomously makes decisions based
on its state, including factors like resource utilization. This dual-
mode configuration enables continuous learning and adaptation,
leading to optimized resource allocation and enhanced system
performance.

V. DISTRIBUTED RL ALGORITHM FOR SCALING

MICROSERVICE

In this section, we introduce the algorithm design of our pro-
posed DRPC approach, which can achieve efficient distributed
decisions.

In DRPC, the RL-based resources provisioning is modelled
as a Markov Decision Process, it views the state st ∈ S as
the current microservices system status and interprets the ac-
tion a ∈ A as a scaling operation modifying system status
and allocated resources. We use M = (m1,m2, ..., mi) to
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Algorithm 1: DRPC: System-Wide Action Execution.

denote the physical machines provisioning resources for the
microservices in our system. For each physical machine, say
mi, the amount of resources that can be allocated are denoted
as Ri = (ri,1, ri,2, . . . , ri,j), where the j represents the type of
resources, such as CPU and memory. Finally, the set of actions
that can be performed on each physical machine is denoted as
Ai = (ai,1, ai,2, . . . , ai,k). The actions indicate the amount of
resources that can be altered on each machine. The supported
actions are Horizontal_scaling, CPU_scaling, Memory_scaling,
and Brownout. A positive or negative sign before an action
implies the addition or reduction of resources to a specific
machine, respectively. The term ’Brownout’ is a binary indicator
for whether a brownout can be triggered on the machine. If
this value is set to True, the minimum allowable replicas for
horizontal scaling would be set to 0. The collective action space
for the system, A =

∏I
i=1

∏k
k=1 A

i,k, is the product of the
action spaces for each machine.

A. System-Wide Action Execution

As illustrated in Algorithm 1, the execution of the system-
wide action plan progresses through two distinct stages: an
exploration phase and a distributed provision phase.

In Stage 1, the exploration phase, (lines 3-9), the cen-
tral teacher node explores the state space, choosing multi-
dimensional scaling actions (horizontal, CPU, memory scal-
ing, or maintaining the current state) for each deployment as

TABLE II
WORKLOADS PREDICTION ACCURACY

described in the Section V-C. Simultaneously, deployment-level
networks initiate training.

In Stage 2, the distributed provision phase, (lines 10-12),
decision-making transitions to deployment-level networks once
the central node’s exploration is deemed sufficient, with the
same scaling options. This phase continually updates the teacher
network’s buffer with action-state pairs, as described in Sec-
tion V-E. The system alternates between these stages based
on the retraining notifier (line 14), enabling the central node
to re-explore states or delegate decision-making based on its
readiness.

Algorithm 2 illustrates the general scaling procedure of
DRPC. The algorithm seeks advice from the Scaling Agent
to obtain Q-values that guide resource adjustments (line 1).
This includes CPU usage (lines 2-4), and memory utilization
(lines 5-7). Such guidance manifests as actions within the DRPC
framework. If the recommended scaling for CPU or memory
is significant, adjustments are made proportionally to ensure
system stability or enhance efficiency. Adding or removing
replicas (lines 9-13) follows a similar process as above, except
if a microservice is pre-configured to support brownout, the
minimum number of replicas can be set to 0.

B. Workload Processor and Predictor

The connection between different levels of resource usage and
workloads is determined using a deep neural network model for
the workload analysis, as shown in Fig. 2. To mimic realistic
resource utilization, we apply data from Alibaba traces, which
contain workload traces from 4000 machines, encompassing
eight days of resource usage data. The performance profiling
procedure is as follows: we define a scheduling interval of
5 minutes, over which we gradually increase the number of
requests, with each test case comprising 200 requests sent to
the host. A three-layer Multi-Layer Perceptron (MLP) is ap-
plied to the profiling data, thereby efficiently representing this
relationship. Consequently, we can translate the host utilization
into the number of requests to our system for any given level
of utilization. Then, our workload generator produces these
requests in accordance with the current user type composition.

We employ multivariate time series forecasting (MTFS),
which converts MTFS problem into a supervised learning task.
The Gated Recurrent Unit (GRU) [35], a type of recurrent neural
network (RNN), is then used as the prediction method, as it has
been validated with good performance in [36] for MTFS. The
GRU solves the vanishing gradient problem encountered in con-
ventional RNNs through the utilization of gating mechanisms.

Table II shows the mean square errors (MSE) of actual uti-
lization versus predicted utilization for Alibaba workloads over
different predicted length. With MSE values ranging between
0.002 and 0.006, it shows that the workload prediction algorithm
can achieve good performance in resource utilization prediction.
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Algorithm 2: DRPC: General Scaling Procedure.

C. Central Module

Conventional RL models such as Sarsa [37] and Q-learning
encounter challenges when dealing with infinite or continu-
ous states and actions, a common scenario in microservices
characterized by variable CPU and memory usage. To address
this issue, we employ the TD3 algorithm, a more sophisticated
approach well-suited for continuous, high-dimensional spaces.
TD3 utilizes twin critic networks to reduce bias, incorporates
delayed policy updates for stable learning, and employs target
policy smoothing to prevent overfitting. These attributes render
TD3 robust and efficient, making it an ideal choice for optimiz-
ing autoscaling in dynamic microservices environments.

1) TD3 Modelling: Our dual objectives are improving the
Quality of Service (QoS) and maximizing the utilization of
physical machines. Our reward model, encompassing response
time Rqos(rt) and resource utilization Rutil(u) are accordingly
formulated in (1) and (2):

Rqos(rt) =

{
e−( rt−RTmax

RTmax
)2 , rt > RTmax

1 , rt ≤ RTmax,
(1)

where the maximum tolerant latency,RTmax, is pre-defined into
the QoS reward function. Normal system operation rewards 1,
while performance that exceeds RTmax is penalized, gradually
approaching 0, thus discouraging SLO violation.

Resource utilization Rutil(u), measured using a devised
model shown in (2),

Rutil(u) =

⎧⎨
⎩

∑K
k=1

∑R
r=1(U

pred
r,k −ur,k)

3

K + 1 , urk ≤ Upred
r,k∑K

k=1

∑R
r=1(ur,k−Upred

r,k )3

K + 1 , ur,k > Upred
r,k ,

(2)
which guides the system towards resource conservation. Here,
K and R represent the kth physical machine and rth resource
type residual on the kth physical machine, respectively, for
example, the u1,1 indicate the 1st adjustable resources on the
1st machine. Upred

r,k , the predefined utility, represents the ideal
utility for a certain resource type r on machine k. Proximity to
this ideal utilization is rewarded; under-provisioning or wastage
is discouraged.

The final reward value as shown in (3) is a combination of
both response time and resource utilization, The objective is:

r(st, at) =
Rqos(rt)

Rutil(u)
. (3)

The final objective is to decrease the response time while
keeping the system running in a stable state Upred as shown in
(4).

min
u∈Total_Resources

|Upred −Rutil(u)| ∧ min
rt∈RT

Rqos(rt). (4)

2) TD3 Implementation Details: As shown in Algorithm 3,
TD3 begins by initializing the actor and critic networks, as well
as the replay buffer (lines 1-3). It then selects an action from the
actor network, executes the action, and observes the subsequent
state, reward, and episode termination status (lines 4-8). This
tuple (s, a, r, s′, d) is stored in the replay buffer (line 9). Once
enough data has accumulated and it is time for an update, TD3
samples a batch of transitions from the buffer, which includes
data from both the central and distributed modules (lines 10-11).
In certain instances, scale-out may considerably diminish the
SLO violation, while scale-in, by circumventing the communi-
cation time, could realize superior response times after several
scaling operations. The robust reward resulting from scale-out
might engender a fragile, or erroneous, ”sharp peak,” potentially
obscuring our model’s capacity to investigate the long-term
impact of Scale-in. Furthermore, due to the dynamic nature of
cloud environments, where internet connections fluctuate, some
reallocation actions may reduce QoS violations more effectively
than anticipated. Ultimately, this can lead to an overestimation
of Q values. To alleviate this, a clipped (limits values to a range)
colour black noise, between bound −c and c, ε is incorporated
into the target policy π′(s′) to get a final policy a′ and that policy
is ensured to lie within aLow and aHigh as shown in (5) (line 12).

a′ ← clip(π′(s′) + clip(ε,−c, c), aHigh, aLow), (5)

where both Q-functions employ a singular target. Moreover, as
microservices are deployed in a distributed manner and commu-
nicate via cable, certain scaling actions may lead to a significant
reduction in communication time due to internet fluctuations, ul-
timately generating a substantial reward. To circumvent the over-
estimation of rewards, Clipped double-Q learning is employed.
Both Q-functions utilize a singular target y(r, s′, d), calculated
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Algorithm 3: DRPC: TD3 Algorithm.

by summing the immediate reward r and the minimum value
obtained from the two Q-functions Q′θi′ (s

′, a′), multiplied by
the discount factor γ. If the subsequent state is a terminal state
(d = 1), no future reward is considered (line 13) as shown in
(6):

y(r, s′, d)← r + γ(1− d) min
i=1,2

Q′θi′ (s
′, a′). (6)

The loss indicated as L(θi) in line 14, for the ith critic
network, is calculated as the average mean of the sum of squared
differences between the target Q-value y, and the critic network
predicted Q-value Qθi(s, a), across a mini-batch experiences B
containing a set of (s, a, r, s′, d) experience. The number of such
experiences is denoted by |B| as formulated in (7):

L(θi) =
1

|B|
∑

(s,a,r,s′,d)∈B
(Qθi(s, a)− y)2. (7)

To minimize the variability in microservice communication
and to learn a more stable Q function, the policy will only be up-
dated by one step of gradient ascent once every policy_update
(line 15) times using the loss function (line 16) with (8):

L(θ) =
1

|B|
∑
s∈B
−Qθ1(s, π(s)). (8)

Finally, the target network will be updated (lines 17-20).

D. Deployment Unit With Imitation Learning

Imitation learning involves training an agent to perform tasks
by emulating the actions of an expert. This approach has gained
popularity due to its capability to teach complex behaviors
without the need for explicit programming or heavy reliance
on reward signals, which is common in traditional RL. In our
scenario, the deployment unit utilizes its information to imitate
the resource adjustment actions of the Central module. This ob-
jective, as shown in (9), is accomplished by minimizing the mean
square error between the Q-values QCtr(s) generated by the
central network and those QDtr(s) produced by the distributed
network under the same state s.

min (QCtr(s)−QDtr(s))
2 (9)

When the retraining notifier signals deployment readiness,
scaling actions, guided by human knowledge-driven frequency,
are executed simultaneously and asynchronously. State-action-
reward pairs are then gathered, combined with data from other
deployments, and utilized to fine-tune the policy of the central
network.

E. Retraining Notifier

When the RL-based model needs to be re-trained based on the
conditions as introduced in Section IV-B, the Retraining Notifier
as shown in Algorithm 4 informs the teacher network to repeat
the training phase whenever the student network faces insuf-
ficient information or the average reward from recent actions
falls below a predetermined threshold. It initializes an array,
rewardHistory, to record the last npr rewards and the iterator
number iter; continuously, the algorithm calculates the current
action’s reward, storing it cyclically in rewardHistory (lines
1-7). If collected rewards are below the defined number npr,
retraining will not be triggered due to insufficient data (line 8).
However, if the average of rewardHistory drops below the
thresholdTH , the retraining process will be triggered, indicating
suboptimal performance (lines 10-12). Otherwise, the system
continues its distributional operations (lines 13-15).

VI. PERFORMANCE EVALUATIONS

To assess the efficacy of DRPC in the autoscaling of microser-
vices, we conduct experiments on a realistic testbed based on
Kubernetes. We detail the experimental settings, benchmarks,
and a comprehensive analysis of the results. The primary objec-
tive is to verify that a distributed asynchronous framework can
improve performance, potentially offering potential directions
for future research.
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Algorithm 4: DRPC: Retraining Notifier.

A. Experimental Setup

We utilize TrainTicket as a testbed in our motivational exam-
ple in Section III. It provides functionalities such as ticket pur-
chases, availability checks, cancellations, and news browsing,
simulating backend processes like verification code generation,
user login checks, and database ticket availability searches. The
platform establishes latency-measuring chains using domain
name service for service connectivity. Load balancers or ser-
vice routers based on cloud server tests are employed. Each
TrainTicket microservice has its own database, reducing wait
times and facilitating scheduling for developers.

We use a cluster with five machines (one master and four
workers) for microservice-based cluster. Each machine has 8
CPU and 8 GB memory. This prototype system is implemented
using a suite of toolkits, including Cgroup v2, Python, Ten-
sorFlow, PyTorch, Sklearn, and Locust, which support deep
learning and reinforcement learning environments.

We simulate four user types (Normal Query Users, Ticket
Buyers, Cancel Ticket Users, and Admin Users) with various
ratios in our cluster using the Alibaba work trace, each assigned
with a unique ID for tracking. This emulates real-world user
behavior dynamics, where service requests fluctuate over time.
Data is collected every 200 milliseconds and averaged over
1000-minute intervals in accordance with the existing work [20],
[21].

B. Baselines

Several state-of-the-art approaches from both industry and
academia have been selected as baselines.

KuScal [13] is a Kubernetes mechanism using horizontal
scaling to adjust replicas dynamically. It determines replica
quantity based on resource fluctuations, adjusting microservice
numbers via continuous real-time resource utilization tracking
and predefined CPU utilization thresholds. The threshold is set
to be 75% as it is evaluated as the most effective in some existing
work surveyed in [38].

CoScal [20] divides resource usage into quarterlies, applies
an approximated Q-learning algorithm to devise a policy, and
supports horizontal, vertical scaling, and brownout. Using the
GRU unit for workload prediction, it forecasts workload, con-
sulting a trained table to guide pod-level scaling actions, and
even optimizing non-critical path pods.

FIRM [21] systematically allocates cloud resources by identi-
fying the critical microservice path and using machine learning
to target specific instances needing optimization. The process
strategically moves from the longest to the shortest chain, pri-
oritizing longer chains to reduce microservice time delays and
boost efficiency.

C. Experiment Analysis

Several widely used metrics, including the number of success
requests, failure rate and response time have been utilized to
evaluate the performance of our proposed approach and the
baselines.

1) Computation Efficiency Analysis: Based on the efficient
design of our distributed student network, DRPC necessitates
considerably fewer computational resources compared to FIRM,
with trainable parameters being 643 for our model and 11,352
for FIRM. DRPC utilizes only 6× 10−5 of CPU time to de-
termine the subsequent action, compared to 4× 10−3 taken by
FIRM. Our model also showcases superior efficiency, with a
peak CPU utilization of 0.8 as opposed to FIRM’s maximum
usage of 2.0. This illustrates that our approach is markedly more
resource-efficient than FIRM. DRPC incorporates 40 services,
and enables simultaneous application of CPU, memory, and
horizontal scaling for each deployment, executing up to 120
actions per time step. KuScal ranks second, when CPU utiliza-
tion for all services surpasses the threshold, and all services
undergo horizontal scaling. However, FIRM can only scale one
resource type per step, as FIRM’s Actor-critic network estimates
the Q-value for scaling actions and applies the action with the
highest Q-value.

The offline training phase required approximately 10 days to
converge, with the majority of this time dedicated to the data
collection process within the cluster. However, once the initial
training is completed, the model can be fine-tuned within min-
utes via online learning to adapt to changes in the composition
of user requests, which can handle the significant changes in
realistic system.

2) Comparison of the Number of Success Requests Per Sec-
ond: Fig. 3(a) presents the requests per second processed by
four distinct algorithms. We partitioned the 5000-minute data

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 05:04:20 UTC from IEEE Xplore.  Restrictions apply. 



3482 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 3. Performance comparison of KuScal, FIRM, CoScal, and DRPC.

into five time periods, with each period representing the average
results over the corresponding period. We observed that, across
the five time periods, FIRM is capable of processing a higher
number of requests compared to our method during the initial
periods. However, our method outperformed FIRM over the sub-
sequent four periods. Likewise, CoScal also demonstrated the
ability to adapt and improve over time, but it did not outperform
our method or FIRM consistently. Furthermore, the difference
between our method, CoScal, and FIRM was relatively small
during the initial periods, until our method started surpassing
them. It can be also reasoned that a scheduling algorithm solely
reliant on the longest chain becomes increasingly challenging
to handle workloads under significant variances in request rate
over time. This might be caused by the longest chain typically
signifying more requests at the onset of the scenario when chain
variations are minimal. However, as the load changes over time,
the chains experiencing high loads, which may not necessarily be
the longest chains, become the actual targets for optimization. In
summary, FIRM and Coscal have achieved good performance
in handling requests successfully. Compared to FIRM, DRPC
improves the success rate of requests by around 2%.

3) Comparison of Failure Rate: As shown in Fig. 3(b),
DRPC has a failure rate of 4.5%, which is notably lower than
FIRM’s 5.9%, CoScal’s 8.2%, and Kuscal’s significantly high
rate with 29%. When we evaluate the improvement of DRPC
over the other methods, it reduced the failure requests by 24%
compared to FIRM, 44% in relation to CoScal, and exhibited
an impressive 85% reduction when compared to KuScal. In
summary, DRPC demonstrates a significant performance im-
provement over the benchmarks. This enhancement is attributed
to our design’s ability to adjust deployments more frequently,
thereby reducing the likelihood of failures compared to other
methods.

4) Comparison of Response Time: Fig. 3(c) demonstrates the
average response time for the four algorithms under the same
configurations. KuScal shows the longest average response time
across all five periods, being three to four times longer than
others, as its inability to predict forthcoming requests inhibits
it from conducting pre-emptive horizontal scaling to accommo-
date these incoming requests. In contrast, CoScal performs better
than KuScal but trails behind FIRM and DRPC. The CoScal
model demonstrates an average response time that is generally
similar to that of FIRM, except for the last two time periods,
where FIRM shows a slight gap. We observed that the DRPC

TABLE III
RESPONSE TIME AT DIFFERENT PERCENTILE

achieves the shortest response time, typically ranging between
40 ms and 70 ms, for most of the time intervals, thereby reducing
the average response time by around 15% compared to FIRM and
24% compared to Coscal. Remarkably, it reduces the response
time by 72.4% compared to Kuscal.

5) Scalability Analysis: In comparing the transactions per
second (TPS) of distributed networks with a centralized teacher
network (as shown in Fig. 3(d)), it was observed that asyn-
chronous, frequently updated distributed models consistently
surpass the teacher model (centralized) in performance. These
models not only emulate the teacher network’s patterns but
also demonstrate reduced volatility. In Fig. 4(b), an analy-
sis shows that as request numbers significantly increase, our
method outperforms FIRM with 30% improvement in terms of
response time in average. Additionally, DRPC’s lower quadratic
coefficient in fitted line than FIRM confirms its effectiveness,
scalability, and stability.

6) Cumulative Distribution Function (CDF) of Response
Time Analysis: We also utilize the CDF in Table III to highlight
the differences between different approaches, as well as the
results in Fig. 4(a). Until the 90th percentile, the CDF curve
of FIRM consistently outperforms DRPC. This difference ap-
pears because FIRM allocates requests to specific nodes rather
than central ones. Our approach, which releases resources on
non-critical chains or nodes, introduces delays on these nodes.
Since FIRM does not allocate resources to these nodes, resulting
in over-provisioning, it handles certain simple requests more
quickly than our method. However, beyond the 90th percentile,
our strategy efficiently redistributes the released resources to
nodes critical for QoS enhancement. In summary, DRPC signifi-
cantly reduces tail latency by reallocating resources to nodes cru-
cial for enhancing QoS, outperforming baselines consistently.

7) Reinforcement Learning Convergence Analysis: As il-
lustrated in Fig. 4(c), the system requires approximately 300
episodes to reach convergence. Beyond this point, the reward
per action experiences no significant increase, prompting us to
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Fig. 4. CDF comparison and reward convergence.

halt the operation. The reward coverage settles at approximately
0.7, as seen from the figure. This indicates that CPU, memory
usage, and latency are approaching an optimal configuration by
analyzing the reward function. In terms of actual performance,
memory utilization is around 75%, while CPU utilization is
approximately 60%. The QoS is guaranteed, ensuring that 99%
of requests can be handled within 210 ms.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a novel framework for distributed
resource provisioning, named DRPC. By adopting an asyn-
chronous, parallel, and differential approach, DRPC facilitates
the global optimal allocation of resources. This accommodates
the dynamic nature of microservice-based clusters while en-
suring QoS. Notably, DRPC incorporates DL methodologies
for workload prediction, achieving a higher level of accuracy
compared to conventional gradient-based methods. Addition-
ally, it leverages a distributed RL algorithm to make informed
decisions on scaling strategies, effectively managing the infinite
action-states space associated with microservices. The results,
based on realistic testing and comparisons with state-of-the-art
algorithms, demonstrate that DRPC outperforms the baselines
in terms of successful request rate and average response time,
particularly under significantly increased requests.

The limitation of this approach is that it increases network
usage due to the essential communication of distributed RL.
Future research will focus on automating the asynchronous
updating process, which currently requires manual setting of
timing intervals for specific microservices, to improve system
efficiency. In addition, we would like to explore anomaly-aware
workloads management under container-based environment,
and incorporate our approach into large-scale and production
environment (e.g. Alibaba Cloud) with further validations.

SOFTWARE AVAILABILITY

The codes have been open-sourced to https://github.com/
vincent-haoy/DRPC for research usage.
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