
Journal of Network and Computer Applications 208 (2022) 103520

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Deep reinforcement learning-based algorithms selectors for the resource
scheduling in hierarchical Cloud computing
Guangyao Zhou a, Ruiming Wen a, Wenhong Tian a,∗, Rajkumar Buyya b,a

a School of Information and Software Engineering, University of Electronic Science and Technology of China, China
b Cloud Computing and Distributed Systems Lab, School of Computing and Information Systems, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Hierarchical cloud computing
Algorithm selection
Subsystem
DL-based selector
DRL-based selector

A B S T R A C T

Cloud computing environment is becoming increasingly complex due to its large-scale information growth and
increasing heterogeneity of computing resources. Hierarchical Cloud computing dividing the system into multi-
levels with multiple subsystems to support the adaptability to abundant requests from users has been widely
applied and brings great challenges to resource scheduling. It is critical to find an effective way to address the
complex scheduling problems in hierarchical Cloud computing, whose scenarios and optimization objectives
often change with the types of subsystems. In this paper, we propose a scheduling framework to select the
scheduling algorithms (SFSSA) for different scheduling scenarios considering no algorithm well suitable to
all scenarios. To concretize SFSSA, we propose deep learning-based algorithms selectors (DLS) trained by
labeled data and deep reinforcement learning-based algorithms selectors (DRLS) trained by feedback from
dynamic scenarios to complete the algorithms selection regarding the scheduling algorithms as selectable tools.
Then, we apply strategies including pre-trained model, long experience reply and joint training to improve
the performance of DRLS. To enable the quantitative comparison of selectors, we introduce a weighted cost
model for the trade-off between solution and complexity. Through multiple sets of experiments in hierarchical
Cloud computing with multi subsystems for five types of scheduling problems and varying weights of cost, we
demonstrate DLS and DRLS outperform baseline strategies. Compared with random selector, greedy selector,
round-robin selector, single best selector, virtual best selector and single fast selector, DLS reduces the cost
by 47.4%, 46.1%, 33.9%, 47.9%, 19.3%, 18.8% under stable parameter ranges, and DRLS reduces the cost
by 41.1%, 40.6%, 11.7%, 42.3%, 11.5%, 12.5% in dynamic scenarios respectively. In experiments, we also
validate DRLS has stronger adaptability than DLS in dynamic scheduling scenarios and DRLS using all of
strategies achieves the best performance.
1. Introduction

The advent of Industry 4.0 and 5G Era is producing an increasing
volume of data to Internet putting forward requirements for mighty
software systems of network (Armbrust et al., 2010). Cloud comput-
ing, as a large-scale distributed system that provides flexible, reliable,
dynamic and high coverage services, has shown significant advantages
in meeting the demand of Internet and is playing an indispensable
role in various professions including scientific research and engineering
production (Adhikari et al., 2019). With its heterogeneous resources
and policy of pay-as-you-use, Cloud computing can respond to different
types of users’ requests such as transmission requests, storage requests,
computing requests, etc (Zhou et al., 2019; Kumar et al., 2019). Cur-
rently, Cloud computing has become the foundation for many business
applications (Guo et al., 2021).

∗ Corresponding author.
E-mail addresses: guangyao_zhou@std.uestc.edu.cn (G. Zhou), ruimingwen0516@gmail.com (R. Wen), tian_wenhong@uestc.edu.cn (W. Tian),

rbuyya@unimelb.edu.au (R. Buyya).

The increasing task requests and data transmission make the scale
of Cloud computing system gradually expand based on deployment
of hardware devices. However, the deployment capability lags behind
the increase of Internet data, which presses exactly the management
of resources in Cloud. In addition, inappropriate utilization ratio of
resources will cause excessive energy consumption, high running time
of tasks, and significant burden to systems so as to reduce the qual-
ity of service, reduce service life of components and increase CO2
emission, which presents the necessity of requirement for efficient
scheduling (Zhou et al., 2019; Kumar et al., 2019; Wan et al., 2020).
Various factors containing time, resource state and environment, will
affect the optimization objective and scenario, resulting in greatly high
complexity of the solution process. Therefore, the research of resource
vailable online 27 September 2022
084-8045/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2022.103520
Received 1 June 2022; Received in revised form 22 July 2022; Accepted 22 Septem
ber 2022

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:guangyao_zhou@std.uestc.edu.cn
mailto:ruimingwen0516@gmail.com
mailto:tian_wenhong@uestc.edu.cn
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jnca.2022.103520
https://doi.org/10.1016/j.jnca.2022.103520
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2022.103520&domain=pdf

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
scheduling in Cloud computing has always been a hotspot and nodus in
the era of big data, which also influences the position and development
of Cloud computing in society.

One novel structure of hierarchical Cloud computing (including
mobile edge computing) is to divide the Cloud system into multiple
subsystems (Multi-Level Cloud System) to provide specific types of
services for corresponding users, which reduces the computational
complexity of resource management and achieve considerable per-
formance (Lu et al., 2020; Li et al., 2020). Thus, research on multi
Cloud environments is one of the tendencies to improve the application
performance of Cloud (Hu et al., 2018). The potential user types are the
basis of subsystem division and the types of services, which also cause
the difference of equipment composition between different subsystems.
This difference determines the various objectives of each subsystem and
increases the difficulty of resource management. Resource management
has been broadly studied and there are various scheduling algorithms
such as heuristic, meta-heuristics and machine learning. Some algo-
rithms, such as Ant colony algorithm (Sudarshan Chakravarthy et al.,
2019), NSGA-II algorithm (Sofia and Ganeshkumar, 2018) and deep
reinforcement learning (Guo et al., 2021; Li et al., 2020), have shown
excellent performance in the existing research, whereas the scheduler
based on single scheduling algorithm is far from meeting the demand of
the actual operation environment, especially with multi subsystems as
no algorithm can fit all scenarios of Cloud computing and perform bet-
ter than other algorithms currently. Meta-heuristic, deep reinforcement
learning and other algorithms, that can resolve the problem of variable
optimization objectives and scenarios to a certain extent, require and
consume extensive computing resources and time with the increasing
complexity of the problem. And some algorithms with certain rapidity
such as LPT, FCFS, RR, BFD and Greedy can only address the resource
scheduling in simple scenarios with the low requirement as their so-
lution is obviously worse than other complex algorithms (Guo et al.,
2021; Mao et al., 2021).

The existing contradiction, that determines the upper limit of the
profit, is the balance between optimization and complexity of the
algorithm. Moreover, the increasing complexity of the algorithm will
abate the realistic value to deploy and apply the algorithm as well as
cause resource bottleneck and risk in the operation process of Cloud
systems. Therefore, the improvement of one algorithm is inadequate
to solve this contradiction. Some existing research on the resource
scheduling in hierarchical Cloud computing applied DQN (Lu et al.,
2020; Li et al., 2020), Joint DC (JCORA) algorithm (Nguyen et al.,
2020), a penalized successive convex approximation (P-SCA)-based
algorithm (Liu et al., 2020), and VCEPSO based on particle swarm opti-
mization (Li, 2020) and achieved good performance in their researched
problem. However, they mainly focused on the improvement of a single
scheduling algorithm without considering the differences between sub-
systems and between their objectives. In reality, different subsystems
in hierarchical Cloud computing may have different equipment com-
positions to provide different services for various users, which causes
the change of optimization objectives concerned by resource scheduling
of different subsystems. Therefore, it is considerable to dynamically
select algorithms for variable scenarios. This prompts us to consider
making full use of the existing algorithm to meet more complex scenes
with various objectives in hierarchical Cloud computing with multi
subsystems (HCCMS).

In the existing resource scheduling algorithms of Cloud computing
and other distributed systems, a phenomenon from observation is that
each optimization algorithm has its targeted factors and scenarios
since its proposition. Considering another point of view that all the
scheduling algorithms belong to human’s wisdom and referring to re-
search on algorithm selectors in other fields (Czako et al., 2021; Huerta
et al., 2022), this paper proposes a scheduling framework to select
the scheduling algorithms (SFSSA) by combining advantages of various
scheduling algorithms. To concretize SFSSA, this paper also proposes
2

deep learning-based algorithm selectors (DLS) and deep reinforcement
learning-based algorithm selectors (DRLS) to deal with the resource
scheduling problems of HCCMS with different optimization objectives
and varying weights of cost. Although training DRL or DL to schedule
resources directly will consume abundant computing capacities and
time because the input and output spaces of resource scheduling are
too large, DLS and DRLS only consume tiny complexities to select the
scheduling algorithms. Finally, according to the types of scheduling
problems, the weight of solution and complexity, as well as the number
of tasks and resources, DLS or DRLS can select an algorithm with good
performance from the algorithm pool to minimize the cost of HCCMS.

The main contributions of this paper can be summarized as:

(1) Scheduling framework to select the scheduling algorithms (SF-
SSA): this paper proposes a framework to select scheduling
algorithm according to optimization objective and scenarios re-
garding the scheduling algorithms also as selectable resources,
which can integrate the advantages of various scheduling al-
gorithm, decompose the optimization objective and also effec-
tively decompose the computational complexity of the optimiza-
tion algorithm in complex resource management scenarios of
HCCMS.

(2) DLS and DRLS: this paper utilizes deep learning (DL) and deep
reinforcement learning (DRL) respectively to represent the
decision-making process of selecting scheduling algorithm to
construct DLS and DRLS. Using DL and DRL, the DLS and DRLS
can effectively model multiple optimization scenarios and effec-
tively train the strategy of scheduling algorithm selection, which
adapts various scenarios of variable optimization objectives. Our
proposed DLS and DRLS also explore a novel role for DL and DRL
as scheduling algorithm selector of Cloud computing.

(3) Combination of various strategies of DRLS: to further improve
the performance of DRLS, this paper applied three strategies in
DRLS including pre-trained model, long experience replay and
joint training, where each strategy optimizes the selection results
of DRLs to a certain extent. The DRLS using all these three
strategies performs best among all the DRL-based selectors.

(4) Multiple sets of experiments: this paper constructs scheduling
algorithms pool and carries on multiple sets of experiments
in complex scenarios of HCCMS to verify the superiority of
proposed algorithm selector from various sights. In experiments,
DLS and DRLS achieve better results in their own corresponding
scenarios compared with baseline strategies including random
selector (RS), greedy selector (GS), round-robin selector (RRS),
single best selector (SBS), virtual best selector (VBS) and single
fast selector (SFS).

The remainder of this paper is organized as follows. We review the
related works in Section 2. System model and formulation of scheduling
problems in complex scenarios of HCCMS are presented in Section 3.
The scheduling framework to select the scheduling algorithms (SF-
SSA) as well as the DL-based and DRL-based algorithms selectors with
multiple strategies are proposed in Section 4. The design and results
of multiple sets of experiments from various sights are presented in
Section 5. Finally, we conclude this paper in Section 6.

2. Related work

Frequently used approaches for resource scheduling of
Cloud computing contain migration such as VMs migration (Sudar-
shan Chakravarthy et al., 2019), application migration (Duc et al.,
2019), task migration (Miao et al., 2020), and workload migration
(Fiandrino et al., 2017); Queuing model such as M/M/S (Ding et al.,
2020) and M/G/1 (Li, 2009); multi-phase approach (Laili et al., 2020);
as well as scheduling algorithm. The core of these approaches is still
the scheduling algorithm including several categories according to
the solution way: direct allocation algorithms, search algorithms, and

machine learning algorithms.

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Direct allocation algorithm, mostly heuristic algorithm, is one type
of the commonly applied algorithms in realistic Cloud systems that
benefit from its low computing complexity, light-weight, analyzabil-
ity, ease of implementation and deployment. In the direct allocation
algorithm, LPT (Croce and Scatamacchia, 2020), greedy (Mao et al.,
2021), random, RR (Round-Robin) (Pradhan et al., 2016), FFD (Tian
et al., 2018), FCFS (First Come First Serve) (Abhikriti and Sunita, 2017)
are frequently utilized algorithms to gain an approximate solution of
scheduling problems and have also been applied as baselines of com-
parison in recent literature. Z. Guan et al. applied Jacobi Best-response
Algorithm and proposed a novel globally optimization algorithm based
on a combination of the branch and bound framework to solve the re-
sulting non-convex cooperative problem and minimize the costs of Mo-
bile Cloud Computing (Guan and Melodia, 2017). Wenhong Tian et al.
proposed a 2-approximation algorithm, LLIF, with theoretical analysis
and proof to minimize the energy consumption of VMs scheduling (Tian
et al., 2018). Z. Hong proposed FCFI + ACTI, a QoS-Aware Distributed
Algorithm to address multi-hop computation-offloading problem in
IoT-Edge-Cloud Computing (Hong et al., 2019).

Search algorithm, mainly meta-heuristic algorithm, is a local search
or global search to get final scheme based on an initial allocation
state, which can generally achieve better solution than direct alloca-
tion algorithm but will consume more complexity of time and space.
This type of algorithm has adaptability to the varied objectives hence
applies to multi-objective optimization problems. Xiao-Fang Liu et al.
develop an ant colony system-based approach named OEMACS allo-
cating VMs to reduce energy consumption of Cloud computing (Liu
et al., 2018). M. Mahil et al. proposed PSO-ACS algorithm incorporat-
ing particle swarm optimization and Ant Colony System to optimize
energy efficiency and SLA Violation of cloud data centers (Mahil and
Jayasree, 2021). MOEAs (Laili et al., 2020) have performed supe-
riority in multi-objective scheduling problems in Cloud computing.
Ali Abdullah Hamed Al-Mahruqi et al. proposed HH-ECO, a Hybrid
Heuristic Algorithm using chaotic based particle swarm optimization
(C-PSO), to improve optimal makespan and energy conservation (Al-
Mahruqi et al., 2021). Amir Iranmanesh et al. proposed DCHG-TS, a
hybrid genetic algorithm based on load balancing routing, to optimize
both cost and makespan for scientific workflow scheduling in Cloud
computing (Iranmanesh and Naji, 2021).

Machine learning, mainly reinforcement learning and deep rein-
forcement learning usually occupying better optimization solutions in
dynamic scheduling problems than search algorithms, adapts various
scenarios apt to lifelong learning, but requires abundant data-based
training with extensive computing complexity and possesses unpre-
dictable execution results without analyzability, which may cause risk
to large-scale Cloud systems in realistic. Combining neural network and
NSGA-II algorithm, Goshgar Ismayilov et al. proposed the NN-DNSGA-
II algorithm, a multi-objective evolutionary algorithm for dynamic
workflow scheduling in Cloud computing (Ismayilov and Topcuoglu,
2020). Based on M/M/S queuing model and Q-learning, Ding Ding
et al. proposed QEEC, a two phases framework, to enhance the energy
efficiency of Cloud computing (Ding et al., 2020). However, the state
space is high dimensional and continuous resulting in massive comput-
ing complexity to train Q-table in scheduling problems. K. Lolos et al.
proposed MDP_DT, an adaptive Reinforce Learning with three strategies
that Chain Split, Reset Split and Two-phase Split to reduce the size of
state space (Lolos et al., 2017). One other strategy to express the contin-
uous state space in reinforcement learning is the deep neural network.
DRL, integrating reinforcement learning and deep learning, such as
modified DRL algorithm (Karthiban and Raj, 2020), DQTS (Tong et al.,
2020), Deep Q Network (DQN) (Dong et al., 2020), ADRL (Kardani-
Moghaddam et al., 2021) and DeepRM-Plus (Guo et al., 2021), has
been applied to solve scheduling problems in Cloud computing and
performed the superiorities of DRL verified by experiments in their
3

papers.
Table 1
Notations and descriptions.

Notation Description

𝑞 Number of subsystems
𝑘 Index of subsystem
𝑆𝑘 The subsystem with index 𝑘
𝑛𝑘 The number of server nodes in 𝑆𝑘
𝑁𝑘 The set of server nodes in 𝑆𝑘
𝑖 Index of server node
𝑅𝑘𝑖 The 𝑖th server node of 𝑆𝑘
𝑇𝑘 The set of tasks allocated to subsystem 𝑆𝑘
𝑚𝑘 The number of tasks in subsystem 𝑆𝑘
𝑗 Index of tasks
𝑇𝑘𝑗 The 𝑗th task in subsystem 𝑆𝑘

𝑇𝑆𝑘𝑖 Set of tasks in server node 𝑅𝑘𝑖

𝐾𝑆𝑘 The set of 𝑇𝑆𝑘𝑖 where 𝐾𝑆 =
⟨

𝑇𝑆𝑘1 , 𝑇 𝑆𝑘2 ,… , 𝑇 𝑆𝑘𝑛𝑘

⟩

𝐶𝐶𝑃𝑈
𝑘𝑖 The maximum capacity of CPU for node 𝑅𝑘𝑖

𝐶𝐷𝑆
𝑘𝑖 The maximum capacity of DS for node 𝑅𝑘𝑖

𝑣𝐶𝑃𝑈
𝑘𝑗𝑖 The CPU capacity request of 𝑇𝑘𝑗 for 𝑅𝑘𝑖, similarly 𝑣𝐷𝑆

𝑘𝑗𝑖

𝐿𝐶𝑃𝑈
𝑘𝑖 The occupied CPU capacity of 𝑅𝑘𝑖, similarly 𝐿𝐷𝑆

𝑘𝑖

𝐸𝑇𝑘𝑗𝑖 The processing time of task 𝑇𝑘𝑗 when executed in 𝑅𝑘𝑖

𝑅𝑇𝑘𝑖 The running time of server node 𝑅𝑘𝑖

𝑀𝑇𝑘 The makespan of the 𝑘th subsystem 𝑆𝑘

𝑈𝑘(𝑡) The cost of the 𝑘th subsystem 𝑆𝑘 at time slot [𝑡, 𝑡 + 𝛿𝑡)

𝛺(𝑡) The cost of the whole system at time slot [𝑡, 𝑡 + 𝛿𝑡)

Additionally, for hierarchical or multi Cloud computing: Haifeng
Lu et al. proposed IDRQN to improve the energy consumption, load
balancing, latency and average execution time for MEC with multi-
area subsystems (Lu et al., 2020); Meng Li et al. applied DDQN to
improve the system performance for blockchain-enabled M2M com-
munications in EC with multi groups of M2M network (Li et al.,
2020); Hu et al. proposed a MOS (multi-objective scheduling) al-
gorithm based on the particle swarm optimization (PSO) to mini-
mize workflow makespan and cost simultaneously of multi-cloud en-
vironment (Hu et al., 2018); other algorithms including Joint DC
(JCORA) algorithm (Nguyen et al., 2020), P-SCA-based algorithm (Liu
et al., 2020), and PSO-based VCEPSO (Li, 2020) have been proposed
to address the resource scheduling problems of hierarchical Cloud
computing.

Overall, the existing research mainly targets improving the perfor-
mance of the scheduling algorithm itself. Differentiating from previous
research, this paper focuses on the algorithms selection of HCCMS,
regards scheduling algorithms as selectable resources and proposes
a scheduling framework to select the scheduling algorithms (SFSSA).
Additionally, this paper accords a novel role, i.e. algorithms selectors,
to DL and DRL by proposing DL-based selector (DLS) and DRL-based
selector (DRLS) for various scenarios.

3. System model and problem formulations

To assist the description of the system model and problem formula-
tions, Table 1 gives some notations used in this paper.

3.1. System model of multi-level Cloud system

Cloud computing integrates the physical or virtual machines of
various servers through high-speed Internet to form a resources pool.
When a user submits a task request, the Cloud computing management
center allocates the resources in the resource pool to the user according
to the current operation status of the Cloud computing system and
the attributes of the user’s request. After allocation, Cloud computing
management updates the status of the Cloud system and monitors the
operation of the whole system in real-time. The traditional process of

Cloud management without subsystem can be seen in Fig. 1.

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Fig. 1. The traditional process of Cloud resource management.

Fig. 2. The hierarchical Cloud computing with multi subsystems (HCCMS).

Currently, a single Cloud computing resource management center
can no longer meet the rapidly growing number of task requests from
all over the world. Moreover, a single resource management center
is not robust with a low ability to anti risk. During actual operation,
multi-point control is usually adopted to manage the Cloud system
i.e. according to the attributes of Cloud computing server nodes and the
classification of target users, the large-scale Cloud computing system
is divided into multiple subsystems to form a multi-level Cloud com-
puting system (hierarchical Cloud computing with multi subsystems
(HCCMS)). Similar to but different from the Refs. Lu et al. (2020) and
Li et al. (2020), Fig. 2 presents one architecture of HCCMS.

In Fig. 2, a user or a group of users submits diverse requests to
Cloud system, the classifier in Cloud center will classify these requests
and send the classified requests to the corresponding subsystems for
processing. Then the management center (scheduler) of the subsystem
allocates these requests to specific physical or virtual machines. This
HCCMS structure in Fig. 2 reduces the overall failure probability of
system and simultaneously increases the security between subsystems.
In case of local subsystem failure, the management center of other
subsystems or Cloud center can temporarily take over the resource
scheduling of the failed subsystem under the authorization of the Cloud
system management center. In order to meet more complex scenarios
during operation of Cloud computing, the nodes in all subsystems can
be re-divided and combined into new subsystems dynamically. HC-
CMS also indicates that the resource scheduling strategies of different
subsystems may be different, which poses a great challenge to Cloud.

Focusing on resource scheduling problems in HCCMS, we consider a
HCCMS with 𝑞 subsystems donated as 𝑆 =

⟨

𝑆 , 𝑆 ,… , 𝑆
⟩

and the 𝑘th
4

1 2 𝑞
subsystem with 𝑛𝑘 server nodes donated as 𝑁𝑘 =
⟨

𝑁𝑘1, 𝑁𝑘2,… , 𝑁𝑘𝑛𝑘

⟩

.
As each server node has a limited capacity of CPU and disk storage
(DS), we use 𝐶𝐶𝑃𝑈

𝑘𝑖 and 𝐶𝐷𝑆
𝑘𝑖 to denote them. It can be assumed that

the set of tasks allocated to the subsystem 𝑆𝑘 at a time slot [𝑡, 𝑡+𝛥𝑡) as
𝑇𝑘 =

⟨

𝑇𝑘1, 𝑇𝑘2,… , 𝑇𝑘𝑚𝑘

⟩

with 𝑚𝑘 tasks. Then, we use 𝑣𝐶𝑃𝑈
𝑘𝑗𝑖 , and 𝑣𝐷𝑆

𝑘𝑗𝑖 as
the capacity request of task 𝑇𝑘𝑗 , 𝐸𝑇𝑘𝑗𝑖 as the processing time of 𝑇𝑘𝑗 , as
well as 𝐿𝐶𝑃𝑈

𝑘𝑖 and 𝐿𝐷𝑆
𝑘𝑖 as the load of 𝑅𝑘𝑖.

In order to illustrate the advantages of HCCMS, we theoretically
analyze the computational complexity of the resource scheduling al-
gorithm in HCCMS. Supposing the computational complexity of an
algorithm to allocate 𝑚 tasks to 𝑛 resources is O(𝑓 (𝑚, 𝑛)). For the
existing resource scheduling algorithms, except that algorithms with
linear complexity such as random algorithm, other algorithms have
polynomial or exponential computational complexities and meet the
𝑓 ′′
𝑚 (𝑚, 𝑛) ≥ 0 and 𝑓 ′

𝑛 (𝑚, 𝑛) ≥ 0. Therefore, Eq. (1) can be obtained based
on Jensen Inequality.

𝑓 (𝑚, 𝑛) = 𝑓 (𝑚, 𝑛) + 𝑓 (0, 𝑛) ≥
𝑞
∑

𝑘=1
𝑓 (𝑚𝑘, 𝑛) ≥

𝑞
∑

𝑘=1
𝑓 (𝑚𝑘, 𝑛𝑘) (1)

Especially, when an algorithm has polynomial complexity above
quadratic or exponential complexity, the computational complexity
satisfies ∃𝛼 ≥ 2 𝐬.𝐭. O(𝑓 (𝑚, 𝑛)) ≥ O(𝑚𝛼). Then, Eq. (2) can be obtained
based on Power-Mean Inequality.

𝑓 (𝑚, 𝑛) ≥ 𝑞(𝛼−1)
𝑞
∑

𝑘=1
𝑓
(

𝑚
𝑞
, 𝑛
)

≥ 𝑞(𝛼−1)
𝑞
∑

𝑘=1
𝑓
(

𝑚
𝑞
, 𝑛𝑘

)

(2)

According to Eq. (2), evenly allocating the tasks to subsystems can
reduce the computational complexity of resource scheduling to 𝑞1−𝛼

times. Eqs. (1) and (2) demonstrate the significance of HCCMS in
improving resource management capability.

With the theoretical analysis of dividing Cloud system into multi
subsystems, we can continue to construct its system model. Assuming
a server node (PM or VM) is only in one subsystem, we consider a
subsystem has two basic classifications i.e. homogeneous and hetero-
geneous. The homogeneous subsystem means the execution of user’s
task requests on each node is the same as well as the upper load limit
of each node is the same, whose relationship can be shown as Eq. (3).
Otherwise, the subsystem is heterogeneous.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⟨

𝑣𝐶𝑃𝑈
𝑘𝑗𝑖1

, 𝑣𝐷𝑆
𝑘𝑗𝑖1

⟩

=
⟨

𝑣𝐶𝑃𝑈
𝑘𝑗𝑖2

, 𝑣𝐷𝑆
𝑘𝑗𝑖2

⟩

,

𝐸𝑇𝑘𝑗𝑖1 = 𝐸𝑇𝑘𝑗𝑖2 ,
⟨

𝐶𝐶𝑃𝑈
𝑘𝑖1

, 𝐶𝐷𝑆
𝑘𝑖1

⟩

=
⟨

𝐶𝐶𝑃𝑈
𝑘𝑖2

, 𝐶𝐷𝑆
𝑘𝑖2

⟩

,

1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛𝑘, 1 ≤ ∀𝑗 ≤ 𝑚𝑘.

(3)

In Cloud computing, the server nodes, commonly used to process the
same type of tasks, may approximately be homogeneous. For example,
the disks dedicated to the service nodes that processes storage requests
may be the same batch of production with the same model and for stor-
age requests, if disks are identical then the server nodes can be regarded
as homogeneous. Additionally, the server nodes, which are frequently
applied to process some computing requests or comprehensive requests,
may be heterogeneous because computing requests and comprehensive
requests from different users vary greatly.

In this paper, we consider the task requests are integral and cannot
be split into smaller ones, which means any task will be fully allocated
to only one server node, however one server node may process more
than one task simultaneously. We denote the set of tasks in node 𝑅𝑘𝑖 as
𝑇𝑆𝑘𝑖 where if a task 𝑇𝑘𝑗 is allocated to 𝑅𝑘𝑖, then 𝑇𝑘𝑗 ∈ 𝑇𝑆𝑘𝑖. All the 𝑇𝑆𝑘𝑖

in subsystem 𝑆𝑘 constitute a vector 𝐾𝑆𝑘 =
⟨

𝑇𝑆𝑘1, 𝑇 𝑆𝑘2,… , 𝑇 𝑆𝑘𝑛𝑘

⟩

.
As 𝐾𝑆𝑘 determines the unique allocation result of tasks in subsystem
𝑆𝑘, it can be leveraged to represent the solution of tasks allocation of
subsystem 𝑆𝑘. According to the occupation status of the task or VMs on
the server nodes, it can be divided into two categories: a task occupies
the server node completely within a certain time (full-occupancy),

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.

w

r
t
h
p
c
f

3

t

i
T
k

o
o
i
m

c
r

c
i
p
t

and the task occupies part of the server node (partial-occupancy).
If a task occupies the server node completely, the server node can
only process one task simultaneously (Ghalami and Grosu, 2019; Ding
et al., 2020), which implies other tasks need to enter the queue and
wait for the server node to be idle before being processed. For this
situation, running time of a server node 𝑅𝑇𝑘𝑖 is the main parameter
to be considered, and the total running time of the server node is equal
to the sum of the processing time of all tasks assigned to this node as
Eq. (4).

𝑅𝑇𝑘𝑖 =
∑

𝑇𝑘𝑗∈𝑇𝑆𝑘𝑖

𝐸𝑇𝑘𝑗𝑖 (4)

where we consider the processing time of tasks is fixed without af-
fection from the resources’ status or the order of tasks. For partial-
occupancy of server node, running time is no longer the superposition
of tasks’ processing time. However, the occupation of various compo-
nents in the server node is a more noteworthy parameter. Then, we
consider the tasks currently allocated to the server node will occupy
the resources of the node simultaneously in a minimum time slot. As
the occupancy of components in the server node generally satisfies the
relationship of linearly superposition, Eq. (5) can be given

𝐿𝐶𝑃𝑈
𝑘𝑖 =

∑

𝑇𝑘𝑗∈𝑇𝑆𝑘𝑗

𝑣𝐶𝑃𝑈
𝑘𝑗𝑖 (5)

here the similar relationship applies to DS.
In this paper, we do not address the issue of multi-dimensional

esource scheduling, so assume each scheduler only needs to consider
he one-dimensional resource. Finally, multiple factors, that are the
omogeneity and heterogeneity of server nodes, full-occupancy and
artial-occupancy will construct different types of subsystems in Cloud
omputing, hence increasing the abilities of Cloud systems to provide
lexible services.

.2. Subsystems and subproblems of resource scheduling

Based on the types of tasks requests and services, several types of
he subsystem in HCCMS can be presented as:

(1) Homogeneous full-occupied subsystem, which is usually utilized
to provide specific services for user groups with exclusive needs
considering that these users require independence and stabil-
ity during the service period and the type of their tasks are
stationary;

(2) Homogeneous partial-occupied subsystem, which is usually uti-
lized to provide services for the broader user groups with a
small capacity of the single task but the huge number of all task
requests, such as dedicated subsystem for file storage supporting
Cloud disk;

(3) Heterogeneous full-occupied subsystem, which is usually utilized
to provide comprehensive or customized services for specific
user groups that these users require to independently occupy
the allocated server nodes and the types of their tasks are more
complex, such as some server nodes for commercial or scientific
research activities;

(4) Heterogeneous partial-occupied subsystem, which is constructed
with various physical machines and usually utilized to provide
comprehensive services for broader users.

For the full-occupied subsystem, the running time applied by users
s the main parameter affecting the service capability of server nodes.
hus, optimizing the total running time of the server node is one of the
eys to manage the full-occupied subsystem.

For the homogeneous full-occupied subsystem, the processing time
f a task is the same for different server nodes, so the total running time
f all the server nodes in the homogeneous full-occupied subsystem
s invariant when tasks are given. Then, an optimization problem to
5

inimizing the makespan of the homogeneous full-occupied subsystem f
an be given as Eq. (6), where the makespan means the maximum
unning time of all server nodes in subsystem 𝑆𝑘, and the constraints

are shown as Eq. (7).

min𝜔(1)
𝑘 = min

(

max
𝑖=1,2,…,𝑛𝑘

(𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝐸𝑇𝑘𝑗𝑖

))

(6)

𝐬.𝐭.
⎧

⎪

⎨

⎪

⎩

𝑚
∑

𝑖=1
𝑥𝑗𝑖 = 1,

𝑛
∑

𝑗=1
𝑥𝑗𝑖𝑣𝑘𝑗𝑖 ≤ 𝐶𝑘𝑖,

𝑥𝑗𝑖 ∈ {0, 1}, 𝑗 ∈ {1, 2,… , 𝑚𝑘}, 𝑖 ∈ {1, 2,… , 𝑛𝑘}

(7)

For heterogeneous full-occupied subsystem, the processing time of
the same task may vary on heterogeneous server nodes, which indicates
different schemes 𝐾𝑆𝑘 of tasks allocation will lead different total
running time of subsystem. Therefore in this case, the total running
time and makespan are both critical optimization objectives shown as
Eq. (8) also subject to Eq. (7).

min𝜔(2)
𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min

(

max
𝑖=1,2,…,𝑛𝑘

(𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝐸𝑇𝑘𝑗𝑖

))

min

(𝑛𝑘
∑

𝑖=1

𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝐸𝑇𝑘𝑗𝑖

) (8)

For homogeneous partial-occupied subsystem, we consider two
types of subsystems classified by their services: one is the subsystem
applied to storage requests and the other is that applied to computing
requests.

The main component for Cloud storage requests is hard disk which
mainly requires load balancing to reduce network congestion. In this
paper, we use variance of server nodes’ load of disk storage to measure
the degree of balancing. Next, the objective of load balancing can be
given as

min𝜔(3)
𝑘 = min 1

𝑛𝑘

𝑛𝑘
∑

𝑖=1

(𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝑣

𝐷𝑆
𝑘𝑗𝑖

)2

− 1
𝑛2𝑘

(𝑛𝑘
∑

𝑖=1

(𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝑣

𝐷𝑆
𝑘𝑗𝑖

))2 (9)

where the constraints are as Eq. (7) and ∑𝑚𝑘
𝑗=1 𝑥𝑗𝑖𝑣

𝐷𝑆
𝑘𝑗𝑖 ≤ 𝐶𝐷𝑆

𝑘𝑖 .
The computing requests mainly rely on CPU or GPU which usually

onsume more electrical energy than disk, hence one of the objectives
s to reduce the number of working nodes of subsystem (bin packing
roblem). In this paper taking the utilization of the CPU as an instance,
he single-dimensional bin packing problem can be given as

min𝜔(4)
𝑘 = min

𝑛𝑘
∑

𝑖=1
max

𝑗=1,2,…,𝑚𝑘
𝑥𝑗𝑖 (10)

where the constraints are as Eq. (7) and ∑𝑚𝑘
𝑗=1 𝑥𝑗𝑖𝑣

𝐶𝑃𝑈
𝑘𝑗𝑖 ≤ 𝐶𝐶𝑃𝑈

𝑘𝑖 .
For the heterogeneous partial-occupied subsystem providing com-

prehensive services for broader user groups, the number of instructions
accounts for a high proportion of its tasks to support various tasks.
Thus, the CPU is one of the most frequently used components. In this
case, balancing the utilization of the CPU and minimizing the total
occupied capacity of the CPU are two considerable objectives, hence
a bi-objective optimization problem can be given as

min𝜔(5)
𝑘 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min 1
𝑛𝑘

𝑛𝑘
∑

𝑖=1

(𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝑣

𝐶𝑃𝑈
𝑘𝑗𝑖

)2

− 1
𝑛2𝑘

(𝑛𝑘
∑

𝑖=1

(𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝑣

𝐶𝑃𝑈
𝑘𝑗𝑖

))2

min
𝑛𝑘
∑

𝑖=1

𝑚𝑘
∑

𝑗=1
𝑥𝑗𝑖𝑣

𝐶𝑃𝑈
𝑘𝑗𝑖

(11)

According to the properties of different subsystems, we have given

ive subproblems of HCCMS summarized in Table 2. Although there

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Table 2
Five subproblems in this paper.

Sign Description of problem

𝜔(1) Minimizing makespan for homogeneous resources
𝜔(2) Minimizing makespan for heterogeneous resources
𝜔(3) Load balancing of DS for homogeneous resources
𝜔(4) Bin packing for homogeneous resources
𝜔(5) Minimizing standard deviation and total load of CPU for heterogeneous

resources

are still more optimization problems for Cloud computing not listed in
Table 2, the core target of this paper is to address the joint scheduling
problems of HCCMS with various subproblems. Thus, using these five
optimization problems as examples has representativeness actually. For
the joint scheduling of more types of scheduling problems, the proposed
method in this paper will still be applicable.

3.3. Joint scheduling problem and cost model for various subproblems

In this paper, we define the joint scheduling problem for vari-
ous subproblems as optimization problems with variable optimization
objectives where the optimization objectives are known before the
scheduling of resources. Similar to Gudu et al. (2018), we also con-
struct cost model 𝑈𝑘(𝑡) for the trade-off the solution quality 𝜔𝑘(𝑡) and
computational complexity 𝜏𝑘(𝑡) of scheduling algorithm at the time slot
[𝑡, 𝑡 + 𝛥𝑡) to uniformly measure the solutions of various subproblems.
Without losing generality, we assume the cost equals the weighted
sum of optimization results and computational complexity using two
weights 𝑤(𝑘)

𝜔 (𝑡) and 𝑤(𝑘)
𝜏 (𝑡) as

𝑈𝑘(𝑡) = 𝑤(𝑘)
𝜔 (𝑡) ⋅ 𝜔𝑘 +𝑤(𝑘)

𝜏 (𝑡) ⋅ 𝜏𝑘 (12)

where 𝑤(𝑘)
𝜔 (𝑡), 𝑤(𝑘)

𝜏 (𝑡) ∈ R. Considering the complexity of realistic
scenarios, we regard the weights 𝑤(𝑘)

𝜔 (𝑡) and 𝑤(𝑘)
𝜏 (𝑡) as time-varying for

each subsystems. Generally, the objective of minimizing the cost 𝛺(𝑡)
of the whole system at the time slot [𝑡, 𝑡 + 𝛥𝑡) can be given as

min𝛺(𝑡) = min
𝑞
∑

𝑘=1
𝑈𝑘(𝑡) (13)

4. Methodology: Selectors of scheduling algorithms in HCCMS

4.1. SFSSA: Scheduling framework to select the scheduling algorithms

For the joint scheduling problem for various subproblems as Eq.
(13), a single algorithm is not enough to deal with varying and complex
scenarios, which proposes a demand for flexible utilization of various
algorithms regarding scheduling algorithms as selectable tools. Nat-
urally, the joint scheduling problem for various subproblems can be
converted to: how to select an appropriate algorithm to schedule resources
of a subsystem aiming to minimize total cost of HCCMS.

Obviously, the most appropriate algorithm corresponding to differ-
ent weights may be non-fixed. For example, when 𝑤(𝑘)

𝜔 (𝑡) > 0∧𝑤(𝑘)
𝜏 (𝑡) =

0 or 𝑤(𝑘)
𝜔 (𝑡) ≫ 𝑤(𝑘)

𝜏 (𝑡) ≥ 0, an algorithm with high complexity but can get
the optimal solution is the most appropriate; contrarily, when 𝑤(𝑘)

𝜔 (𝑡) =
0 ∧ 𝑤(𝑘)

𝜏 (𝑡) > 0 or 𝑤(𝑘)
𝜏 (𝑡) ≫ 𝑤(𝑘)

𝜔 (𝑡) ≥ 0, a fast algorithm such as greedy
algorithm or random algorithm may be the most appropriate. It can be
assumed an algorithm pool 𝐴 = ⟨𝐴1, 𝐴2,… , 𝐴𝑑⟩ has 𝑑 algorithms and
the optimization result and computational complexity of 𝑙th algorithm
for the subproblem at the time slot [𝑡, 𝑡 + 𝛥𝑡) of the subsystem 𝑆𝑘
are respectively 𝜔𝑘𝑙(𝑡) and 𝜏𝑘𝑙(𝑡). If an algorithm 𝐴𝑙 cannot solve the
subproblem of the subsystem 𝑆𝑘, we set 𝜔𝑘𝑙(𝑡) = +∞ and 𝜏𝑘𝑙(𝑡) = +∞.
Then, Eq. (13) can be transformed into Eq. (14) based on: selecting an
appropriate algorithm, where the constraints are as Eq. (15).

min𝛺(𝑡) = min
𝑞
∑

𝑑
∑

𝑦𝑘𝑙(𝑡)
(

𝑤(𝑘)
𝜔 (𝑡)𝜔𝑘𝑙(𝑡) +𝑤(𝑘)

𝜏 (𝑡)𝜏𝑘𝑙(𝑡)
)

(14)
6

𝑘=1 𝑙=1
Fig. 3. The scheduling framework to select the scheduling algorithms (SFSSA).

𝐬.𝐭.
⎧

⎪

⎨

⎪

⎩

𝑑
∑

𝑙=1
𝑦𝑘𝑙(𝑡) = 1, 𝑦𝑘𝑙(𝑡) ∈ {0, 1},

𝑘 ∈ {1, 2,… , 𝑞} , 𝑙 ∈ {1, 2,… , 𝑑}

(15)

On the premise of given weights and tasks of all subsystems, the cen-
ter of HCCMS needs to select a suitable algorithm for each subsystem to
minimize the total cost of the system. As the scheduling algorithms can
be deployed by multiple subsystems simultaneously, we only need to
construct one public algorithms pool. Then, the scheduling framework
to select the scheduling algorithms (SFSSA) from the algorithms pool to
schedule the resources of the subsystem is as Fig. 3, and its algorithm
is as Algorithm 1.

Algorithm 1: Scheduling framework to select the scheduling
algorithms (SFSSA)

Input : Tasks set 𝑇𝑘(𝑡) and their parameters, objective of
scheduling problems 𝜔(𝑘)(𝑡), weights of cost 𝑤(𝑘)

𝜔 and
𝑤(𝑘)

𝜏 , and algorithms pool 𝐴
Output: Selected algorithm 𝐴𝑦 also the solution

⟨

𝑦𝑘1(𝑡), 𝑦𝑘2(𝑡),… , 𝑦𝑘𝑞(𝑡)
⟩

of problem Eq (14)
1 Use algorithm selector to select an algorithm from algorithms

pool
2 Execute the selected algorithm to generate the solution of

scheduling problem
3 Schedule the resources based on the solution
4 Calculate the cost and update the strategies of selector

In Eq. (14), if solution 𝜔𝑘𝑙(𝑡) and complexity 𝜏𝑘𝑙(𝑡) are given before
scheduling, it only needs to select the algorithm with the minimum
cost 𝑤(𝑘)

𝜔 (𝑡)𝜔𝑘𝑙(𝑡) +𝑤(𝑘)
𝜏 (𝑡)𝜏𝑘𝑙(𝑡). However, before executing a scheduling

algorithm, 𝜔𝑘𝑙(𝑡) and 𝜏𝑘𝑙(𝑡) are usually unknown. Thus, the directly
required function of algorithm selector is to predict 𝜔𝑘𝑙(𝑡) and 𝜏𝑘𝑙(𝑡),
which nevertheless is difficult. Considering this issue, we convert the
prediction of 𝜔𝑘𝑙(𝑡) and 𝜏𝑘𝑙(𝑡) to the classification according to the input
of Algorithm 1 and utilize a classifier to act as the algorithm selector of
SFSSA. Now, we can see that two main elements of SFSSA are actually
classifier (i.e. algorithm selector) and algorithms pool.

4.2. Algorithms pool

Focusing on the five subproblems presented in Table 2, we con-
struct an algorithms pool with various algorithms including heuristic

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Table 3
Various types of algorithms in algorithms pool.

Category Algorithm Description Subproblems

𝜔(1) 𝜔(2) 𝜔(3) 𝜔(4) 𝜔(5)

Randomization Random Randomly allocating tasks to resources ! ! ! ! !

Heuristic

Greedy Scheduling with greed priory ! ! ! ! !

RR Round Robin algorithm ! ! ! # !

LPT Longest processing time algorithm ! # ! # #

SPT Shortest processing time algorithm ! ! ! # !

BFD Best fit decreasing algorithm ! # ! ! #

FFD First fit decreasing algorithm # # # ! #

FF First fit algorithm # # # ! #

Meta-heuristic
ACO Ant colony optimization algorithm ! ! ! ! !

PSO Particle Swarm optimization algorithm ! ! ! ! !

GA-Random Genetic algorithm with random initial state ! ! ! ! !

Single routelocal search

LPTS LPT-Search algorithm using LPT as search route ! ! ! # !

MLPTS MLPT-Search algorithm using MLPT as search route ! ! ! # !

BFDS BFD-Search algorithm using BFD as search route ! # ! ! #

NS Neighborhood-Search algorithm ! # ! ! #

BestBFDS BestBFD-Search using BestBFD as search route ! ! ! ! !

Multi routeslocal search

LPT-NS Using LPT and NS as search routes ! ! ! # !

MLPT-NS Using modified LPT and NS as search routes ! ! ! # !

BFD-NS Using BFD and NS as search routes ! # ! ! #

LPT-BFD-NS Using the LPT, BFD and NS as search routes ! # ! # #

Hybrid

GA-MinMin Genetic algorithm using MinMin initialized state ! ! ! ! !

ACO-GA Using the output of ACO as the input of GA ! ! ! ! !

PSO-GA Using the output of PSO as the input of GA ! ! ! ! !

MLPT-GA Using GA and MLPT as search routes ! ! ! ! !

Machine learning DRL Deep reinforcement learning ! ! ! ! !
algorithms, meta-heuristic algorithms, local search algorithms, hybrid
algorithms and deep reinforcement learning. The specific algorithm and
its corresponding subproblems are shown in Table 3. In Table 3, LPTS,
MLPTS, BFDS, BestBFDS, LPT-NS, MLPT-NS, BFD-NS and LPT-BFD-
NS are all heuristic-based local search algorithms utilizing heuristic
algorithms as search routes. The algorithm of the heuristic-based local
search algorithm is shown as Algorithm 2, which can significantly
reduce the computational complexity and enhance the optimality of
algorithms. Among Table 3, MLPTS and BestBFDS are modified algo-
rithms originating from LPT and BFD respectively to solve subproblems,
as well as their search routes are shown as Algorithm 3 and Algorithm
4.

Algorithm 2: Heuristic-based local search algorithm
Input : Subproblem 𝜔𝑘 and the set of tasks 𝑇𝑘
Output: Solution 𝐾𝑆𝑘 of the subproblem

1 Initially Allocate tasks to resources with confirmed or random
initialization policy and gain the general initial status of 𝐾𝑆𝑘

2 while Exists_Ner do
3 NoExists_Ner
4 Search neighborhood 𝑁𝑒𝑟(𝐾𝑆𝑘) of 𝐾𝑆𝑘 in the

heuristic-based local search algorithm
5 if 𝐾𝑆′

𝑘 ∈ 𝑁𝑒𝑟(𝐾𝑆𝑘) s.t. the solution of 𝐾𝑆′
𝑘 is optimal than

𝐾𝑆𝑘 then
6 Exists_Ner
7 Choose the optimal neighbor to update 𝐾𝑆′

𝑘 → 𝐾𝑆𝑘

8 Set 𝐾𝑆𝑘 as the solution of 𝜔𝑘

4.3. DLS: DL-based selector of scheduling algorithms

After giving algorithms pool, one of method to select appropriate
algorithms is Deep Learning-based selector (DLS). As deep learning
belongs to supervised learning, a labeled dataset is required to train
the DLS. To build a labeled dataset, we randomly generate these
7

five categories of problems through the simulation system; execute all
Algorithm 3: Modified LPT search route for heterogeneous
resources

Input : Tasks 𝑇𝑆 = 𝑇𝑆𝑘𝑖 ∪ 𝑇𝑆𝑘𝑙 of 𝑅𝑘𝑖 and 𝑅𝑘𝑙
Output: 𝑇𝑆𝑘𝑖 and 𝑇𝑆𝑘𝑙

1 𝑀𝑎𝑟𝑘𝑖 = 0, 𝑀𝑎𝑟𝑘𝑙 = 0, 𝑇𝑆𝑘𝑖 = ∅ and 𝑇𝑆𝑘𝑙 = ∅
2 while 𝑇𝑆 ≠ ∅ do
3 if 𝑀𝑎𝑟𝑘𝑖 ≤ 𝑀𝑎𝑟𝑘𝑙 then
4 𝑐 = 𝑖, 𝑏 = 𝑙

5 else
6 𝑐 = 𝑙, 𝑏 = 𝑖

7 Find tasks 𝑇𝑘𝛼𝑜 ∈ 𝑇𝑆 s.t. 𝐸𝑘𝛼𝑜 = min
𝑇𝑘𝑗∈𝑇𝑆

(

𝐸𝑇𝑘𝑗𝑐 − 𝐸𝑇𝑘𝑗𝑏
)

to

obtain a set of {𝑇𝑘𝛼1 , 𝑇𝑘𝛼2 ,… , 𝑇𝑘𝛼𝑠}
8 if 𝑠 ≥ 2 then
9 Choose 𝑇𝑘𝛼 s.t. 𝐸𝑇𝑘𝛼 = max

1≤𝑜≤𝑠
𝐸𝑇𝑘𝛼𝑜𝑐

10 𝑀𝑎𝑟𝑘𝑐+ = 𝐸𝑘𝛼𝑐 , 𝑇𝑆𝑘𝑐+ = {𝑇𝑘𝛼} and 𝑇𝑆− ={𝑇𝑘𝛼}

algorithms in the algorithms pool suitable for the problem; then record
the solutions and complexities of these scheduling algorithms; lastly
sort the cost of each algorithm from small to large, and set the label
value according to the sorting ranking.

For DLS, we establish several deep models with full connections as
Table 4. Tasking 100 000 training data and 10 000 testing data, the
accuracy and loss in training progress of these DLSs are plotted in Fig. 4.
From Fig. 4, the test accuracies of these three DLSs are about 95% after
training. Without losing generality, we choose the structure of DN3 as
the network structure of subsequent DRLSs and use well-trained DN3
as their pre-trained model.

4.4. DRLS: DRL-based selector of scheduling algorithms

DLS depends on the establishment of the labeled dataset marking
the current best algorithm. During the operation of the actual Cloud
computing system, it is unknown in advance which resource scheduling

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Algorithm 4: BestBFD search route
Input : Tasks 𝑇𝑆 = 𝑇𝑆𝑘𝑖 ∪ 𝑇𝑆𝑘𝑙 of 𝑅𝑘𝑖 and 𝑅𝑘𝑙
Output: 𝑇𝑆𝑘𝑖 and 𝑇𝑆𝑘𝑙

1 Set 𝛾 =
∑

𝑇𝑘𝑗∈𝑇𝑆𝑘𝑖∪𝑇𝑆𝑘𝑙
𝐸𝑇𝑘𝑗𝑖

2 , 𝑠 = 0 and 𝑀𝑎𝑟𝑘𝑖 = 0
2 for 𝑗 in tasks from largest to smallest do
3 if 𝑀𝑎𝑟𝑘𝑖 + 𝐸𝑇𝑘𝑗𝑖 ≤ 𝛾 then
4 Put task in 𝑅𝑘𝑖 and update 𝑀𝑎𝑟𝑘𝑖+ = 𝐸𝑇𝑘𝑗𝑖
5 else
6 𝑠 + +
7 Mark |

|

|

𝑀𝑎𝑟𝑘𝑖 + 𝐸𝑘𝑗𝑖 − 𝛾||
|

= 𝐿𝑠

8 Mark the scheme as 𝐾𝑆𝑠

9 Mark the scheme as 𝐾𝑆0 and Choose
argmin

𝐾𝑆

(

|

|

𝑀𝑎𝑟𝑘𝑖 − 𝛾|
|

, 𝐿1,… , 𝐿𝑠
)

as solution

Table 4
DNN structures of DLSs.

Sign Number of layers Structure (with full connections)

DN1 3 64 → 128 → 25
DN2 4 64 → 128 → 256 → 25
DN3 5 64 → 128 → 256 → 512 → 25

Fig. 4. The train process for DL-based selectors of Table 4.
8

algorithm is most suitable for the dynamic scenarios. Therefore, the
other one method able to act as algorithms selector is Deep Reinforce-
ment Learning-based selector (DRLS). Based on the decision between
exploitation and exploration, the advantages of reinforcement learning
are to support non-supervised learning or semi-supervised learning, as
well as to support lifelong learning. The utilization of DNN in RL is
conducive to adapting to the continuous input space of SFSSA. In this
paper, the base components of DRLS are defined as:

(1) Environment: The environment consisting of a simulated system
receives the actions from a agent (or agents) of DRLS, executes
the selected scheduling algorithms, then calculates the cost ac-
cording to the performance of selected algorithms and feedback
the reward of selected algorithms.

(2) State space: The state space refers to the current status of each
subsystem including the objective of subproblems, weights of
cost and tasks set, which are the input of DRLS.

(3) Action space: The action space corresponding to the algorithms
pool means selecting a specific algorithm to address the corre-
sponding subproblem.

(4) Policy: The policy is a decision maker and also the selection
policy for resource scheduling algorithms in this paper.

(5) Reward and Loss Function: Training DRLS requires some feed-
back from the environment. In this paper, we use two types of
feedback to train DRLS with random alternation to accelerate
the training process: one is the reward function equal to the
reciprocal of the cost i.e. 1∕𝑈𝑘(𝑡) and train DRLS with policy
gradient shown in Algorithm 5; the other is using the best selec-
tion among some given strategies and a target net as the label
to get the cross-entropy loss and train DRLS by gradient descent.
The principle of the combination of two types of feedback is two
different gradient routes can jump out of the local convergence
of a single route.

Algorithm 5: Update parameters by policy gradient
1 Initialize parameters of networks 𝜃 arbitrary or inherit them

from DL-based selector
2 for the experience of each episode ⟨𝑠(1), 𝑎(1), 𝑟(1)⟩, … ,

⟨𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡)⟩ 𝜋𝜃 do
3 for 𝑖 = 1 → 𝑡 do
4 𝜃 → 𝜃 + 𝛼∇𝜃 log𝜋𝜃

(

𝑠𝑖, 𝑎𝑖
)

𝑣𝑖

5 return 𝜃

For HCCMS, the policy gradient is as:

𝑔 =
𝑞
∑

𝑘=1

{

𝑞𝜋
(

𝑠𝑡𝑘, 𝑎𝑡𝑘
)

∇𝜃

𝑡
∑

𝑖=0
log𝜋

(

𝑎𝑖𝑘|𝑠𝑖𝑘; 𝜃
)

}

(16)

and the updated parameters are as:

𝜃 = 𝜃 + 𝛼𝑔 (17)

where 𝑞𝜋
(

𝑠𝑡𝑘, 𝑎𝑡𝑘
)

is the score for subsystem 𝑆𝑘 based on policy 𝜋𝜃 ,
𝜋
(

𝑎𝑖𝑘|𝑠𝑖𝑘; 𝜃
)

is the conditional probability of action 𝑎𝑖𝑘 under status of
𝑠𝑖𝑘 of subsystem 𝑆𝑘 based on current policy 𝜋𝜃 , and ∑𝑞

𝑘=1
∑𝑡

𝑖=0 means
using accumulate feedback of all subsystems to update parameters of
DRLS.

The other method to get the gradient of training DRLS is target
labels of action. Combining the preponderance of DDQN and DL, we
choose the best action of the following strategies as the target action.

(1) DLS: a well-trained DLS based on the labeled dataset;
(2) Delayed network of DRLS: the DRLS saved regularly during the

training process;
(3) Random selector: randomly selecting one algorithm;
(4) Fixed selector: fixedly selecting one or several algorithms;

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Fig. 5. A framework of DRL-based selector with various strategies.
Algorithm 6: Training of DRLS with multi strategies
1 Initialize parameters of DRL-based networks (randomly initialize or inherit parameters from DL-based selector)
2 for 𝑡𝑖𝑚𝑒 = 0 → 𝑡 do
3 Generate the objective of subproblem and the weights 𝑤(𝑘)

𝜔 (𝑡𝑖𝑚𝑒) and 𝑤(𝑘)
𝜏 (𝑡𝑖𝑚𝑒)

4 Generate parameters of tasks
5 Input and obtain selection results of DL-based selector, delayed network of trained selector, random selector, fixed selector and

DRL-based selector at 𝑡𝑖𝑚𝑒 respectively
6 Execute selected algorithms of above selectors and calculate costs based on 𝑤(𝑘)

𝜔 (𝑡𝑖𝑚𝑒) and 𝑤(𝑘)
𝜏 (𝑡𝑖𝑚𝑒)

7 Get the best selection result or ranking according to costs
8 Get the reward of the selection result according to the ranking or get the label according to the best selection result
9 Store reward or label into experience pool
10 if replay long-term experience then
11 Randomly selected long-term experience from experience pool
12 if period update then
13 Train the networks of DRL-based selector according to real-time experience and long-term experience
14 if use delayed network and reach the periodic save point then
15 Save current network as delayed network
(5) DRLS itself: One or several DRLS with their own results.

In order to verify and select the appropriate DRLS model, we train
multiple selectors based on different strategies. The strategies of DRLS
considered in this paper contain:

(1) Pre-trained model: using the model trained by DLS with labeled
dataset as the initial network of DRLS;

(2) Long term experience replay & periodical update (LTPU): the
environment stores the experience 𝑒(𝑡) = ⟨𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡)⟩ into
replay memory 𝐷(𝑡) = ⟨𝑒(1), 𝑒(2),… , 𝑒(𝑡)⟩, then randomly selects
the experiences in the experience memory at a specific time to
participate in the training of DRLS;

(3) Joint training: multi-agents of DRL participate in training and
generation of target value simultaneously.

With these components, a framework of DRL-based selector can be
shown as Fig. 5. The framework of Fig. 5 contains multiple components
of strategies and the algorithm of training DRLS is shown in Algorithm
6. However, a DRL-based model may only utilize some of them and
9

Table 5
DRL-based models combining various strategies trained in this paper.

Models Pre-trained LTPU Joint training

𝑀𝑜𝑑𝑒𝑙1 # # #

𝑀𝑜𝑑𝑒𝑙2 # ! #

𝑀𝑜𝑑𝑒𝑙3 ! # #

𝑀𝑜𝑑𝑒𝑙4 # ! !

𝑀𝑜𝑑𝑒𝑙5 ! ! !

different combinations of them have distinctness in performance. Lever-
aging various training strategies and their combinations, we train and
obtain five DRL-based models as Table 5.

5. Performance evaluation

5.1. Experiment setting

Currently, there is limited literature exploring the selector of the
resource scheduling algorithm in Cloud computing and some algorithm

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.

a
c
n
t
p
𝐸
o
s
b
s
t
c
i
D
a
a
a

t
p
f
p
T

e
c

Table 6
Compared baseline strategies.

Strategies Description

RS (Gudu et al., 2018) Random selector: randomly select an algorithm

GS (Gudu et al., 2018) Greedy selector: greedily select the algorithm with
solution quality or complexity

RRS Round-robin selector: select each algorithm in turn

SBS (Seiler et al., 2020;
Deshpande et al., 2021)

Single best selector: select the single algorithm
with best average performance

VBS (Seiler et al., 2020;
Deshpande et al., 2021)

Virtual Best Selector: perfectly select the algorithm
with the best previous statistical cost

SFS Single fast selector: select the fastest algorithm

selection strategies in other research directions contain Random Se-
lector (RS) (Gudu et al., 2018), Greedy Selector (GS) (Gudu et al.,
2018), Single Best Solver (SBS) (Seiler et al., 2020; Deshpande et al.,
2021), Virtual Best Solver (VBS) (Seiler et al., 2020; Nguyen et al.,
2020), Optimal Decision Tree (Boas et al., 2021) and Machine Learn-
ing (Muñoz and Kirley, 2021). Among these, RS, GS, VBS and SBS are
most commonly used as baselines of algorithms selection. Adding two
more selection strategies including Round-Robin Selector and SFS (se-
lect the fastest single algorithm), we construct the compared baselines
of this paper as Table 6.

With baselines in Table 6, DLSs in 4 and DRLSs in 5 to evaluate the
performances of DLS and DRLS, we carry out four sets of comparative
experiments respectively between:

(1) 𝐸𝑋0: Cloud system without subsystem and HCCMS;
(2) 𝐸𝑋1: Well-trained DLSs in Table 4 and baseline strategies in

Table 6;
(3) 𝐸𝑋2: Dynamically trained DRLS (𝑀𝑜𝑑𝑒𝑙1) and baseline strate-

gies;
(4) 𝐸𝑋3: Dynamically trained 𝑀𝑜𝑑𝑒𝑙1 to 𝑀𝑜𝑑𝑒𝑙5 in Table 5 (various

strategies of DRLSs).

These sets of experiments are all based on the variable-controlling
pproach. Among them, 𝐸𝑋0 fixes specific scheduling problems and
hanges the number of subsystems to observe the influence of the
umber of subsystems on the computational complexity and optimiza-
ion results of several scheduling algorithms. Fixing HCCMS structure,
arameters of tasks and server nodes, and parameters of cost model,
𝑋1, 𝐸𝑋2 and 𝐸𝑋3 are to change algorithm selection strategies so as to
bserve the impact of different algorithm selection strategies in various
cenarios. 𝐸𝑋1 is to evaluate the performance of DLSs compared to
aselines in the scenarios with relative static ranges of parameters and
imultaneously to test the adaptability of DLSs for the scenarios outside
he training dataset. 𝐸𝑋2 is to evaluate the performance of DRLS
ompared to baselines in the relative dynamic scenarios. And then, 𝐸𝑋3
s to evaluate the performance of different strategy combinations in
RLS. The combination of these four sets of experiments illustrates the
dvantages of HCCMS structure in resource scheduling, illustrates the
dvantages of DLS and DRLs in specific scenarios, and finally provides
reference for the choice of algorithm selectors.

Subsystem type often determines its user type, optimization objec-
ive and characteristic parameter. Additionally, different characteristic
arameters have different degrees of effects on the cost model. There-
ore, we set different parameter ranges according to the characteristic
arameters of subsystems for various objectives, which can be seen in
able 7.

Then, we simulate the HCCMS through a Python-based simulation
nvironment and launch the experiments on a desktop computer with
onfigurations as follows:

• CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.8 GHZ.
• SSD: KINGSTON SA400S37 240 GB.
• GPU: NVIDIA GeForce GTX 1060 6 GB.
10

• Program version: Python 3.6, Tensorflow.
5.2. Results and discussion

5.2.1. EX0: Single-layer system vs. Multi-layer system
Before experiments of verifying algorithms selectors, we carry out

a set of experiments to compare the traditional single-layer system and
multi-layer system (HCCMS). To facilitate comparison in this set of
experiments, we set the scheduling problem as minimizing makespan
for heterogeneous resources (i.e. min𝜔(2)). We use three algorithms
that Random algorithm, MLPTS and GA (with fixed 600 generations
and 100 populations) for verification of complexities and optimization
results. We experiment in five types of system organizations for the
same tasks set with 104 tasks waiting to be allocated. The parameters
of tasks are consistent with those of min𝜔(2) in Table 7 and not subject
to the constraints, which means each task is randomly generated by
the uniform distribution 𝐸𝑇𝑘𝑗𝑖 ∼ U(30, 120)min. Using the number of
subsystems as the main variable, these five types of system organiza-
tions are respectively no subsystem (corresponding to abscissa 1), 5
subsystems, 10 subsystems, 25 subsystems and 50 subsystems. In the
system organizations with subsystems, we divide the tasks into the
number of subsystems and each subsystem processes the same number
of tasks. Then, the results of two experiments respectively with 100
server nodes and 200 server nodes are plotted in Fig. 6.

Fig. 6(a) plots the complexities and makespan for the system with
100 server nodes and Fig. 6(b) for that with 200 server nodes. From
Fig. 6, the complexities of MLPTS and GA both decrease with the
increase of the number of subsystems. This validates the relationship
of Eq. (2) that dividing the Cloud system into multi-layer systems
with multiple subsystems can significantly reduce the complexities
of resource scheduling. The computational complexity of the random
algorithm does not vary with the change of system organizations, which
is because the random algorithm does not consider the characteristics
of the task itself, and its computational complexity is equal to the total
number of tasks. The makespan of MLPTS increases with the increase
of the number of subsystems, while that of GA decreases slightly and
that of random algorithm overall increases but with instability. The
increase of makespan using MLPTS algorithm is caused by HCCMS
structure where the solution of MLPTS algorithm is close to the global
optimal solution but the uneven assignment of tasks to each subsystem
leads to the increase of global optimal makespan. This reason can
also explain the overall increasing trend of the makespan of random
algorithm. Additionally about the decreasing trend of GA, the solution
of GA is not close to the global optimal solution and the solution search
space of multiple subsystems is far smaller than that of no subsystem,
so GA with fixed generations and populations can find a relatively
better solution in the scenario of multiple subsystems than that of no
subsystem. Specifically discussing 100 server nodes in Fig. 6(a), the
complexity of MLPTS in no subsystem is 575M and that in 5 subsystems
is 35.9M, as well as the makespan of MLPTS in no subsystem is 3076
and that in 5 subsystems is 3212, which indicates increasing subsystems
from 0 to 5 can reduce the complexity of MLPTS by 93.8% with increase
of makespan by 4.4%. This demonstrates that HCCMS provides a way
to significantly reduce the computational complexity in exchange for a
small loss of optimization.

On the whole, this set of experiments demonstrates the obvious
benefits of multiple subsystems to the resource management of the
Cloud computing system. The experiments in the following subsections
will also be carried out in the HCCMS structure.

5.2.2. EX1: Baseline strategies vs. DL-based selectors
In this set of experiments, we compare baseline strategies corre-

sponding to Table 6 with DLSs corresponding to Table 4 to evaluate
the optimality and adaptability of DLS in various scenarios.

We experiment in the simulated HCCMS with 𝑞 = 25 subsys-
tems, where numbers of each type of problems are all 5. The cost

(𝑘)
weights of subsystems are also in uniform distribution where 𝑤𝜔 (𝑡) ∼

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Table 7
Parameter setting in experiments.

Objective Subsystem type User type Characteristic parameter Parameter value Constraint

min𝜔(1)
𝑘 Homogeneous full Specific user groups Processing time 𝐸𝑇𝑘𝑗𝑖 U(30, 120) min 𝑅𝑇𝑘𝑖 ≤ 1 day

min𝜔(2)
𝑘 Heterogeneous full Specific user groups Processing time 𝐸𝑇𝑘𝑗𝑖 U(30, 120) min 𝑅𝑇𝑘𝑖 ≤ 1 day

min𝜔(3)
𝑘 Homogeneous partial Users requesting DS Disk storage 𝑣𝐷𝑆

𝑘𝑗𝑖 U(103 , 5 × 104) MB 𝐿𝐷𝑆
𝑘𝑖 ≤ 105 MB

min𝜔(4)
𝑘 Homogeneous partial Users requesting CPU CPU capacity 𝑣𝐶𝑃𝑈

𝑘𝑗𝑖 U(10, 100) MIPS 𝐿𝐶𝑃𝑈
𝑘𝑖 ≤ 103 MIPS

min𝜔(5)
𝑘 Heterogeneous partial Users requesting CPU CPU capacity 𝑣𝐶𝑃𝑈

𝑘𝑗𝑖 U(10, 100) MIPS 𝐿𝐶𝑃𝑈
𝑘𝑖 ≤ 103 MIPS
Fig. 6. The makespan and computational complexities of various system organizations for 10 000 tasks.
Fig. 7. The performance comparison between baseline strategies and DL-based selectors with 25 subsystems for 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).
U(0, 100)∕100 and 𝑤(𝑘)
𝜏 (𝑡) ∼ U(0, 100)∕100 where U(0, 100) means ran-

domly generating an integer between [0, 100] subject to uniform distri-
bution. As the management of HCCMS in this paper mainly concerns
the cost of the system, thus we only use log𝑈𝑘(𝑡) (logarithmic cost)
calculated by solution quality and complexity as Eq. (12) to evaluate
the performance of selectors instead of additionally present optimiza-
tion results in detail such as makespan and standard deviation for each
subproblem. Dividing time into multi partitions, the number of the
arriving tasks and the available resources in each time partition are
generated by the uniform distribution. Additionally, the three DLSs,
i.e. DN1, DN2 and DN3 with different structures of networks, have been
well trained in dataset for the distributions of 𝑛𝑘(𝑡) ∼ U(2, 20) and
𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

We carry out experiments in the scenarios of 𝑛𝑘(𝑡) ∼ U(2, 20) and
𝑚 (𝑡) ∼ U(𝑛 (𝑡), 100): we randomly generate a set of tasks through
11

𝑘 𝑘
these probability distributions, execute the selected algorithms using
different algorithm selection strategies to schedule of generated tasks
to meet the specified optimization objectives, record the execution time
and optimization results of their selected scheduling algorithms, and
then calculate the logarithmic cost according to the cost model as the
index of the performance evaluation. Then, we plot the experiment
results of logarithmic cost per time partition and total logarithmic cost
in Fig. 7.

Fig. 7(a) plots the cost of the system at each time partition re-
sulted from DLSs and the baseline strategies including random selector
(denoted as RS in figures), greedy selector (GS), RR selector (RRS),
single best selector (SBS), virtual best selector (VBS) and single fast
selector (SFS). Each selector processes the same task under the same
configuration of subsystems. In Fig. 7(a), the three DLSs that DN1,
DN and DN obtain less cost than baselines, where DN performs best
2 3 3

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Table 8
The comparison of total cost for 100 time partitions with 25 subsystems between DN3 and baselines in the scenarios of 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

Items DN3 RS RRS GS SBS VBS SFS

Total cost 15 001 22 114 21 924 20 084 22 188 17 902 17 823
Improvement (𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−DN3

) – 7112 6923 5083 7187 2901 2822

𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−DN3
∕DN3 (%) – 47.4 46.1 33.9 47.9 19.3 18.8
Fig. 8. The performance comparison between baseline strategies and DL-based selectors with 25 subsystems with varying ranges of server nodes and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).
among all the DLSs. The results in Fig. 7(a) show that DLS can be used
to reduce the cost of resource scheduling and increasing the number
of neural network layers can improve the performance of algorithm
selection. Fig. 7(b) plots the total cost for 100 time partitions where
the tasks and subsystems for each selector are also the same. In terms
of the total cost over a long time span, DLSs still outperform compared
baseline strategies.

First of all, Fig. 7 shows that it is difficult to adapt to all scenarios
with only one algorithm or some fixed algorithms, which proves once
again the significance of selecting appropriate scheduling algorithms
for different scenarios. Moreover, the performance of randomly or
greedily selecting an algorithm to solve the resource scheduling prob-
lem is unstable. Then, Table 8 lists the total costs of Fig. 7(b) to observe
the relative improvement of DN3 compared with the baseline algorithm.
Overall from Table 8, the total cost of DN3 is improved by 47.4%,
46.1%, 33.9%, 47.9%, 19.3% and 18.8% respectively compared to RS,
GS, RRS, SBS, VBS and SFS for 100 time partitions with 25 subsystems
in the scenarios of 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

In the experiments of Fig. 7 where DN1, DN2 and DN3 significantly
outperform baselines, the ranges of server nodes and tasks are that
corresponding to the training dataset, i.e. 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼
U(𝑛𝑘(𝑡), 100). This implies DLS can perform well in the parameters
they are repeatedly trained. However, models based on deep learning
may not be adaptable to scenarios other than their training dataset.
Considering this, we continue to evaluate the performance and validity
of DLS for untrained parameter ranges. We changed the ranges of
12
server nodes, retain the ranges of tasks as 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100) and
carried out several groups of experiments to observe the logarithmic
cost of the DN1, DN2 and DN3 which are trained in 𝑛𝑘(𝑡) ∼ U(2, 20) and
𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

The results are plotted in Fig. 8, where Figs. 8(a), 8(b) and 8(c) plot
the logarithmic cost per time partition for 5 time partitions respectively
for the ranges 𝑛𝑘(𝑡) ∼ U(10, 30), 𝑛𝑘(𝑡) ∼ U(30, 50) and 𝑛𝑘(𝑡) ∼ U(50, 70).
Then, Fig. 8(d) plots the total cost for 100 time partitions for the
ranges from 𝑛𝑘(𝑡) ∼ U(10, 30) to 𝑛𝑘(𝑡) ∼ U(50, 70). In Fig. 8(a) where
𝑛𝑘(𝑡) ∼ U(10, 30) slightly deviates from the range of training 𝑛𝑘(𝑡) ∼
U(2, 20), DN1, DN2 and DN3 still outperform baselines. However, DN1,
DN2 and DN3 differ greater in performance than that of Fig. 7. DN3
has significantly lower cost than DN2 and DN1, as well as DN1 has
close cost with VBS. In Fig. 8(b) where 𝑛𝑘(𝑡) ∼ U(30, 50), the differences
of cost between DN1, DN2 and DN3 further increase, where DN3 still
outperform baselines but DN1 and DN2 achieve worse cost than other
baselines except SBS. When in Fig. 8(c), performances of the three
DLSs continue to decline so that VBS exceeds DN3 although DN3 still
performs better than other baselines. Fig. 8(d) provides an overall trend
of performance changing with the ranges of server nodes. In Fig. 8(d),
the performance degradation speeds of DN2 and DN1 are faster than
that of DN3. When the range of server nodes reaches U(20, 40), the costs
of DN1 and DN2 become larger than that of VBS and SFS in baselines,
as well as until that range reaches or exceeds U(40, 60), the costs of DN3
become greater than that of VBS and still less than SFS.

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Fig. 9. The performance comparison between the DRLS (𝑀𝑜𝑑𝑒𝑙1 being trained) and baseline strategies with 200 subsystems for 100 time partitions in the scenarios of 𝑛𝑘(𝑡) ∼ U(2, 20)
and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).
Table 9
The comparison of total cost for 100 time partitions with 200 subsystems between 𝑀𝑜𝑑𝑒𝑙1 and baselines in the scenarios 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

Items 𝑀𝑜𝑑𝑒𝑙1 RS RRS GS SBS VBS SFS

Total cost 124 426 175 572 174 959 138 977 177 077 138 744 140 024
Improvement (𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑀𝑜𝑑𝑒𝑙1) – 51 146 50 533 14 551 52 651 14 318 15 598

𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑀𝑜𝑑𝑒𝑙1∕𝑀𝑜𝑑𝑒𝑙1 (%) – 41.1 40.6 11.7 42.3 11.5 12.5
Analyzing the overall results of experiments in Fig. 8 can gain that
the performance of DLS, although with certain adaptability, will decline
with the ranges of server nodes far away from that trained by DLS. This
also means that DLS can maintain performance in static scenes, but
cannot guarantee adaptability in dynamic scenes. Comparing DN1, DN2
and DN3 in Figs. 8 and 7, we can see DN3 is least affected by the range
of server nodes in terms of performance followed by DN2. In addition
to the differences in network structure, these three DLSs have the same
training strategy and dataset, as well as have approximate accuracies
when achieving convergence. Therefore, this reveals a possible reason
that a neural network-based DLS with more neurons or connection
layers may have stronger adaptability in algorithm selection for varying
ranges of parameters, consistent with that the better performing DN3
has more layers and neurons than DN2 and DN1.

5.2.3. EX2: Baseline strategies vs. Model1
The premise of using DLS is enough historical data in advance

to support training. From the above results of Figs. 7 and 8, after
repeatedly training within the specified parameter range, DLS did learn
the optimal selection within this parameter range, but its performance
is still limited for the parameter range outside the training. Therefore,
although DLS has better performance than the comparison strategies in
static selection, we still need to explore additional selectors to tackle
the dynamic selection of scheduling algorithms, which indicates the
necessity of DRLS.

In this set of experiments, we compare baseline strategies corre-
sponding to Table 6 with a DRLS (𝑀𝑜𝑑𝑒𝑙1) to evaluate the optimality
and adaptability of DRLS. We experiment in a simulated HCCMS with
𝑞 = 200 subsystems, where numbers of each type of problems are
all 40. The numbers of the arriving tasks and the available resources
in each time partition are generated by uniform distribution or other
distribution (in some experiments). The cost weights of subsystems
are also in uniform distribution where 𝑤(𝑘)

𝜔 (𝑡) ∼ U(0, 100)∕100 and
𝑤(𝑘)

𝜏 (𝑡) ∼ U(0, 100)∕100. The above parameter settings are the same as
those of the comparative experiments 𝐸𝑋1. The difference is that in the
process of training DRLS, it is unknown which scheduling algorithm is
the best in advance. DRLS finds a better selection through exploration
and exploitation. Additionally, we choose 𝑀𝑜𝑑𝑒𝑙 (without additional
13

1

training strategies) as the instance of DRLS to observe the inherent
advantages of DRL-based algorithm selector.

Since DRLS does not have the ability to optimize decision-making
at the beginning before training which needs enough training to par-
ticipate in decision-making, we set a long time period with 100 time
partitions to observe the logarithmic cost and carry out experiments
in the scenarios of 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100). Then,
the results of the logarithmic costs corresponding to the comparison
baseline strategies and DRLS (𝑀𝑜𝑑𝑒𝑙1) are plotted in Fig. 9.

Fig. 9(a) plots the cost of the system at each time partition. As
shown in Fig. 9(a), before the 10-th time partition, the costs of 𝑀𝑜𝑑𝑒𝑙1
are not obviously smaller than the best baseline, which is because
𝑀𝑜𝑑𝑒𝑙1 selector has not been well trained. After the 10-th time par-
tition, 𝑀𝑜𝑑𝑒𝑙1 can maintain better than comparison strategies with
adequate training. This is because DRLS can learn the best selection
strategy in the current scenario after enough time partitions. When
time goes on, DRLs with lifelong learning will continue to evolve itself.
Fig. 9(b) plots the total cost for 100 time partitions of the training
process. In Fig. 9(b), 𝑀𝑜𝑑𝑒𝑙1 achieves the minimum total cost much
less than baselines, although the cost of 𝑀𝑜𝑑𝑒𝑙1 is large in the initial
few time partitions.

This set of experiments has validated the feasibility of DRLS for the
scenarios without labeled data. Additionally, using DRLS can reduce
the cost evidently for dynamic resource scheduling. Table 9 lists the
total costs of Fig. 9(b) to observe the relative improvement of 𝑀𝑜𝑑𝑒𝑙1
compared with the baseline algorithm. Overall from Table 9, the total
cost of 𝑀𝑜𝑑𝑒𝑙1 is improved by 41.1%, 40.6%, 11.7%, 42.3%, 11.5% and
12.5% respectively compared to RS, GS, RRS, SBS, VBS and SFS for 100
time partitions with 200 subsystems in the scenarios of 𝑛𝑘(𝑡) ∼ U(2, 20)
and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

Similar to the experiments of DLS in Section 5.2.2, we carry out
multi experiments to test the validity of DRLS in various ranges of
parameters. We respectively change the distributions of server nodes
and tasks, then plot the cost per time partition of 𝑀𝑜𝑑𝑒𝑙1 and baselines
in the scenarios with 200 subsystems for 10 time partitions in Fig. 10.
Comparing to Fig. 9, experiments in Fig. 10(a) change the range of
server nodes to 𝑛𝑘(𝑡) ∼ U(2, 40); that in Fig. 10(b) change the range
of tasks to 𝑚 (𝑡) ∼ U(𝑛 (𝑡), 200); that in Fig. 10(c) select 𝑛 (𝑡) ∼ U(2, 20),
𝑘 𝑘 𝑘

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Fig. 10. The cost per time partition of 𝑀𝑜𝑑𝑒𝑙1 being trained and baseline strategies with 200 subsystems for 10 time partitions and various distributions of numbers of server
nodes and tasks.
𝑛𝑘(𝑡) ∼ U(20, 40), 𝑛𝑘(𝑡) ∼ U(30, 70), 𝑛𝑘(𝑡) ∼ U(50, 90) with equal
probability; as well as that in Fig. 10(d) change the distribution of
server nodes and tasks to triangular distributions i.e. 𝑛𝑘(𝑡) ∼ Tr(2, 20)
and 𝑚𝑘(𝑡) ∼ Tr(𝑛𝑘(𝑡), 100) where the probability of Tr(𝑎, 𝑏) is

𝑃Tr(𝑎,𝑏)(𝑥) =
4min (|𝑥 − 𝑎| , |𝑥 − 𝑏|)

(𝑏 − 𝑎)2 − ((𝑏 − 𝑎) mod 2)
(18)

where 𝑎 ≤ 𝑥 ≤ 𝑏 ∈ N+.
As shown in Fig. 10, DRLS can reach better performance than the

baseline within 5 time partitions in various distributions of server
nodes and tasks. Compared to that in Figs. 10(a) and 10(b), DRLS
(i.e. 𝑀𝑜𝑑𝑒𝑙1) in Figs. 10(c) and 10(d) has greater advantages than
baselines, which indicates that DRLS has stronger adaptability to more
complex dynamic scenes than baselines. Differentiating from DLS, DRLS
retains better performance than baselines with the change of parame-
ters. This is because DRLS is continuously trained by the experience
in each time partition, which makes DRLS adaptable to the dynamic
varying scenarios. In addition, DRLS based on deep reinforcement
learning not only learns the decision of algorithm selection, but also
learns the properties of parameter distribution of tasks and server nodes
to a certain extent, which is also helpful to improve the performance
of DRLS in dynamic scenes.

5.2.4. EX3: Comparison between Model1 to Model5
Previous experiments have verified the availability and superiority

of DRLS. In this set of experiments, we further consider the strategies
of DRLS including pre-trained model of DLS, LTPU and joint training
corresponding to Table 5.
14
We carry out experiments in the simulated HCCMS with 𝑞 = 200
subsystems. The cost weights of subsystems are also in uniform distri-
bution where 𝑤(𝑘)

𝜔 (𝑡) ∼ U(0, 100)∕100 and 𝑤(𝑘)
𝜏 (𝑡) ∼ U(0, 100)∕100. The

numbers of the arriving tasks and the available resources in each time
partition are generated by the uniform distribution. In order to test the
adaptability of DRLS for dynamic algorithms selection, we experiment
with two groups of parameters generation:

• 𝑛𝑘(𝑡) ∼ U(2, 50) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 200).
• 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

The parameters generation of the first group is the same as the training
dataset of DLS such as DN3. Therefore, we also add the cost of DN3 to
participate in the comparison.

The pre-trained model being used in this set of experiments is the
DN3 in Section 5.2.2 which is trained under the parameters 𝑛𝑘(𝑡) ∼
U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100). We observe the training process of
𝑀𝑜𝑑𝑒𝑙1 to 𝑀𝑜𝑑𝑒𝑙5 in 40 time partitions, and plot the results of the
costs for each time partition in Fig. 11. Fig. 11(a) plots the results for
the parameters generation of 𝑛𝑘(𝑡) ∼ U(2, 50) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 200),
and Fig. 11(b) for that of 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100).

From Fig. 11(a), 𝑀𝑜𝑑𝑒𝑙5, simultaneously leveraging pre-trained
model, LTPU and joint training, has the fastest convergence speed and
the lowest cost. Ranking from lowest to highest logarithmic cost gains
𝑀𝑜𝑑𝑒𝑙5 <

(

𝑀𝑜𝑑𝑒𝑙3,𝑀𝑜𝑑𝑒𝑙2
)

< 𝑀𝑜𝑑𝑒𝑙4 < 𝑀𝑜𝑑𝑒𝑙1 < DN3. 𝑀𝑜𝑑𝑒𝑙2 <
𝑀𝑜𝑑𝑒𝑙4 < 𝑀𝑜𝑑𝑒𝑙1 illustrates joint training can improve the optimiza-
tion of decision-making with a small range, but not better than strategy
of LTPU. 𝑀𝑜𝑑𝑒𝑙3, combining LTPU and pre-trained model, is better
than 𝑀𝑜𝑑𝑒𝑙 in the first 15 time partitions, but their results are very
2

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Fig. 11. The performance comparison in train process of the 𝑀𝑜𝑑𝑒𝑙1 to 𝑀𝑜𝑑𝑒𝑙5 with 200 subsystems for 40 time partitions.
close after 15 partitions. This demonstrates usage of pre-trained model
can improve convergence speed however cannot evidently improve
optimization of decision-making for the model after sufficient training.
Additionally, the DN3 without re-training has the higher costs than all
of DRLS. This demonstrates DLS cannot adapt to dynamic selection of
algorithms once the scenario is different from the trained dataset.

However in Fig. 11(b), DN3 is close to 𝑀𝑜𝑑𝑒𝑙5 and outperforms
than all of DRLS. The reason is that: during training DN3 under the
parameters of 𝑛𝑘(𝑡) ∼ U(2, 20) and 𝑚𝑘(𝑡) ∼ U(𝑛𝑘(𝑡), 100), the trained
labels of dataset correspond to the best algorithms, i.e., DN3 has learned
the best selection; however in training of DRLS, the best algorithms
are unknown and DRLS only learned a relatively high score selection
through the exploration for better selections. Thus, the choose of the
algorithms selectors depends on the scenarios.

In general, each strategy of pre-trained model, LTPU and joint train-
ing can improve the training or decision-making performance of the
DRLS. And DRLS is more appropriate to resolve the dynamic selection
in the real-time scheduling process when the parameters are unknown
in advance. The 𝑀𝑜𝑑𝑒𝑙5 using all strategies simultaneously can achieve
the best performance in the process of algorithm selection.

5.3. Overall summary

Through the multiple sets of experiments from different sights in
this section, we can observe both DLS and DRLS outperform than
baseline strategies in various resource scheduling scenarios of HCCMS.
Among these experiments:

• 𝐸𝑋0 demonstrates the multi-layer system structure of HCCMS
can greatly reduce the computational complexity of resource
scheduling with little loss of optimization.

• 𝐸𝑋1 demonstrates DLS can reduce the whole cost significantly
compared with baselines in the scenarios with stable parameter
ranges where DN3 reduces the cost by 47.4%, 46.1%, 33.9%,
47.9%, 19.3% and 18.8%, respectively compared to RS, GS, RRS,
SBS, VBS and SFS. Additionally, 𝐸𝑋1 also demonstrates the per-
formance of DLS will decline with the ranges of server nodes far
away from that trained by DLS, as well as DLS with more layers
or neurons may have stronger adaptability in algorithm selection
for varying ranges of parameters.

• 𝐸𝑋2 demonstrates DRLS can obtain far better cost than baselines
in the dynamic scheduling scenarios without labeled data where
𝑀𝑜𝑑𝑒𝑙1 reduces the cost by 41.1%, 40.6%, 11.7%, 42.3%, 11.5%
and 12.5% respectively compared to RS, GS, RRS, SBS, VBS and
SFS. Additionally, 𝐸𝑋2 also demonstrates DRLS retains better
performance than baselines with the change of parameters.
15
• Finally, 𝐸𝑋3 demonstrates the effect of different strategies of
DRLS where the simultaneous usage of DL-based pre-trained
model, LTPU and joint training performs the best among all the
DRLSs, as well as validates DRLS have stronger adaptability to
dynamic scenes than DLS.

6. Conclusion and future works

In this paper, we formulate the joint scheduling problem of HCCMS
combining five types of subproblems in four types of subsystems, which
always cannot be addressed by a single scheduling algorithm. Focusing
on this issue, we propose the scheduling framework to select the
scheduling algorithms (SFSSA) to meet the resource management of
complex HCCMS. To concretize SFSSA, we proposed DLS and DRLS,
which can learn algorithm selection decisions in various scenarios to
tackle the challenging joint scheduling problem of HCCMS. To improve
the optimality and convergence of DRLS, we further apply various
strategies including pre-trained model, long experience reply and joint
training. Then, we carry out four sets of experiments to evaluate the
performance of DLS and DRLS in the joint scheduling problem of
reducing the cost of HCCMS.

From extensive experiments in multiple sights, we can conclude
not only HCCMS structure can significantly improve the speed of
resource management, but also our proposed SFSSA, with DLS and
DRLS as instances both outperforming baselines, can address the joint
scheduling problem in HCCMS. Concretely, DLS reduced the cost by
47.4%, 46.1%, 33.9%, 47.9%, 19.3% and 18.8% in the scenarios with
stable parameter ranges; DRLS reduced the cost by 41.1%, 40.6%,
11.7%, 42.3%, 11.5% and 12.5% in the dynamic scenarios compared
to RS, GS, RRS, SBS, VBS and SFS respectively. We can also conclude
that DRLS has stronger adaptability to dynamic resource scheduling
scenarios than DLS. Additionally, the strategies, i.e. pre-trained model,
long-term experience replay & period update and joint training, are all
conducive to improving the performance of DRLS.

The obvious significance of DLS and DRLS is that they not only
demonstrate the great potential of DL and DRL as algorithms selectors,
but also prove that resource scheduling algorithms can also be regarded
as the resources to be scheduled. Compared with directly using DL and
DRL as scheduling algorithms, DLS and DRLS (using DL and DRL
as algorithm selectors) have much lower computational complexity,
which also provides more possibilities for their application in realistic
complex systems. It also puts forward a novel considerable solution to
the challenge that no scheduling algorithm is suitable for all scenarios,
where SFSSA with DLS and DRLS implies that since there is no such
algorithm suitable for all scenarios, we will choose the most appropriate
algorithm for different scenarios. In SFSSA, all scheduling algorithms are

regarded as useful ‘‘treasures’’, because we could always find a certain

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.

d
i
W

scenario for each algorithm, making this algorithm superior to all other
algorithms in some aspects. On other counts, this paper also illustrates
the potential of hierarchical management of Cloud computing systems
using multiple subsystems.

In the future work, we plan to explore more structures and strategies
of DLS and DRLS to adapt to more complex resource scheduling scenar-
ios, as well as we plan to continue to explore the dynamic configuration
and access control policy of resources and server nodes of HCCMS
where we consider that the same server node can actually belong to
different subsystems at different time.

CRediT authorship contribution statement

Guangyao Zhou: Conceptualization, Methodology, Software, Vali-
ation, Formal analysis, Investigation, Writing – original draft, Writ-
ng – review & editing, Visualization, Funding acquisition. Ruiming
en: Investigation, Writing – review & editing. Wenhong Tian: Re-

sources, Writing – review & editing, Supervision, Project adminis-
tration, Funding acquisition. Rajkumar Buyya: Writing – review &
editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was partially supported by National Key Research and
Development Program of China [grant number 2018AAA0103203];
Project of Sichuan Provincial Department of science and technology
[grant number 2021YFG0325]; and National Natural Science Founda-
tion of China [grant number 61672136, 61828202].

References

Abhikriti, N., Sunita, D., 2017. Enhanced task scheduling algorithm using multi-
objective function for cloud computing framework. In: International Conference
on Next Generation Computing Technologies. pp. 110–121.

Adhikari, M., Amgoth, T., Srirama, S.N., 2019. A survey on scheduling strategies for
workflows in cloud environment and emerging trends. ACM Comput. Surv. 52 (4),
68:1–68:36. http://dx.doi.org/10.1145/3325097.

Al-Mahruqi, A.A.H., Morison, G., Stewart, B.G., Vallavaraj, A., 2021. Hybrid
heuristic algorithm for better energy optimization and resource utilization in
cloud computing. Wirel. Pers. Commun. 118 (1), 43–73. http://dx.doi.org/10.
1016/j.future.2019.08.012, URL: https://www.sciencedirect.com/science/article/
pii/S0167739X19306983.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M., 2010. A view of cloud computing.
Commun. ACM 53 (4), 50–58. http://dx.doi.org/10.1145/1721654.1721672.

Boas, M.G.V., Santos, H.G., de Campos Merschmann, L.H., Berghe, G.V., 2021. Optimal
decision trees for the algorithm selection problem: integer programming based
approaches. Int. Trans. Oper. Res. 28 (5), 2759–2781. http://dx.doi.org/10.1111/
itor.12724.

Croce, F.D., Scatamacchia, R., 2020. The longest processing time rule for identical
parallel machines revisited. J. Sched. 23 (2), 163–176. http://dx.doi.org/10.1007/
s10951-018-0597-6.

Czako, Z., Sebestyen, G., Hangan, A., 2021. AutomaticaI - A hybrid approach for
automatic artificial intelligence algorithm selection and hyperparameter tuning.
Expert Syst. Appl. 182, 115225. http://dx.doi.org/10.1016/j.eswa.2021.115225,
URL: https://www.sciencedirect.com/science/article/pii/S0957417421006576.

Deshpande, N., Sharma, N., Yu, Q., Krutz, D.E., 2021. R-CASS: using algorithm selection
for self-adaptive service oriented systems. In: 2021 IEEE International Conference
on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021. IEEE, pp.
61–72. http://dx.doi.org/10.1109/ICWS53863.2021.00021.
16
Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J., 2020. Q-learning based dynamic
task scheduling for energy-efficient cloud computing. Future Gener. Comput. Syst.
108, 361–371. http://dx.doi.org/10.1016/j.future.2020.02.018, URL: https://www.
sciencedirect.com/science/article/pii/S0167739X19313858.

Dong, T., Xue, F., Xiao, C., Li, J., 2020. Task scheduling based on deep reinforcement
learning in a cloud manufacturing environment. Concurr. Comput. Pract. Exp. 32
(11), http://dx.doi.org/10.1002/cpe.5654, URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.5654.

Duc, T.L., Leiva, R.A.G., Casari, P., Östberg, P., 2019. Machine learning methods for
reliable resource provisioning in edge-cloud computing: A survey. ACM Comput.
Surv. 52 (5), 94:1–94:39. http://dx.doi.org/10.1145/3341145.

Fiandrino, C., Kliazovich, D., Bouvry, P., Zomaya, A.Y., 2017. Performance and energy
efficiency metrics for communication systems of cloud computing data centers.
IEEE Trans. Cloud Comput. 5 (4), 738–750. http://dx.doi.org/10.1109/TCC.2015.
2424892.

Ghalami, L., Grosu, D., 2019. Scheduling parallel identical machines to minimize
makespan: A parallel approximation algorithm. J. Parallel Distrib. Comput.
133, 221–231. http://dx.doi.org/10.1016/j.jpdc.2018.05.008, URL: https://www.
sciencedirect.com/science/article/pii/S0743731518303691.

Guan, Z., Melodia, T., 2017. The value of cooperation: Minimizing user costs in
multi-broker mobile cloud computing networks. IEEE Trans. Cloud Comput. 5 (4),
780–791. http://dx.doi.org/10.1109/TCC.2015.2440257.

Gudu, D., Hardt, M., Streit, A., 2018. Combinatorial auction algorithm selection for
cloud resource allocation using machine learning. In: Euro-Par 2018: Parallel
Processing - 24th International Conference on Parallel and Distributed Computing,
Turin, Italy, August 27-31, 2018, Proceedings. In: Lecture Notes in Computer
Science, vol. 11014, Springer, pp. 378–391. http://dx.doi.org/10.1007/978-3-319-
96983-1_27.

Guo, W., Tian, W., Ye, Y., Xu, L., Wu, K., 2021. Cloud resource scheduling with
deep reinforcement learning and imitation learning. IEEE Internet Things J. 8 (5),
3576–3586. http://dx.doi.org/10.1109/JIOT.2020.3025015.

Hong, Z., Chen, W., Huang, H., Guo, S., Zheng, Z., 2019. Multi-hop cooperative
computation offloading for industrial IoT-edge-cloud computing environments. IEEE
Trans. Parallel Distrib. Syst. 30 (12), 2759–2774. http://dx.doi.org/10.1109/TPDS.
2019.2926979.

Hu, H., Li, Z., Hu, H., Chen, J., Ge, J., Li, C., Chang, V.I., 2018. Multi-objective
scheduling for scientific workflow in multicloud environment. J. Netw. Comput.
Appl. 114, 108–122. http://dx.doi.org/10.1016/j.jnca.2018.03.028, URL: https://
www.sciencedirect.com/science/article/pii/S1084804518301152.

Huerta, I.I., Neira, D.A., Ortega, D.A., Varas, V., Godoy, J., Achá, R.J.A., 2022.
Improving the state-of-the-art in the traveling salesman problem: An any-
time automatic algorithm selection. Expert Syst. Appl. 187, 115948. http:
//dx.doi.org/10.1016/j.eswa.2021.115948, URL: https://www.sciencedirect.com/
science/article/pii/S0957417421013014.

Iranmanesh, A., Naji, H.R., 2021. DCHG-TS: a deadline-constrained and cost-effective
hybrid genetic algorithm for scientific workflow scheduling in cloud computing.
Clust. Comput. 24 (2), 667–681. http://dx.doi.org/10.1007/s10586-020-03145-8.

Ismayilov, G., Topcuoglu, H.R., 2020. Neural network based multi-objective evolution-
ary algorithm for dynamic workflow scheduling in cloud computing. Future Gener.
Comput. Syst. 102, 307–322. http://dx.doi.org/10.1016/j.future.2019.08.012, URL:
https://www.sciencedirect.com/science/article/pii/S0167739X19306983.

Kardani-Moghaddam, S., Buyya, R., Ramamohanarao, K., 2021. ADRL: a hybrid
anomaly-aware deep reinforcement learning-based resource scaling in clouds. IEEE
Trans. Parallel Distrib. Syst. 32 (3), 514–526. http://dx.doi.org/10.1109/TPDS.
2020.3025914.

Karthiban, K., Raj, J.S., 2020. An efficient green computing fair resource allocation
in cloud computing using modified deep reinforcement learning algorithm. Soft
Comput. 24 (19), 14933–14942. http://dx.doi.org/10.1007/s00500-020-04846-3.

Kumar, M., Sharma, S.C., Goel, A., Singh, S.P., 2019. A comprehensive survey for
scheduling techniques in cloud computing. J. Netw. Comput. Appl. 143, 1–
33. http://dx.doi.org/10.1016/j.jnca.2019.06.006, URL: https://www.sciencedirect.
com/science/article/pii/S1084804519302036.

Laili, Y., Lin, S., Tang, D., 2020. Multi-phase integrated scheduling of hybrid tasks in
cloud manufacturing environment. Robot. Comput. Integr. Manuf. 61, 101850. http:
//dx.doi.org/10.1016/j.rcim.2019.101850, URL: https://www.sciencedirect.com/
science/article/pii/S0736584519301188.

Li, L., 2009. An optimistic differentiated service job scheduling system for cloud
computing service users and providers. In: 2009 Third International Conference
on Multimedia and Ubiquitous Engineering, MUE 2009, Qingdao, China, June 4-6,
2009. IEEE Computer Society, pp. 295–299. http://dx.doi.org/10.1109/MUE.2009.
58.

Li, J., 2020. Resource optimization scheduling and allocation for hierarchical distributed
cloud service system in smart city. Future Gener. Comput. Syst. 107, 247–256. http:
//dx.doi.org/10.1016/j.future.2019.12.040, URL: https://www.sciencedirect.com/
science/article/pii/S0167739X1932028X.

Li, M., Yu, F.R., Si, P., Wu, W., Zhang, Y., 2020. Resource optimization for delay-
tolerant data in blockchain-enabled IoT with edge computing: A deep reinforcement
learning approach. IEEE Internet Things J. 7 (10), 9399–9412. http://dx.doi.org/
10.1109/JIOT.2020.3007869.

http://refhub.elsevier.com/S1084-8045(22)00161-8/sb1
http://refhub.elsevier.com/S1084-8045(22)00161-8/sb1
http://refhub.elsevier.com/S1084-8045(22)00161-8/sb1
http://refhub.elsevier.com/S1084-8045(22)00161-8/sb1
http://refhub.elsevier.com/S1084-8045(22)00161-8/sb1
http://dx.doi.org/10.1145/3325097
http://dx.doi.org/10.1016/j.future.2019.08.012
http://dx.doi.org/10.1016/j.future.2019.08.012
http://dx.doi.org/10.1016/j.future.2019.08.012
https://www.sciencedirect.com/science/article/pii/S0167739X19306983
https://www.sciencedirect.com/science/article/pii/S0167739X19306983
https://www.sciencedirect.com/science/article/pii/S0167739X19306983
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1111/itor.12724
http://dx.doi.org/10.1111/itor.12724
http://dx.doi.org/10.1111/itor.12724
http://dx.doi.org/10.1007/s10951-018-0597-6
http://dx.doi.org/10.1007/s10951-018-0597-6
http://dx.doi.org/10.1007/s10951-018-0597-6
http://dx.doi.org/10.1016/j.eswa.2021.115225
https://www.sciencedirect.com/science/article/pii/S0957417421006576
http://dx.doi.org/10.1109/ICWS53863.2021.00021
http://dx.doi.org/10.1016/j.future.2020.02.018
https://www.sciencedirect.com/science/article/pii/S0167739X19313858
https://www.sciencedirect.com/science/article/pii/S0167739X19313858
https://www.sciencedirect.com/science/article/pii/S0167739X19313858
http://dx.doi.org/10.1002/cpe.5654
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5654
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5654
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5654
http://dx.doi.org/10.1145/3341145
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1016/j.jpdc.2018.05.008
https://www.sciencedirect.com/science/article/pii/S0743731518303691
https://www.sciencedirect.com/science/article/pii/S0743731518303691
https://www.sciencedirect.com/science/article/pii/S0743731518303691
http://dx.doi.org/10.1109/TCC.2015.2440257
http://dx.doi.org/10.1007/978-3-319-96983-1_27
http://dx.doi.org/10.1007/978-3-319-96983-1_27
http://dx.doi.org/10.1007/978-3-319-96983-1_27
http://dx.doi.org/10.1109/JIOT.2020.3025015
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1016/j.jnca.2018.03.028
https://www.sciencedirect.com/science/article/pii/S1084804518301152
https://www.sciencedirect.com/science/article/pii/S1084804518301152
https://www.sciencedirect.com/science/article/pii/S1084804518301152
http://dx.doi.org/10.1016/j.eswa.2021.115948
http://dx.doi.org/10.1016/j.eswa.2021.115948
http://dx.doi.org/10.1016/j.eswa.2021.115948
https://www.sciencedirect.com/science/article/pii/S0957417421013014
https://www.sciencedirect.com/science/article/pii/S0957417421013014
https://www.sciencedirect.com/science/article/pii/S0957417421013014
http://dx.doi.org/10.1007/s10586-020-03145-8
http://dx.doi.org/10.1016/j.future.2019.08.012
https://www.sciencedirect.com/science/article/pii/S0167739X19306983
http://dx.doi.org/10.1109/TPDS.2020.3025914
http://dx.doi.org/10.1109/TPDS.2020.3025914
http://dx.doi.org/10.1109/TPDS.2020.3025914
http://dx.doi.org/10.1007/s00500-020-04846-3
http://dx.doi.org/10.1016/j.jnca.2019.06.006
https://www.sciencedirect.com/science/article/pii/S1084804519302036
https://www.sciencedirect.com/science/article/pii/S1084804519302036
https://www.sciencedirect.com/science/article/pii/S1084804519302036
http://dx.doi.org/10.1016/j.rcim.2019.101850
http://dx.doi.org/10.1016/j.rcim.2019.101850
http://dx.doi.org/10.1016/j.rcim.2019.101850
https://www.sciencedirect.com/science/article/pii/S0736584519301188
https://www.sciencedirect.com/science/article/pii/S0736584519301188
https://www.sciencedirect.com/science/article/pii/S0736584519301188
http://dx.doi.org/10.1109/MUE.2009.58
http://dx.doi.org/10.1109/MUE.2009.58
http://dx.doi.org/10.1109/MUE.2009.58
http://dx.doi.org/10.1016/j.future.2019.12.040
http://dx.doi.org/10.1016/j.future.2019.12.040
http://dx.doi.org/10.1016/j.future.2019.12.040
https://www.sciencedirect.com/science/article/pii/S0167739X1932028X
https://www.sciencedirect.com/science/article/pii/S0167739X1932028X
https://www.sciencedirect.com/science/article/pii/S0167739X1932028X
http://dx.doi.org/10.1109/JIOT.2020.3007869
http://dx.doi.org/10.1109/JIOT.2020.3007869
http://dx.doi.org/10.1109/JIOT.2020.3007869

Journal of Network and Computer Applications 208 (2022) 103520G. Zhou et al.
Liu, J., Xiong, K., Ng, D.W.K., Fan, P., Zhong, Z., Letaief, K.B., 2020. Max-min
energy balance in wireless-powered hierarchical fog-cloud computing networks.
IEEE Trans. Wirel. Commun. 19 (11), 7064–7080. http://dx.doi.org/10.1109/TWC.
2020.3007805.

Liu, X.F., Zhan, Z., Deng, J.D., Li, Y., Gu, T., Zhang, J., 2018. An energy efficient ant
colony system for virtual machine placement in cloud computing. IEEE Trans. Evol.
Comput. 22 (1), 113–128. http://dx.doi.org/10.1109/TEVC.2016.2623803.

Lolos, K., Konstantinou, I., Kantere, V., Koziris, N., 2017. Elastic management of cloud
applications using adaptive reinforcement learning. In: 2017 IEEE International
Conference on Big Data (IEEE BigData 2017), Boston, MA, USA, December 11-
14, 2017. IEEE Computer Society, pp. 203–212. http://dx.doi.org/10.1109/BigData.
2017.8257928.

Lu, H., Gu, C., Luo, F., Ding, W., Liu, X., 2020. Optimization of lightweight
task offloading strategy for mobile edge computing based on deep reinforce-
ment learning. Future Gener. Comput. Syst. 102, 847–861. http://dx.doi.org/10.
1016/j.future.2019.07.019, URL: https://www.sciencedirect.com/science/article/
pii/S0167739X19308209.

Mahil, M., Jayasree, T., 2021. Combined particle swarm optimization and ant colony
system for energy efficient cloud data centers. Concurr. Comput. Pract. Exp. 33
(10), http://dx.doi.org/10.1002/cpe.6195, URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.6195.

Mao, J., Pan, Q., Miao, Z., Gao, L., 2021. An effective multi-start iterated greedy
algorithm to minimize makespan for the distributed permutation flowshop schedul-
ing problem with preventive maintenance. Expert Syst. Appl. 169, 114495. http:
//dx.doi.org/10.1016/j.eswa.2020.114495, URL: https://www.sciencedirect.com/
science/article/pii/S0957417420311398.

Miao, Y., Wu, G., Li, M., Ghoneim, A., Al-Rakhami, M., Hossain, M.S., 2020.
Intelligent task prediction and computation offloading based on mobile-edge
cloud computing. Future Gener. Comput. Syst. 102, 925–931. http://dx.doi.
org/10.1016/j.future.2019.09.035, URL: https://www.sciencedirect.com/science/
article/pii/S0167739X19320862.

Muñoz, M.A., Kirley, M., 2021. Sampling effects on algorithm selection for contin-
uous black-box optimization. Algorithms 14 (1), 19. http://dx.doi.org/10.3390/
a14010019, URL: https://www.mdpi.com/1999-4893/14/1/19.

Nguyen, T.T., Ha, V.N., Le, L.B., Schober, R., 2020. Joint data compression and com-
putation offloading in hierarchical fog-cloud systems. IEEE Trans. Wirel. Commun.
19 (1), 293–309. http://dx.doi.org/10.1109/TWC.2019.2944165.

Pradhan, Pandaba, Behera, Ku, P., Ray, B., 2016. Modified round robin algorithm for
resource allocation in cloud computing. Procedia Comput. Sci. 85, 878–890. http:
//dx.doi.org/10.1016/j.procs.2016.05.278, URL: https://www.sciencedirect.com/
science/article/pii/S1877050916306287.

Seiler, M., Pohl, J., Bossek, J., Kerschke, P., Trautmann, H., 2020. Deep learning
as a competitive feature-free approach for automated algorithm selection on the
traveling salesperson problem. In: Parallel Problem Solving from Nature - PPSN XVI
- 16th International Conference, PPSN 2020, Leiden, the Netherlands, September
5-9, 2020, Proceedings, Part I. In: Lecture Notes in Computer Science, vol. 12269,
Springer, pp. 48–64. http://dx.doi.org/10.1007/978-3-030-58112-1_4.

Sofia, A.S., Ganeshkumar, P., 2018. Multi-objective task scheduling to minimize energy
consumption and makespan of cloud computing using NSGA-II. J. Netw. Syst.
Manage. 26 (2), 463–485. http://dx.doi.org/10.1016/j.matpr.2020.11.556, URL:
https://www.sciencedirect.com/science/article/pii/S2214785320392257.

Sudarshan Chakravarthy, A., Sudhakar, C., Ramesh, T., 2019. Energy efficient VM
scheduling and routing in multi-tenant cloud data center. Sustain. Comput.: Inform.
Syst. 22, 139–151. http://dx.doi.org/10.1016/j.suscom.2019.04.004, URL: https:
//www.sciencedirect.com/science/article/pii/S2210537918303160.

Tian, W., He, M., Guo, W., Huang, W., Shi, X., Shang, M., Toosi, A.N., Buyya, R.,
2018. On minimizing total energy consumption in the scheduling of virtual
machine reservations. J. Netw. Comput. Appl. 113, 64–74. http://dx.doi.org/10.
1016/j.jnca.2018.03.033, URL: https://www.sciencedirect.com/science/article/pii/
S1084804518301267.

Tong, Z., Chen, H., Deng, X., Li, K., Li, K., 2020. A scheduling scheme in the
cloud computing environment using deep q-learning. Inform. Sci. 512, 1170–1191.
http://dx.doi.org/10.1016/j.ins.2019.10.035, URL: https://www.sciencedirect.com/
science/article/pii/S0020025519309971.
17
Wan, B., Dang, J., Li, Z., Gong, H., Zhang, F., Oh, S., 2020. Modeling analysis and cost-
performance ratio optimization of virtual machine scheduling in cloud computing.
IEEE Trans. Parallel Distrib. Syst. 31 (7), 1518–1532. http://dx.doi.org/10.1109/
TPDS.2020.2968913.

Zhou, X., Zhang, G., Sun, J., Zhou, J., Wei, T., Hu, S., 2019. Minimizing cost
and makespan for workflow scheduling in cloud using fuzzy dominance sort
based HEFT. Future Gener. Comput. Syst. 93, 278–289. http://dx.doi.org/10.
1016/j.future.2018.10.046, URL: https://www.sciencedirect.com/science/article/
pii/S0167739X18314080.

Guangyao Zhou received Bachelor’s degree and Master’s
degree from School of architectural engineering, Tianjin
University, China. He is now a Ph.D candidate at School
of information and software engineering, University of
Electronic Science and Technology of China. His research
interests include scheduling algorithms in Cloud Computing,
facial expression recognition, algorithmic theory of machine
learning and BigData processing.

Ruiming Wen is now a Ph.D candidate at the School of in-
formation and software engineering, University of Electronic
Science and Technology of China. His main research inter-
ests include algorithmic theory of machine learning, facial
expression recognition by deep learning, low illumination
image processing, BigData processing and Cloud Computing.

Wenhong Tian received a Ph.D. degree from the Depart-
ment of Computer Science, North Carolina State University,
Raleigh, NC, USA. He is now a professor at the University of
Electronic Science and Technology of China (UESTC). His re-
search interests include scheduling in Cloud Computing and
Bigdata platforms, and image recognition by deep learning.
He has more than 110 journal/conference publications and
5 books in related areas.

Rajkumar Buyya is a Redmond Barry Distinguished Profes-
sor and Director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He is also serving as the founding
CEO of Manjrasoft, a spin-off company of the University,
commercializing its innovations in Cloud Computing. He
served as a Future Fellow of the Australian Research
Council during 20122016. He received the Ph.D. degree in
Computer Science and Software Engineering from Monash
University, Melbourne, Australia, in 2002. He has authored
over 750 publications and seven text books. He is one of
the highly cited authors in computer science and software
engineering worldwide (hindex=154, gindex=331, 125200+
citations). He is recognized as a ‘‘Web of Science Highly
Cited Researcher’’ for six consecutive years since 2016, and
Scopus Researcher of the Year 2017 with Excellence in
Innovative Research Award by Elsevier for his outstanding
contributions to Cloud Computing and distributed systems.

http://dx.doi.org/10.1109/TWC.2020.3007805
http://dx.doi.org/10.1109/TWC.2020.3007805
http://dx.doi.org/10.1109/TWC.2020.3007805
http://dx.doi.org/10.1109/TEVC.2016.2623803
http://dx.doi.org/10.1109/BigData.2017.8257928
http://dx.doi.org/10.1109/BigData.2017.8257928
http://dx.doi.org/10.1109/BigData.2017.8257928
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1016/j.future.2019.07.019
https://www.sciencedirect.com/science/article/pii/S0167739X19308209
https://www.sciencedirect.com/science/article/pii/S0167739X19308209
https://www.sciencedirect.com/science/article/pii/S0167739X19308209
http://dx.doi.org/10.1002/cpe.6195
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6195
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6195
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6195
http://dx.doi.org/10.1016/j.eswa.2020.114495
http://dx.doi.org/10.1016/j.eswa.2020.114495
http://dx.doi.org/10.1016/j.eswa.2020.114495
https://www.sciencedirect.com/science/article/pii/S0957417420311398
https://www.sciencedirect.com/science/article/pii/S0957417420311398
https://www.sciencedirect.com/science/article/pii/S0957417420311398
http://dx.doi.org/10.1016/j.future.2019.09.035
http://dx.doi.org/10.1016/j.future.2019.09.035
http://dx.doi.org/10.1016/j.future.2019.09.035
https://www.sciencedirect.com/science/article/pii/S0167739X19320862
https://www.sciencedirect.com/science/article/pii/S0167739X19320862
https://www.sciencedirect.com/science/article/pii/S0167739X19320862
http://dx.doi.org/10.3390/a14010019
http://dx.doi.org/10.3390/a14010019
http://dx.doi.org/10.3390/a14010019
https://www.mdpi.com/1999-4893/14/1/19
http://dx.doi.org/10.1109/TWC.2019.2944165
http://dx.doi.org/10.1016/j.procs.2016.05.278
http://dx.doi.org/10.1016/j.procs.2016.05.278
http://dx.doi.org/10.1016/j.procs.2016.05.278
https://www.sciencedirect.com/science/article/pii/S1877050916306287
https://www.sciencedirect.com/science/article/pii/S1877050916306287
https://www.sciencedirect.com/science/article/pii/S1877050916306287
http://dx.doi.org/10.1007/978-3-030-58112-1_4
http://dx.doi.org/10.1016/j.matpr.2020.11.556
https://www.sciencedirect.com/science/article/pii/S2214785320392257
http://dx.doi.org/10.1016/j.suscom.2019.04.004
https://www.sciencedirect.com/science/article/pii/S2210537918303160
https://www.sciencedirect.com/science/article/pii/S2210537918303160
https://www.sciencedirect.com/science/article/pii/S2210537918303160
http://dx.doi.org/10.1016/j.jnca.2018.03.033
http://dx.doi.org/10.1016/j.jnca.2018.03.033
http://dx.doi.org/10.1016/j.jnca.2018.03.033
https://www.sciencedirect.com/science/article/pii/S1084804518301267
https://www.sciencedirect.com/science/article/pii/S1084804518301267
https://www.sciencedirect.com/science/article/pii/S1084804518301267
http://dx.doi.org/10.1016/j.ins.2019.10.035
https://www.sciencedirect.com/science/article/pii/S0020025519309971
https://www.sciencedirect.com/science/article/pii/S0020025519309971
https://www.sciencedirect.com/science/article/pii/S0020025519309971
http://dx.doi.org/10.1109/TPDS.2020.2968913
http://dx.doi.org/10.1109/TPDS.2020.2968913
http://dx.doi.org/10.1109/TPDS.2020.2968913
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1016/j.future.2018.10.046
https://www.sciencedirect.com/science/article/pii/S0167739X18314080
https://www.sciencedirect.com/science/article/pii/S0167739X18314080
https://www.sciencedirect.com/science/article/pii/S0167739X18314080

	Deep reinforcement learning-based algorithms selectors for the resource scheduling in hierarchical Cloud computing
	Introduction
	Related work
	System model and problem formulations
	System model of multi-level Cloud system
	Subsystems and subproblems of resource scheduling
	Joint scheduling problem and cost model for various subproblems

	Methodology: Selectors of scheduling algorithms in HCCMS
	SFSSA: Scheduling framework to select the scheduling algorithms
	Algorithms pool
	DLS: DL-based selector of scheduling algorithms
	DRLS: DRL-based selector of scheduling algorithms

	Performance evaluation
	Experiment setting
	Results and discussion
	EX0: Single-layer system vs. Multi-layer system
	EX1: Baseline strategies vs. DL-based selectors
	EX2: Baseline strategies vs. Model1
	EX3: Comparison between Model1 to Model5

	Overall summary

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

