
Journal of Systems Architecture 52 (2006) 737–772

www.elsevier.com/locate/sysarc
Decentralized media streaming infrastructure (DeMSI):
An adaptive and high-performance peer-to-peer content

delivery network

Alan Kin Wah Yim, Rajkumar Buyya *

Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science and Software Engineering,

The University of Melbourne, Carlton, Melbourne VIC 3053, Australia

Received 13 January 2005; received in revised form 24 March 2006; accepted 8 May 2006
Available online 10 July 2006
Abstract

Hosting an on-demand media content streaming service has been a challenging task mainly because of the outrageously
enormous network and server bandwidth required to deliver large amount of content data to users simultaneously. We
propose an infrastructure that helps online media content providers offload their server and network resources for media
streaming. Using application level resource diversity together with the peer-to-peer resource-sharing model is a feasible
approach to decentralize the content storage, server and network bandwidth. Each subscriber is responsible for only a
small fraction of such resources. Most importantly, the cost of maintaining the service can also be shared amongst sub-
scribers, especially when the subscriber base is large. As a result, subscribers can be benefit from lower subscription cost.
There have been a few solutions out there that focused only on sharing the load of network bandwidth by division of a
streaming task to be carried out by multiple sources. However, existing solutions require that the content to be replicated
in full and stored in each source, which is impractical for a subscriber as the owner of the storage resource that is of con-
sumer capacity. Our solution focuses on the division of responsibility on both the network bandwidth and content storage
such that each subscriber is responsible for only a small portion of the content. We propose a light-weighted candidate peer
selection strategy based on avoidance of network congestion and an adaptive re-scheduling algorithm in order to enhance
smoothness of the aggregated streaming rate perceived at the consumer side. Experiments show that the performance of
our peer-selection strategy out performs the traditional strategy based on end-to-end streaming bandwidth.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Content delivery networks; Decentralised systems; Media streaming; Peer-to-peer computing
1383-7621/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.sysarc.2006.05.001

* Corresponding author.
E-mail addresses: yim_alan@anigreetings.com (A.K. Wah

Yim), raj@csse.unimelb.edu.au, raj@cs.mu.oz.au (R. Buyya).
1. Introduction

Hosting an on-demand streaming service of per-
sistent media content, such as video-on-demand,
has been a challenging task mainly because of the
outrageously enormous network and server band-
width required to deliver, in real-time, large amount
.

mailto:yim_alan@anigreetings.com
mailto:raj@csse.unimelb.edu.au
mailto:raj@cs.mu.oz.au


738 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
of video data to users simultaneously. In order to
deliver a near DVD quality video stream while using
as low the streaming rate as possible, a video com-
pression technology such as MPEG-4 [5] is typically
used. Informal studies [6] show that the streaming
rate required for a near-DVD reproduction is at
least 500 kbps. Maintaining a big network pipe
enough to support the simultaneous video streams
and a persistent 500 kbps bandwidth per stream
for the duration of a movie (ranging from 1 to
3 h) is expensive. Therefore a pure single video ser-
ver cluster to multiple consumers approach is quite
a bad idea. The ability to scale is weak. A variant of
that is to use multiple server clusters working like
proxies in different regional locations or ‘‘edges’’
of the network to allow better scalability [8]. The
consumer node is instructed to contact the proxy
local to the consumer for streaming. Each proxy
may act like the master that carries a replication
of the contents, or caches a subset of contents most
frequently requested by the local consumers [7].
Such distributed ‘‘edge architecture’’ helps reduce
latency and number of hops before reaching the
consumer, as the stream is scheduled to deliver from
the proxy closest to the consumer. Hence the chance
of encountering network congestion is lower. How-
ever, it does not mean that a local connection is free
of congestion. As [9] suggests, packet loss (hence the
congestion) in an end-to-end connection is usually
caused by only a few hop-links in the path.
Although there are more than one video server clus-
ter to share the server and network loading, the sys-
tem still suffers from single point of failure problem
as the stream is still pushed from a single source
over a single connection. Although the stream can
be diverted through multiple paths of the network
to avoid congestion [10–12], the technique is out
of question as the routing is beyond the control of
the content provider. In addition, since the cost of
the servers and the network bandwidth for the
streams belongs to the content provider, both the
traditional single-server and the edge architecture
suffer from under-utilized server and network
resources problem during off-peak hours.

The existing problems of implementing a cost
effective streaming service of persistent media con-
tent as mentioned above lead to the design of
DeMSI – the Decentralized Media Streaming Infra-
structure. The main objective of DeMSI is to ease
the cost of content storage and workload of a video
content distribution/delivery network (CDN), tradi-
tionally managed by the content provider, by off-
loading the streaming server, network and storage
resources to subscriber workstations and their
upstream internet bandwidth, without sacrificing
video quality. Subscribers are not only the con-
sumer of the service, but also a member of the con-
tent server. The fundamental idea is to allow
multiple subscriber peers to serve streams of the
same video content simultaneously to a consuming
peer rather than the traditional single-server-to-cli-
ent streaming model, while allowing each peer to
store only a small portion of the content. It is antic-
ipated that a subscriber peer can be a PC worksta-
tion, or simply a set top box with a few gigabytes
of disk space to spare. Each peer has a broadband
connection of at least 1.5 Mbps downstream and
256 kbps upstream to the internet. DeMSI is
designed to be independent of the type of the media
content. It is anticipated to work with both CBR/
VBR video of any formats and bit rate, and it is
not limited to serve video content, but any other
media types that are stream-able.

Like other peer-to-peer applications, DeMSI has
to face with the reliability issues of peer resources.
Since peer resources are pretty much beyond control
by the service owner, the domain of the reliability
problems that DeMSI has to overcome includes:

1. The unpredictability of dynamics in the condition
of connection between the serving peers and the
consuming peer. As a connection is made up of
a path through hop-links, some links sharing
traffic with other connections may be congested
that result in delays and loss packets. Hence a
varying end-to-end effective bandwidth;

2. A peer may be turned off at any time. Even
worse, a peer can be shut down abnormally such
that one cannot expect a peer to notify another
party of its unavailability;

3. The integrity of contents is vulnerable as the con-
tent is stored at the peer end that is beyond con-
trol by the service owner.

The integrity of contents can be easily verified by
employing a hash scheme, such as SHA-1, to the
content data such that a tampered copy of the con-
tent can be detected upon deriving from the content
a hash code different from the original. In DeMSI,
the consumer may send the SHA-1 code of the con-
tent segment to the target peer along with the request
for streaming. The peer then verify against the local
copy and reply either by commencing the stream or a
negative acknowledgement. This technique has been



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 739
used in many P2P applications and we will not dis-
cuss this further here. Therefore, addressing prob-
lems 1 and 2 are the primary focus of this paper.

As the peers and their connections are unreliable,
every P2P application have to deal with re-scheduling
of streaming tasks and switching-over of peers when
they become unavailable or the service level does not
meet expectations. When a DeMSI consumer has a
list of candidate subscriber peers discovered or previ-
ously contacted by others as consumers, it has to
make a selection that achieves the following goals:

1. To maximize the utilization of the network and
peers.

2. To minimize the number of peers to serve the
content.

3. To minimize the frequency of re-scheduling or
emergency switching-over to other candidates
over the course of streaming.

The goals are attributed to two important facts.
Firstly, the need for fewer peers at a time in stream-
ing implies fewer transitions over the course of a
streaming session, and fewer peers are required to
be online at any point in time. Secondly, the goals
promote stability in aggregated streaming rate from
the active serving peers. As a result, less buffering is
required for received content prior to a playback. At
first glance, peers with largest historic streaming
rate should be selected first in order to achieve such
a goal. However, this may not be true. Since the
internet is made up of hop-links where they can
share the traffic from multiple connections, DeMSI
should expect there exist two or more candidates
that have to send packets through the same hop-
link(s). If one of those hop-links has tight band-
width or filled with cross-traffic, while the previous
selection of any one of those peers allows the peer
to give 100% of its offered streaming rate, the selec-
tion of two or more of those peers may result in con-
gestion such that those peers may only serve at a
fraction of their offered rate. As our performance
evaluation shows, this results in not only adding
fluctuations to the aggregated streaming rate, but
also the need for more peers in subsequent schedul-
ing of streaming tasks. Moreover, re-scheduling
becomes more frequent. DeMSI deals with this
problem from two major directions:

1. Proactive scheduling: Candidate peers with the
largest historic end-to-end streaming bandwidth,
smallest packet loss rate, and offer the largest
portion of the content, while they share no or
very few congested link(s) with the other actively
serving peers, are selected first. The consumer
constantly monitors and stores in its knowledge-
base the above mentioned network metrics for
each peer whenever it is actively serving. In addi-
tion, the consumer infers incrementally during
the streaming session which peer connections
are possibly sharing a congested link in the net-
work, without contributing any additional over-
head on the streams.

2. Reactive scheduling: The underlying network
characteristics of the peer-consumer connections
and the availability of the peer itself change over
time. Re-scheduling of streaming tasks and emer-
gency switching-over of actively serving peers is
unavoidable despite of how good the selection
algorithm is. We design a sophisticated divide-
and-conquer based scheduling/re-scheduling
algorithm that is highly adaptive, flexible, aware
of deadlines, and promotes smooth transitions.

As the storage of media content under DeMSI’s sce-
nario is decentralized where no single peer contains
the complete replication of the content, it is inherent
that the consumer has to look for hundreds of peers,
which means hundreds of transitions from one peer
to another over the course of streaming. The sched-
uling and re-scheduling algorithms have to be light-
weighted and perform in a timely fashion.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related work. Section 3
provides the design details of DeMSI. Section 4
analyses the performance of our system in terms
of the effectiveness of its peer selection strategy in
the scheduling/re-scheduling processes, and the re-
scheduling algorithm itself. Finally, the paper con-
cludes with an outline of future work in Section 5.

2. Related work

A number of attempts have been made to decen-
tralize CDNs. One of the popular approaches is to
deploy several server clusters serving the same con-
tent in various regions of the world, or commonly
known as the ‘‘edges’’ of the internet [8,35]. Each
server cluster serves the end-user population that
is ‘‘local’’ to where the data center of that cluster
node is located. The definition of local is a function
of one or many parameters such as network topol-
ogy, packet round-trip time, available bandwidth,
or even the physical location of the end-user’s ISP



740 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
network. The delivery of streaming content such as
video is still from a single source over a single con-
nection (i.e.: point-to-point) like the traditional cen-
tralized CDNs. Although this approach has greatly
reduced the chance of outage over the whole popu-
lation of end-users, the point-to-point delivery of
video is still subject to single point of failure prob-
lem for each end-user. In addition, as contents have
to be mirrored over the server clusters around the
world, the cost to maintain such a CDN can be
huge. Table 2-1 outlines their approaches.

In the past half a decade, there have been a num-
ber of P2P content delivery network models devel-
oped and deployed widely. The most popular P2P
CDN model is the general file-sharing applications
and infrastructures. Napster [28,29,34], Gnutella
(Bearshare) [29,30,34], FastTrack (Kazaa) [31,34],
eDonkey [32], and Bit Torrent [33] are the popular
examples. Each application represents an iteration
of improvement in the approaches on resource dis-
covery, peer selection, and content delivery. Table
2-2 provides a summary of their approaches. How-
ever, none of today’s file-sharing applications sup-
port real-time streaming of media content files.
Acquisition of a file in those applications is basically
accomplished by batched download, which has no
notion of sequencing and timing constraint in the
delivery timeline.
Table 2-1
Summary of popular non-P2P CDN architectures

CDN solutions
provider

Type of release Resource selection strate

Akamai Infrastructure consists
of server clusters and
monitoring, deployment
tools

The end-user node relies
domain name server (DN
which IP address (of the
content) the end-user no
The server that is closest
in terms of measures suc
round-trip time, with mi
and below the load thres

IntelliDNS Application The end-user node conta
running the IntelliDNS s
determine which IP addr
serving the content) the
should contact. The serv
the end-user in terms of
as network round-trip tim
best-guess geographical l
end-user’s ISP network,
Another emerging P2P CDN model is commonly
known as the application level multicast (ALM). As
the term implies, the delivery of the content to mul-
tiple requested peers simultaneously is achieved on
the application layer rather than the network layer,
such that it can be used over a traditional unicast
network. The motivation of ALM is due to the fact
that multicast networks are still rare in today’s
internet. ALM is commonly accomplished by a
one-to-many distribution tree of peers managed
either in a centralized fashion at the content source
peer such as CoopNet by Padmanabhan et al. [26],
DirectStream [38], or in a centralized-decentralized
fashion at source and intermediate peers of the dis-
tribution tree such as P2Cast [39], PeerCast by
Deshpande et al. [27]. However, ALM is essentially
a point-to-point content delivery model that relies
on a single connection from one peer to each of
its child peers. Failure of a parent peer or the path
between two peers results in interrupted delivery
when the re-orientation of the tree for switching-
over to another parent takes place. The Padmanab-
han group [26] addressed this problem by the use of
multiple distribution trees where multiple sub-
streams of the original stream are sent down each
peer. The orientation of each node in the tree for
one sub-stream is different from that for another.
When the parent fails, there is still at least one of
gy Content delivery strategy

on Akamai’s
S) to determine
server serving the

de should contact.
to the end-user

h as network
nimal packet loss,
hold, is selected

The content is delivered from a single
server source (point-to-point). Upon
failure, the end-user has to manually
restart the player session such that the
player will contact the DNS again to
obtain the IP address of another server.
In the case of archived video, the content
is mirrored over the server community.
The content may not be replicated across
every available server around the world.
The extent of the mirroring depends on
the popularity of the content in each
region

cts the DNS
ervice to
ess (of the server
end-user node
er that is closest to
measures such

e, and the
ocation of the
is selected

The architecture covers only the resource
selection. However, as IntelliDNS is
designed to locate a single server resource,
it is targeted for decentralized CDNs that
deliver content from a single
server source to an end-user client



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 741
the sub-streams likely to reach each child peer. Pad-
manabhan employs the multiple description coding

(MDC) on the media content in order to sustain
uninterrupted playback of a content under interrup-
tion of some of the sub-streams. The MDC is an
Table 2-2
Summary of popular P2P file-sharing architectures

File-sharing
architecture

Type of release Resource discovery strategy

Napster Application The consuming peer contacts
the centralized global
directory server to locate
where the file is. More than
one peer claimed to have the
requested file may be returned
but no mechanism exists for
verification of actual identity

Gnutella Infrastructure
focused on resource
discovery – client

examples: Bearshare,
XoloX

The consuming peer contacts
its neighbor seed peers to
locate the file on its behalf.
Each contacted neighbor peer
in turn forwards the same
request to its neighbor
recursively if it does not have
the file. More than one peer
claimed to have the requested
file may be returned but no
mechanism exists for verificatio
of actual identity

FastTrack Infrastructure –
client examples:
Kazaa

The consuming peer contacts
its local ‘‘supernode’’, which
is another consuming or serving
peer with the capability of
maintaining a partial file
directory of local peers.
A supernode may query
other supernodes for the
requested file. Each peer
informs its local supernode
upon completion of a
file download

eDonkey Application Similar to FastTrack. In
contrast, the eDonkey’s
directory peer also maintains
a list of peers who are
downloading the requested
file as well
encoding technique for dividing a media content
stream into m sub-streams, each of which can be
delivered at a fraction of the rate required by the
original stream. It also allows partial reproduction
of the media content out of p:p < m sub-streams
Peer selection
strategy

Content delivery strategy

None (manual) Point-to-point single-peer file
transfer. Upon peer failure,
the user has to manually
select another peer that
essentially restarts the
file transfer

n

None (client
dependent)

None (client dependent). File
transfer is usually performed
in point-to-point single-peer
fashion by clients released in
early days. Most recently
released clients support
aggregated file transfer from
multiple peers selected
manually. However, a file
has to be downloaded
completely into a peer
before it can be made
available for sharing

None (client
dependent)

None (client dependent). Clients
such as Kazaa schedule delivery
of the requested file in different
blocks, in no particular order,
from multiple selected peers to
be accomplished simultaneously.
When an active peer fails, the user
has to manually select another
peer to fill in the gap. Recovery
from a broken file transfer
is inherent. A file has to be
downloaded completely into a peer
before it can be made available
for sharing

Discovered peers are
automatically
selected for
aggregated file
transfer based on
the time they are
discovered and the
available upload slots
of the peer. The
maximum number
of peers allowed in
the active set is
predefined by user.

eDonkey schedules delivery of
the requested file in different
blocks, in no particular order,
from multiple selected peers to
be accomplished simultaneously.
When an active peer fails, it
looks up another peer to fill
in the gap automatically.
Recovery from a broken file
transfer is inherent. Whenever a
fixed-sized chuck of the file is
downloaded completely into
a peer, it is made available
for sharing

(continued on next page)



Table 2-2 (continued)

File-sharing
architecture

Type of release Resource discovery strategy Peer selection
strategy

Content delivery strategy

Bit Torrent Application The consuming peer locates
the object by contacting a
‘‘Tracker’’ peer that keeps
track of other peers who
are currently downloading,
and/or have bits and pieces
of the same object. The
object consists of a set
of files predefined by the
publisher. The location of the
Tracker is found in a token
file made available on the
web by the publisher

Random with
preference to
peers that carry
the chucks of an
object that are
least commonly
found in
other peers

Bit Torrent schedules
delivery of the requested
file in fixed-sized chucks
from multiple selected
peers to be accomplished
simultaneously. The chucks
that are least commonly
distributed are downloaded
first. When an active peer
fails, it looks up another
peer to fill in the gap
automatically. Recovery from
a broken file transfer is
inherent. Whenever a fixed-sized
chuck of the file is downloaded
completely into a peer, it is
made available for sharing.
The download rate of a
peer is proportional to its
upload rate in order to
facilitate fairness

742 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
being delivered simultaneously. If the content is a
video, partial reproduction results in loss of video
quality during playback, typically in terms of lower
frame rate than the original.

The idea of allowing multiple peers to push sub-
streams of the same media content simultaneously
to a consuming peer, in order to share the network
bandwidth that is originally required for a single
media stream, is now commonly known as aggre-

gated streaming or multiple-sender path diversity in
the research community. This CDN model under
P2P paradigm has received the least attention until
recently. The concept was probably originated
about 3 years ago as Calvert et al. [13] outlined it
in their Concast paper. The subject of aggregated
streaming slowly came into research attention such
as the works from Nguyen and Zakhor [14], Coop-
Net by Padmanabhan et al. [26], and finally, Hefe-
eda et al. [15] is probably among the first to
integrate this concept with the peer-to-peer para-
digm with the introduction of CollectCast (also
known as PROMISE). The papers [14,15,26]
brought out a number of important issues related
to aggregated streaming with remarkable solutions.
For example, the Nguyen group proposed the use of
forward error correction (FEC) in their aggregated
streaming architecture such that the receiver can
recover the original stream by receiving any n of
nFEC:nFEC > n FEC encoded packets [14], as long
as the number of lost packets during the transmis-
sion does not exceed nFEC � n. The solution neatly
avoids the need of lost packets re-transmission that
imposes delay and control overhead. In [15], the
Hefeeda group raised the importance of network
topology awareness in the selection of candidate
peers in the aggregated streaming scenario, in order
to avoid having too many active serving peers that
deliver the sub-streams through the same link of
the network that causes congestion. The Padmanab-
han group [26] attempted to support partial content
storage in each active serving peer participating in
the aggregated streaming in the CoopNet system,
by employing MDC on the media content.

The keynotes of the papers mentioned above
have become important inspiration in the design
of DeMSI. However, the implementation of the
MDC technique like the one being used by Coop-
Net is highly dependent on the type of media con-
tent. Moreover, in terms of storage, the content
can only be split into m parts, where m is limited
by the number of sub-streams required to be deliv-
ered simultaneously in order to achieve original
reproduction quality. In other words, m cannot be
large. Therefore the partial content to be stored in
each peer is still quite large in size. Hefeeda’s Col-
lectCast requires each serving peer to store the com-
plete replication of the content rather than a small
portion of it as employed in DeMSI’s decentralized



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 743
content storage model. The topology-aware peer
selection technique being used in CollectCast is
too costly for DeMSI’s content storage model that
requires visiting many serving peers over the course
of a streaming session, typically in the order of hun-
dreds for an hour-long video.

CollectCast requires prior knowledge on the
inferred topology of the network being used by
the connections between all candidate peers and
the consumer before the streaming can commence.
Its peer selection algorithm relies on the heavy-
weighted traceroute utility to help obtain the net-
work topology information before the selection
can be made. The accuracy of the topology infer-
ence is high, and its granularity can be down to
the hop-link level that is visible to traceroute. This
enables CollectCast to precisely calculate, for each
hop-link shared by a group of peers, which ones
can be chosen to serve simultaneously. However,
the use of traceroute introduces significant overhead
on both time scale and network load because it
requires co-operation with the routers. In addition,
some routers may not even respond to traceroute
requests [16]. Unlike CollectCast, DeMSI does not
have any one peer that has a complete replication
of the content available. Regular switching of
actively serving peers set is required for the duration
of a streaming session regardless of peer availability
and network condition. In contrast, CollectCast
heavily relies on a handful (an average of four as
discussed in [15]) of peers. Switching of active peers
is inherently less frequent in CollectCast’s scenario
as it only occurs when the peer becomes unavailable
or network condition becomes inferior. The number
of candidate peers in DeMSI’s scenario is way larger
than that of CollectCast. The overhead required to
infer the topology of the network being used by
all candidate peers before the streaming commences
is completely out of question for DeMSI. It is intu-
itive to visualize that the use of a topology-aware
peer selection method will not be as effective in
DeMSI as in CollectCast. The need to visit a large
number of peers makes DeMSI less likely to pick
the peers that have to push sub-streams through
the same tight hop-link before reaching the con-
sumer for the duration of the streaming session,
except in the situation where the total unused band-
width of all such hop-links in the network is
approaching the aggregated streaming rate required
to serve a consumer.

The goal of peer selection is to maximize the uti-
lization of the network while minimize the number
of active peers at a time to serve the content, and
the frequency of re-scheduling or switching-over to
other candidates over the course of streaming.
DeMSI also requires it to be timely. For that rea-
son, we design alternative solutions for inference
of network characteristics and peer selection that
sacrifice granularity for efficiency. As the perfor-
mance evaluation shows, our solution outperforms
the selection strategy purely based on end-to-end
bandwidth in terms of achieving the goal.

The inference of internal network characteristics
using end-to-end measurements is one of the popu-
lar areas of research. The idea is commonly referred
to as ‘‘network tomography’’. There are two major
research directions in this area that we are interested
in: (1) Inference of network topology [16,21]; (2)
Inference of shared congestion points of the net-
work [17,1,2]. Within each, there are two main
focuses on the sender–receiver relationship: Namely
the single-sender–multiple receiver (sometimes
known as the inverted Y-topology), and the multi-
ple-sender-single-receiver (sometimes known as the
Y-topology). To summarize quickly, the topology
based inference techniques generally exhibit high
approximation granularity, slow convergence (in
order of minutes) and overwhelming algorithm
complexity. On the other hand, the congestion
based inference techniques generally offers lower
approximation granularity, converge quickly (in
order of seconds) and are light-weighted. Therefore,
DeMSI’s inference solution is based on inference of
shared congestion points, or ‘‘congestion based’’ in
short. Its design is inspired by Flowmate [2] – a tool
for partitioning flows into clusters each of which
represents a congested link in the network. Flow-
mate uses the packet delay correlation test algo-
rithm proposed by Rubenstein et al. in [1] to
periodically determine whether the two flows tra-
verse through the same congested link when they
come from or go to the same partner. It requires
in-band or out-of-band poisson probe traffic to be
injected from the sender node to work properly.
The two end-nodes may either be receivers or send-
ers, while the partner may either be a sender or a
receiver respectively. The idea is that when the flows
share a congested link, their probes reach the con-
gested link at time that is a poisson random vari-
able, but they are queued up and serviced at a
deterministic rate. As a result, the spacing between
packets of different flows after the bottleneck is
smaller than the spacing between packets within
the same flow. Rubenstein suggests the comparison



744 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
of correlation coefficients on delay samples from the
two flows to detect such phenomenon. As the corre-
lation test algorithm only addresses two flows at a
time, Flowmate is built on top of it to support the
clustering of multiple flows in an efficient way.
Unfortunately, it works with inverted Y-topologies,
whereas in DeMSI, connections and flows between
serving peers and the consuming peer follow a Y-
topology formation. Rubenstein et al. also proposed
an alternative correlation test algorithm based on
packet loss of the two flows. However, experiments
show that it converges slower than delay correla-
tion. Another remarkable attempt of inferring
shared congestion points of the network is by
Katabi et al. [17] who uses an entropy function of
packet spacing to determine whether the flows tra-
verse through the same congested link. The idea
relies on the fact that packets from various senders
are sent at different rates and times. Since the pack-
ets from various flows are queued up and serviced at
a fixed deterministic rate at the congested link, their
inter-packet spacing measured after the bottleneck
should be least varied regardless of where the packet
is from. Therefore, Katabi’s approach does not
require extra probe traffic and it is capable of parti-
tioning multiple flows into clusters each represents a
congested link. However, it takes more packet sam-
ples (hence more time) than Rubenstein’s algorithm
to converge, especially when the congested link is
filled with cross-traffic. Another serious drawback
is that it requires prior knowledge on the number
of congested links to be identified amongst the
flows.

3. Architecture of DeMSI

This section presents an overview of our system
and its functional components.

3.1. Overview of functional components

DeMSI is the P2P media streaming service mid-
dleware that bridges between the content player sys-
tem at the subscriber end and the other end made up
of the CDN itself and other online subscribers. Its
key objective is to promote decentralized media
streaming from a selection of multiple subscriber
peers, and decentralized storage of media contents
divided and distributed amongst subscriber peers.
At this stage, selection of peers is primarily based
on past history of their streaming performance,
and congestion avoidance by the analysis of correla-
tion with the sub-stream flows from other selected
peers. Fig. 3.1-1 shows the block diagram of the com-
ponents in DeMSI and their relationship in terms of
their interactions. Here is an overview of the main
workflow of DeMSI: when the user requests a video
to be played via the user interface of the Player, it
informs DeMSI through the DeMSI-Player API,
which in turn kicks off the Scheduler. The Scheduler
is in-charge of the initial selection of candidate peers
discovered by the Peer Hunter as per Scheduler’s
request through the DeMSI-Peer Hunter API, and
schedules each selected peer to serve the segment(s)
of the content, one segment at a time. The peers to
which the streaming task is scheduled become active
serving peers. In each active serving peer, the seg-
ment(s) of the content are then retrieved from the file
system locally via the Storage Manager and deliv-
ered from the Segment Sender. The sub-stream is
received by the Segment Receiver at the consumer
side. It stores the sub-stream segment by segment
on-the-fly in the Segment Cache, and collects net-
work statistics of a sub-stream flow from the origi-
nating peer of the received packet. Concurrently,
the Player plays the content by pulling the received
segments from the Segment Cache in order, via the
DeMSI-Player API. On the other hand, the Peer
Monitor performs the following periodically: (1)
checking the health of each active serving peer and
determine whether the peer needs more help from
another redundant peer candidate; (2) inferring
points of network congestion shared by sub-stream
flows if there are any. The Peer Monitor informs
the Re-scheduler if there is a need to schedule
another peer to assist one of the current active serv-
ing peers found to be ‘‘unhealthy’’, such as when a
peer goes offline, or the actual streaming rate is
below expectation.

Implementation of systems like DeMSI is chal-
lenging. Most interactions amongst the components
and their activities are actually occurring concur-
rently. Therefore, in Fig. 3.1-1, each component rep-
resented as a rounded rectangular block is a separate
thread executing on its own. In other words, DeMSI
is designed and implemented as a team of autono-
mous agents. When two components are connected
by a fat arrow, it means that their interactions are
purely one-way asynchronous requests. A mixture
of a fat and a thin arrow pointing at the opposite
direction of the fat one denotes request–response
type interactions. They originate from the starting
end of the fat arrow. The fat arrow denotes a request
and the thin one denotes a response in this case. The



Fig. 3.1-1. Components of DeMSI – a team of agents.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 745
normal rectangular block and the cylinder denote a
package of methods to be executed under the caller’s
thread. However, the cylinder also denotes a reposi-
tory of data objects: local segment, remote segment,
peer, and point of congestion. Most data objects are
persistent except remote segment, which stays in the
Segment Cache between the time it is received and
the time it is consumed by the Player.

As there are many existing works in the research
community on resource discovery or lookup sub-
strate over P2P networks, we make DeMSI indepen-
dent of the substrate as the Peer Hunter agent as
long as its implements the DeMSI-Peer Hunter
API. As this is not our primary focus at this stage,
we do not discuss this further except an outline of
what DeMSI requires the Peer Hunter agent to per-
form, in Section 3.4.
Each DeMSI peer uses one TCP port for incom-
ing control flows from other consumers and a UDP
port for content sub-stream flows from active serv-
ing peers.

3.2. Storage strategy

The storage of media content in DeMSI employs
a decentralized with division of responsibility
approach. No single subscriber peer stores a com-
plete replication of the content, but a small part of
it. As the peers and their connections are unreliable,
the aggregated streaming may need to partially rely
on reliable resources from the CDN when there are
not enough peers available. For that reason, DeMSI
supports a special type of peers called the dedicated

server that offer a complete archive of the contents.



746 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
Therefore, while it handles unreliable subscriber
peers as serving peers, it assumes the existence of
some of the more reliable dedicated servers. It
may be thought of such peers as being owned by
the CDN and/or content publishers. DeMSI
assumes that the dedicated servers are online all
the time, although it still assumes that the connec-
tivity may still be unreliable. Dedicated servers are
treated differently from other peers in terms of peer
selection, which is described in more detail in Sec-
tions 3.5 and 3.6.

The division of responsibility strategy leads to
the need of dividing a media content into segments
before distribution to subscriber peers. A media
content Mv is divided into n equal-sized segments
Si where 0 6 i 6 n � 1. The stream of a media con-
tent is now represented by

S0S1S2 . . . Sn�1

A segment is the smallest unit of data block to be
stored in the subscriber’s workstation. Each sub-
scriber keeps at least one segment of the same ID
for each Mv. Each peer may store k consecutive seg-
ments of each Mv in such order

Ss; Ssþ1; Ssþ2; . . . ; Ssþk�1

There are several advantages of assigning a k seg-
ments consecutively as opposed to scattered. Firstly,
it ensures the segment offerings information of each
peer to be represented in the most compact manner.
Secondly, scaling the segment offerings up or down
is simple to manage. Thirdly, it helps ease the subse-
quent scheduling effort once the consumer finds a
peer that offers, for example, the next k segments
it needs. Most importantly, it helps increase the
accuracy of correlating the sub-stream of one peer
against others.

While a peer has segments stored locally, other
segments that are streamed from other peers for
the purpose of consumption are transient. In the
current implementation of DeMSI, both types of
segments are managed by the Segment Cache. The
future version will include the Storage Manager
agent that manages the inter-peer re-distribution
of the new segments received from other peers
through their re-distribution process.

3.2.1. Forward error correction and segment structure

In order to avoid re-transmission of lost packets
that may occur in the streaming, each segment is
encoded using a Forward Error Correction (FEC)
algorithm before sending to the consumer. The
FEC encoding process is associated a parameter
known as tolerance level lFEC:0 < lFEC < 1, which
indicates the maximum packet loss rate that the
FEC can tolerate. DeMSI employs a fixed tolerance
level approach such that each segment is stored pre-
encoded with FEC at the peer. FEC deals with data
in blocks, or in other words, packets. A segment has
to be split up further into small blocks, which we
call fragments, such that it can be transmitted in ser-
ies of packets. The fragment size is defined such that
each fragment can be fitted into a packet of the sub-
stream. It makes perfect sense to use the same seg-
ment structure for the FEC algorithm to encode.

Let as define 1 as the size of a segment and q as
the size of a fragment in bytes. Then each segment
consists of n = 1/q fragments. When a segment is
encoded with FEC, the size of each segment stored
in a subscriber peer becomes 1 /(1 � lFEC). Hence an
encoded segment consists of nFEC = 1/q(1 �
lFEC) = n/(1 � lFEC) encoded fragments. At the con-
sumer side, a segment Si is decoded on-the-fly using
a separate thread after receiving any n of the nFEC

fragments that belong to Si.
We decide to employ a Reed–Solomon based

FEC algorithm in DeMSI because it guarantees
the tolerance level, regardless of order and which n
of the nFEC fragments are received. Moreover, it
has existing Java code available [4]. However, the
downside of the algorithm is slow, although this
does not introduce much of a problem during the
evaluation when it is executed in a Pentium 4 class
PC. Another FEC implementation known as the
Tornado Codes [20] should be more desirable.
Unfortunately an existing piece of working code is
yet to be found. Although Tornado Codes uses a
probabilistic approach, where it does not guarantee
a 100% QoS in terms of tolerance level, it claims to
be a lot more efficient than the Reed–Solomon’s
approach.

3.3. The knowledgebase of discovered peers

DeMSI has to maintain the Peer Cache – a semi-
persistent knowledgebase of discovered peers for the
purpose of monitoring and selection of candidates
to be active serving peers. The name ‘‘semi-persis-
tent’’ comes from the fact that the Peer Cache does
not maintain a global collection of peers, although
the knowledge is stored in the file system for subse-
quent streaming sessions. Rather, the Peer Cache
maintains a limited number of candidates. When
DeMSI acquires knowledge of a new candidate peer



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 747
and the Peer Cache reaches the limit, the least
recently contacted candidate is removed. The
knowledge of a new candidate peer comes from
one of the two sources: either from the response
of a Peer Hunter’s hunting request, or the hunting
request from another peer.

DeMSI maintains a number of service level met-
rics for each peer in order to aid the peer selection
during the scheduling/re-scheduling processes, and
the decision by the Peer Monitor on whether a par-
ticular flow has to be re-scheduled. There are 2
groups of metrics: dynamic and static. The dynamic
metrics change over time, whereas the static ones
remain constant at least for the period of a stream-
ing session. Let Pj be a peer of ID j. The static met-
rics are as follows:

• First segment ID offered: sj, sj P 1.
• Number of segments offered: kj, kj P 1.

The dynamic metrics are as follows. In particular,
the first three metrics are obtained based on the
methodologies discussed in [3].

• Average net receive rate of content sub-stream:
Rj – this is the actual receive rate of content data
detected by the consumer. Let Rrecv,j be the his-
toric gross receive rate of peer j, and U be the
packet data utilization. The average net receive
rate is calculated as

Rj ¼ Rrecv;jð1� ljÞU
• Average loss rate of sub-stream packets:

lj:0 < lj 6 1 – the percentage of packets lost over
a number of packets supposed to be received
from Pj.

• Average round-trip time: Tj – this is the time
taken for a packet to take a consumer – Pj – con-
sumer round-trip.

• Average response time to a hunting request: tj –
the time taken between the sending of a hunting
request and the receipt of the corresponding
response from Pj.

• Inferred point of congestion: Gj – DeMSI detects
whether the sub-stream flows from the two of the
active serving peers share a congested link. Each
peer Pj from which the flows are inferred to share
the same congested link are put into a group Gj.
Please refer to Section 3.7 for details.

• Congestion index: Cj:0 6 Cj 6 1 – if there exist a
Gj for a peer Pj It indicates how congested the
shared link, that this peer is believed to be using,
is currently. The lower the value the less con-
gested. A Cj of zero indicates that the flows from
Pj are believed not to share any congested link
with flows from other active serving peers. The
value of Cj changes as the set of active serving
peers changes:

Cj ¼
X
j2}

Rj=ðRupmaxUÞ where } is the set of active

serving peers with the same Gj
3.4. Peer hunting

It is inherently necessary for DeMSI to look for
peers that carry the segment(s) of the content it
needs in a decentralized way. It is indeed a challenge
to look for hundreds of candidate peers at once.
Fortunately, this is not necessary since the Player
consumes the content one segment at a time over
a period, in ascending order. Peer hunting can be
performed for at least 2 segments at a time incre-
mentally. DeMSI works independently from the
resource discovery algorithms in order to promote
reuse, as there are many such technologies available
in the field [18,36].

The Scheduler and Re-scheduler agents rely on
the Peer Hunter agent to look for at least c candi-
date peers for each segment Si where

Xc

a¼1

Rcand½a� P Rcontent 8 cand½a� are dedicated

servers or subscriber peers

Rcontent is the minimum required aggregated content
consumption rate, cand[a] denotes the peer ID of the
ath candidate peer in the candidate list, and Rcand[a]

denotes the net receive rate of content sub-stream
from peer ID:cand[a]. At the beginning of a stream-
ing session, DeMSI refreshes and enriches the Peer
Cache by asking the Peer Hunter agent to find peers
that carry one or more of the k segments required by
the requested content. Whenever DeMSI is running
short of candidate peers that supply a particular
segment, such that it has to contact the publisher’s
dedicated servers for delivery whenever anyone of
the serving peers fails to satisfy its estimated net
content receive rate and loss rate, DeMSI will ask
the peer hunter agent again to find more peers that
carry one or more of the next h segments including
the current segment being delivered. This is known
as a repeated peer-hunting request. The number h

must be at least 2, and is determined such that it



748 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
is enough to fill up the segment cache of at least nmin

decoded fragments – which is also a threshold cache
level for DeMSI to determine whether it should in-
volve dedicated servers right away, without trying
other candidate peers, for delivery. Even though
the implementation of this algorithm is beyond the
scope of this project, the substrate must satisfy the
following requirements:

• As each peer stores the same set of segments for
every movie, the resource that the algorithm
needs to look for is segment.

• It is essential for the algorithm to find more than
c candidate peers for each segment requested, at
least one of which must be a publisher’s dedi-
cated server. If it manages to find only one candi-
date peer, it must be a dedicated server.

• It shall confine the scope of peer-hunting down to
the consumer’s local communities. The scope of
hunting may only be expanded upon a repeated
hunting request.

• It is preferred that the substrate to be capable of
estimating the candidate peer’s upstream band-
width in return. One way to achieve that is to
employ a fast packet-dispersion based estimation
method, such as SProbe [19] at the candidate peer
side. The estimation involves overhead of only a
few packets and a couple of round-trips of sev-
eral tens of miniseconds. For candidate peers of
which the upstream bandwidth cannot be esti-
mated and are new to the consumer, the
requested streaming rate Rreq when the peer is
selected, is initially Rup min – the minimum gross
upstream rate of the peer.
Fig. 3.5-1. Example of an aggre
Existing resource discovery substrates such as
Kelips [36] and Pastry [18] can be good candidates
to be the Peer Hunter agent, as they both have the
notion of locality in the search. However, further
enhancement on the substrate is unavoidable in
order to satisfy the requirements stated above and
be compatible with the DeMSI-Peer Hunter API.

3.5. Scheduler and segment cache

The Scheduler is an agent that co-ordinates peer
hunting and dispatches various streaming and peer
monitoring tasks to be carried out during the
streaming session upon request from the Player
agent. The media content is served in terms of an
aggregation of p sub-stream flows from p active
serving peers at a time where p > 0. Let actv(a)
denotes a function that returns the peer ID of ath
active serving peer. p is determined according to
the historic average net receive rate of content
sub-stream Ractv(a), 1 6 a 6 p of each selected peer.
As Fig. 3.5-1 shows, each active serving peer is
assigned a fraction of the segment to be delivered
to the consumer. The number of fragments to be
delivered is proportioned by

minðRactvðaÞa=Rcontent; 1Þ

where a : 0 < a < 1; a 2 R is called the re-scheduling
threshold. The use of aprevents the decision to re-
schedule from being too sensitive to noise from the
network and the statistical oscillations in calculation
of Ractv(a). The peers serve the assigned range of frag-
ments in parallel until the consumer instructs them
to stop. The total number of fragments ntotal,actv(a)
gated streaming scenario.



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 749
of segment Si to be delivered from all the active serv-
ing peers is based on the smallest of the tolerance
level, and the 2 times the highest loss rate (lmax)
of active serving peers such that

ntotal;actvðaÞ ¼ 1=ðqð1�minðlFEC;2lmaxÞÞÞ

When a fragment f of segment S is received from the
active serving peers via the Segment Receiver into
the Segment Cache, it is in FEC-encoded form. It
is only decoded after receiving n � 1 other frag-
ments of segment S. Therefore, the Segment Cache
contains both the encoded and decoded fragments.
A decoded fragment is removed from the Cache
after it is consumed by the Player.

Let tmax be the maximum time allowed for the
Peer Hunter to collect discovery responses from
the peers, and dmax be the worse case time taken
to decode a received segment. The Scheduler may
contact any type of discovered peers for streaming
if the number of received and decoded fragments
in the Segment Cache is larger than nmin where

nmin ¼ nþ ðtmax þ dmaxÞRcontent=q

Otherwise the Scheduler contacts only dedicated
servers for streaming. On the other hand, if the
number of fragments received in the segment cache,
decoded or not, is larger than the maximum number
of fragments allowed in the segment cache nmax,
where

nmax ¼ nmin þ hn;

the Scheduler pauses until the condition no longer
holds.

The segment next to the most recently delivered
one, or the first segment to be scheduled for delivery
in a streaming session is called the urgent segment.
There is only one urgent segment at any time of a
streaming session. The urgent segment is given pri-
ority in scheduling and re-scheduling processes.
The selection of candidate peers and scheduling of
streaming tasks for each segment is described in
the following pseudo-code:

1. fb = 0; fe = 0; lmax = 0;ntotal,i+1 = nFEC; //
where fb, fe denote first fragment ID, last frag-
ment ID to be scheduled for delivery,
respectively

2. For each segment Si,0 6 i < numSegments(Mv)
3. Get list of discovered peer candidates that

carry segment Si (excluding the ones tried in
previous round) sorted by subscriber first, C
ascending, R descending, online first, s

descending, k descending, l ascending, T

ascending, t ascending;
4. For each peer candidate Pj from the list until

all ntotal,i fragments have been scheduled or
end of list

5. If Si is not urgent & (Pj is a dedicated server or
Pj does not carry the urgent segment as well or
Cj > 0), continue with next candidate;

6. If Si is urgent and number of fragments deco-
ded 6 nmin & Pj is not dedicated server, con-
tinue with next candidate;

7. If no. of fragments decoded > nmin & Pj

is dedicated server, PeerHunter.

findPeers(Si,Si+1);
8. If Pj can be connected, wait until Rrecv �

min(Rup max,wRj) < Rdown max; Else continue
with next candidate; // Rrecv is the aggregated
gross receive rate; Rup max is the maximum
gross upstream rate from a peer; w is the
growth factor allowed for Rj;Rdown max is the
max allowed aggregated gross downstream
rate at the consumer;

9. fe ¼ fb þ nFEC minðRja=Rcontent; 1Þ; == 0 <
a < 1; a 2 R is the re-scheduling threshold

10. If request Delivery (Pj, fb, fe,Rj) is successful,
{fb = fe + 1; Re,i,j = Rj; ntotal,i = 1/(q(1 �
min(lFEC,2lmax))); Repeat from 3} else fe = fb;
// where Re,i,j is the estimated content receive
rate for the delivery request

11. End For;
12. If Si is not urgent, wait until Si is urgent;
13. If there are still fragments remained to be

scheduled, repeat from 3;
14. lmax = 0; ntotal,i+1 = nFEC;
15. End For;

For newly discovered peers, the consumer has only
the static service level information about the candi-
date serving peers discovered. The dynamic service
level information is mostly unknown except tj. Peers
offering the same segment are initially selected in
ascending order of tj, and if the candidate list is big
enough, the selection process avoids picking peers
that have the same first 24 bits of the IP addresses
except the first one in the sorted candidate list. The
intuition is that the longer the tj, the more probable
that the candidate is further from the consumer, the
more probable that the packet path encounters a con-
gested link. As it is common to allocate the last 8 bits
of the IP addresses to the same ISP, or in many cases,
to the same LAN of an enterprise, peers that have the



750 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
same first 24 bits of the IP address has quite a high
probability of sharing the same backbone that may
be of limited capacity. A special case of that is when
there are peers that have the same IP address, that
probably suggests they are behind the same fire-
wall/NAT that may introduce bottleneck. All
selected candidate peers that are new are initially
allocated the request streaming rate Rreq equals to
Rup min, except in the case where the Peer Hunter
agent supports rate estimation as discussed in
Section 3.4. This is also the basis for the estimated
net content receive rate Rj = Rup min(1 � lj)U. As
the sub-stream flow arrives the consumer node, the
rest of the dynamic service level metrics can be
collected.

3.6. Segment receiver

While the Scheduler agent schedule the streaming
of content segment by segment, the Segment Recei-
ver agent listens to the UDP port for streams of frag-
ments from the active serving peers. It parses each
packet received and updates any dynamic service
level information: Rj, lj ,Tj of the source peer data
object Pj whenever applicable. The timestamps from
both the origin and the receiving end are stored if the
packet contains either a round-trip-time reply or a
probe for inference of shared congestion points.
Please refer to Section 3.7 for details.

In an event of changing packet loss rate and/or
round-trip time for the sub-stream flow from Pj,
the Segment Receiver adjusts the upstream rateRreq,j

according to the renewed calculation of the TCP

friendly rate [3] based on round-trip time and packet
loss rate. This congestion control mechanism ensures
that both the round-trip time and the loss rate can be
under control. The peer Pj is informed of such change
only regularly by the Peer Monitor as discussed in
Section 3.7. We fine-tune the TCP friendly rate equa-
tion in order to allow a slightly more aggressive
streaming rate allocation in the expense of a slightly
higher delay to reach its equilibrium state

Rreq;j ¼
q

UðT j

ffiffiffiffiffiffiffiffiffi
2000lj

3

q
þ 12T j

ffiffiffiffiffiffiffiffiffi
3000lj

8

q
ljð1þ 32l2

j ÞÞ
Fragments received are left untouched in FEC-
encoded form initially and stored into the Segment
Cache. They will be decoded, consumed by the
Player, and finally purged from the cache at a later
time. Please refer to Section 3.5 for more detail
about the arrangement of received fragments in
the Segment Cache.
We anticipate that the future version of the
Segment Receiver will also handle the reception of
segments of a new content re-distributed from other
peers, and co-ordination of the archival process
with the Storage Manager.
3.7. Peer monitor

The Peer Monitor agent invokes itself regularly
by a fixed interval. It performs the following tasks
at each execution for each active serving peer:

1. The sending of a request for measurement of
round-trip-time between the consumer and the
active serving peer. The request is sent once per
second except at the first two seconds of a session
with a particular peer, the evaluation frequency is
at 4 at the first followed by 2 at the second in
order to reduce the extra delay in response
occurred in the initialization stage at the peer
side.

2. As the loss rate of a peer is usually well below the
FEC tolerance level, it is a waste of network
resource to have all the redundant fragments
delivered in order to support the tolerance level.
Therefore, the Scheduler usually does not sche-
dule all the redundant fragments to be delivered
to the consumer. However, when the loss rate of
an active peer goes beyond the rate estimated at
the time of scheduling, the Peer Monitor will
assign an instance of the Re-scheduler agent to
schedule another group of candidate peers to deli-
ver the remaining redundant fragments of the seg-
ment. This task is performed once a second.

3. Examination of the dynamic service level infor-
mation at an interval of one per second. The Peer
Monitor informs the Re-scheduler to re-schedule
the delivery of a range of fragments [fb, fe] upon
encountering one of the following events from
an active peer Pj:
• When the renewed TCP friendly rate

Rreq,j < Rup min.
• When the current net content receive rate Rj is

smaller than the estimated content receive rate
of the current delivery request: Re,i,ja.

• When an active serving peer goes offline
suddenly.

• When lj > min(lFEC,2lmax).

4. Inference of network congestion points possibly

shared by the sub-stream flows, as discussed
below.



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 751
The peer selection technique being used by
DeMSI employs a network congestion avoidance
strategy. In order to achieve the goal, DeMSI has
to have knowledge about the path of the sub-stream
flow from each peer such that the hop-links that
shared by two or more sub-stream flows can be
identified. Recent works [15,16,21] indicate that
the inference of fine-grain knowledge such as net-
work topology takes too much time to converge
even for a small network consisted of a few peers.
DeMSI has to visit a diverse selection of candidate
peers over the course of the streaming due to the
decentralized storage of content segments. The
adverse effect of having a particular group of peers
streaming through the same congested link of the
network becomes less significant as each sub-stream
flow is likely to be short-lived. The inference of
coarse-grain knowledge such as shared congestion
points [17,1,2] of the network is enough for the pur-
pose. The short period of convergence is what
DeMSI requires, as a sub-stream flow from each
peer is often short-lived. A life span ranging from
1 to 5 s out of a segment of 10-s playing time is typ-
ical. It can be worked around by forcing a peer to
deliver at least 2 segments consecutively, but this
significantly reduces the flexibility to scale the stor-
age offering from a subscriber. Another challenge
for DeMSI to implement a congestion based infer-
ence algorithm is the need to have packets flow at
the same time, from the peers to be correlated, for
the period of correlation. As it is impossible to cor-
relate a large number of candidate peers (in the
order of hundreds) before the selection process can
even start, the knowledge is accumulated incremen-
tally during a streaming session.

Our inference algorithm extends Rubenstein’s
method of determining whether two flows share a
congested link by correlation test on packet delay
samples [1]. The Peer Monitor regularly performs
pair-wise correlation of sub-stream flows from the
set of active serving peers once every second to
determine whether there are any two peers share a
congested link. The mappings between the peers
and the congested links are kept across streaming
sessions. This is made possible by measuring the
correlation of time spacing between adjacent probe
packets, spaced apart by time xx > 0 from two
sub-streams (in terms of a cross-correlation coeffi-
cient Mx) and the correlation of time spacing
between successive probe packets, spaced apart by
time xa > xx from one of the two sub-streams (in
terms of an auto-correlation coefficient Ma). When
Mx > Ma, the sub-streams share at least one con-
gested link. Otherwise they do not. The idea is that,
there are two sub-streams of packet flow where the
time spacing between successive probe packets
within a flow is a poisson random variable of mean
k. When they flow through a pipe with a service rate
larger than their aggregated rate, the time spacing
between packets should remain pretty much the
same as they do not queue up. Therefore the time
spacing remains poisson – hence uncorrelated. In
contrast, when the probe packets of the two sub-
streams travel through a congested link, the time
spacing between adjacent probe packets from two
sub-streams is shorter than that between successive
probe packets of one sub-stream. The spacing
between the probe packets no longer follows the
poisson distribution due to the fact that they now
follow the same independent-identically distributed
general distribution as that of the congested link’s
service rate, which introduces correlation in the
spacing between packets of the sub-stream flows.
The delay of each probe packet is calculated using
the timestamps from both the origin and the receiv-
ing end. As Rubenstein’s correlation test algorithm
assumes no network layer path diversity in the
topology used by the flows, the same assumption
applies to our inference algorithm.

Here is how the active serving peers are grouped
together by point of congestions identified incre-
mentally during a streaming session. At the very
beginning, the Peer Monitor assumes no peers share
any congested links. When the sub-stream flows
from active peer P1, P2 are found to share a con-
gested link, a group g1 that represents a point of
congestion is created. P1, P2 are then inserted into
that group. Later in the streaming session, P1 no
longer delivers but P3 starts delivery. The Peer
Monitor takes the duration of time d, or d/k probes
in each sub-stream to find out that P2, P3 share a
congested link. Knowing that the flow paths from
the peers converge as they approach the consumer,
and the paths usually remain unchanged for at least
a day [9], it is quite safe for our algorithm to adopt
a transitive induction approach to relate a new
inference to existing ones inferred minutes before.
Therefore, P3 joins g1 as a result because P2 belongs
to g1.

Now let us assume there is another group g2

formed with members P7, P8, P9 in another stream-
ing session. P2 is no longer an active peer but P1, P8,
and they are found to share a congested link. Since
P1 belongs to g1, P8 belongs to g2, and g2 has more



752 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
members than g1. g1 is deleted and the members of
g1 are moved to g2 as a result.

The inference algorithm of the Peer Monitor
employs a conservative approach in determining
whether the two sub-stream flows are routed
through a congested link. In other words, the infer-
ence algorithm would rather return false negative
(determine the sub-stream flows do not share a con-
gested link but they actually share one) than false
positive. Both types of error have an adverse effect
on the inference accuracy. False negatives lead to
increasing probability of selecting peers that share
a congested link into the set of active serving peers.
However, false positives lead to lower utilization of
peers that do not shared a congested link as well as
the adverse effect of false negatives. First let us
denote Mx�1,2 as the cross-correlation coefficient
resulted from the calculation of delay samples from
P1 against those from P2. Ma�1 is the auto-correla-
tion coefficient resulted from the calculation of
delay samples from P1. When two sub-stream flows
from active peer P1, P2 are found to be correlated
(share a congested link) initially by testing whether
Mx�1,2 > Ma�1, the sub-streams is then re-tested
on whether Mx�2,1 > Ma�2. Second, our experi-
ments indicate that false positives often result when
Ma is small, which implies that the flow itself is unli-
kely to be congested by any hop-links it traverses
though. Therefore, our algorithm considers P1, P2

to be correlated only if they pass both tests on
correlation coefficients, and if min(Ma�1,Ma�2)
P d. If they pass the two-sided correlation tests
but min(Ma�1,Ma�2) < d, no conclusion is made
and the outcome of the comparison is ignored.
Otherwise, they are considered uncorrelated. Exper-
iments showed that the combined use of the two-
sided correlation tests and the avoidance of small
Ma had significantly reduced the chance of getting
false positives. The downside is that it also slightly
increases the chance of getting false negatives.
Another case is if two active peers are found to be
uncorrelated but they have been allocated in the
same group, they will be both removed from that
group according to the philosophy of the conserva-
tive approach.

3.8. Re-scheduler

Network conditions in terms of dynamic service
level metrics and the peer availability change over
time. Although the trend on time-series usually fol-
lows a pattern [22,23], when it comes to very short
and immediate terms, the changes occur by random
quantities at random time possibly within a range
bounded by the trend. It is crucial for DeMSI to
be reactive of random adverse changes in a timely
fashion, by assigning additional peers to rectify
the lagging aggregated streaming rate and time-to-
play deadlines. This is where the Re-scheduler agent
comes into play. There can be multiple instances of
Re-scheduler agent each of which takes care of a re-
scheduling task concurrently for various ranges of
fragments to be received.

Assuming that there is an active serving peer Pactv

which is delivering fragments up to fcurr,0 of segment
Sdr(0), where dr(0) denotes the segment ID of the
delivery request r = 0 currently being served. It
has been scheduled to deliver up to fragment fe,0

but the Peer Monitor has detected an event that
requires re-scheduling. The role of the Re-scheduler
is to find and schedule another candidate peer that
is suitable for assisting Pactv to deliver the range of
outstanding fragments. The algorithm for the
Re-scheduler takes a highly adaptive divide-and-
conquer approach. Firstly, as Pactv is still delivering
the fragments at a slower than expected rate, the
range of outstanding fragments is re-scheduled to
be delivered by another peer Pj in a reversed direc-
tion of the current sub-stream by Pactv in order to
avoid repeated delivery of the same fragments. Sec-
ondly, as it cannot assume that Pj can assist Pactv

within the newly estimated time frame, the re-sched-
uling algorithm simply treats this new schedule as
another smaller delivery request rj which is assisting
the original one ractv scheduled to Pactv. In other
words, the algorithm may locate another peer to
assist rj. We call this the ‘‘spiral’’, or recursive
divide-and-conquer re-scheduling strategy. Like
the Scheduler, the re-scheduling algorithm has a
notion of the ‘‘urgent segment’’, which is the seg-
ment next to the most recently delivered one. The
key implication of the urgent segment in the per-
spective of the Re-scheduler is that any active serv-
ing peers will be called upon if they have a copy of
the urgent segment, unless they are serving some
other fragments of the urgent segment. In other
words, even though the peer is delivering a non-
urgent segment, the peer will be preempted to serve
the urgent segment first as instructed by the
Re-scheduler.

The pseudo-code for re-scheduling is as follows.
Fig. 3.8-1 illustrates an example on how a delivery
request is re-scheduled, in a spiral fashion, to be
carried out by another peer.



Fig. 3.8-1. An example to show the Re-scheduler at work – a delivery request is re-scheduled in a spiraling divide-and-conquer fashion.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 753
1. r = 0; This is round 1 of the workflow;
2. For each Sdr(r) in delivery request r scheduled

for the active serving peer Pactv

3. If this is round 1, Get list of discovered peer
candidates that carry segment Sdr(r) (excluding
Pactv & others tried in previous round for the
same delivery request) sorted by subscriber first,
online first, C ascending, l ascending, Rdescend-
ing, s descending, k descending, T ascending, t

ascending;
4. If this is round 2, Get list of discovered peer

candidates that carry segment Sdr(r) (excluding
Pactv & others tried in previous round for the
same delivery request) sorted by subscriber first,
offline first, C ascending, l ascending, R ascend-
ing, s descending, k descending, T ascending, t

ascending
5. For each Pj from the list until end of list
6. If this is round 1 & Pj is offline, {re-sort the list

of discovered candidates by subscriber first, off-
line first, C ascending, l ascending, R ascending,
s descending, k descending, T ascending, t
ascending; The workflow is now in round 2;
go to 5};
7. If this is round 2 & Pj is online
8. If r is 0 & Sdr(r) is not an urgent segment,
9. Wait until Sdr(r) becomes urgent; The workflow

is now back to round 1;
10. Repeat from 3;
11. Else go to 33; // It means that the Re-scheduler

has run out of candidates. Pactv has to be on it
own!

12. End If;
13. End If;
14. If r is 0 & Sdr(r) is not an urgent segment & (Pj is

a dedicated server or Pj does not carry the
urgent segment as well or Cj > 0), continue with
next candidate;

15. If size of segment cache <nmin & Pj is not a ded-
icated server, continue with next candidate;

16. If Pj can be connected, wait until Rrecv � min
(Rup max,wRj) < Rdown max; Else continue with
next candidate;

17. D ¼ fe;r � fcurr;rjj ; // D is the number of frag-
ments left to be delivered – 1

18. g ¼
0; if D ¼¼ 0
�1 fe;r�fcurr;r

jfe;r�fcurr;r j ; otherwise

� �
// g2{�1,0,1}

is the unit-direction multiplier to indicate the



754 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
direction of streaming for the new schedule.
That is, the opposite of the direction for the cur-
rent schedule.

19. Rres = min(Rcontent, (D + 1)q/sleft); // Rres is
the new content stream rate required from the
candidate; sleft = max(1, (1/Rcontent) �
selasped � 1) is the time left for fulfilling the
delivery of this range of fragments; selasped is
the time already spent on the delivery of the cur-
rent fragments range

20. fb�new = fe,r;
21. fe�new = fb�new + gDmin(Rj�cand a/Rres,1);
22. If requestDelivery (Pj, fb�new, fe�new,Rj) is

successful
23. If current active peer is still online
24. Inform the current active peer to deliver up to

fragment fe�new + g;
25. Renew the estimated net content receive rate of

the current active peer Re�actp ¼ minðRcontent;
ð fe�new þ g� fcurr;rj j þ 1Þq=ðsleftaÞÞ;

26. Go to 34;
27. Else
28. If gfe�new < gfcurr,r, {fe,r = fe�new + g; go to 3}
29. End If;
30. Go to 34;
31. End If;
32. End For;
33. If r is 0 & tried all Pj & Sdr(r) is not urgent,

{Wait until Sdr(r) becomes urgent; The workflow
is now in round 1; go to 3};

34. If Pj is still online, quit;
35. End For;

A more aggressive extension for scheduling/re-
scheduling algorithm is to maintain an idle connec-
tion with a redundant peer after each segment is
scheduled for delivery by the Scheduler, and after
an outstanding delivery request is re-scheduled by
the Re-scheduler. This strategy moves the time-con-
suming socket connection process to an earlier time
before the failure event occurs. This ensures a
smooth transition in the case of an emergency
switch-over such as when an active serving peer
goes offline while the streaming is in progress.
One way to implement this is to have the Sched-
uler/Re-scheduler spawn a separate thread, which
tries to establish a TCP connection with the next
candidate peer in the sorted list until one of them
is connected. This peer only serves as a stand-by
when there is no re-scheduling activity. Otherwise,
the Re-scheduler agent spawned at a later time
may communicate with the redundant peer right
away without the need to make a prior TCP con-
nection. When the redundant peer is consumed,
the Scheduler/Re-scheduler has to locate another
one immediately in case of subsequent use. In the
case where the candidate list is exhausted or left
with only dedicated servers, the thread approaches
the peer hunter to discover more peers that carry
the segment it needs before the trial connection pro-
cess can continue.

3.9. Segment Sender

The Segment Sender agent is responsible for the
delivery of segment in part or in whole, in terms
of a sub-stream of fragments as per delivery request
from the consumer. Fragments can be streamed in
either forward or backward sequence in order to
be compatible with the re-scheduling algorithm.
The streaming in progress may be preempted by a
subsequent delivery request from the Re-scheduler,
if it is requesting a segment of which the ID is smal-
ler than the current one in delivery. The Segment
Sender also handles round-trip-time request token,
and the generation of probes as required by the Peer
Monitor for the inference of congestion points. The
probes are generated such that they are spaced apart
by xwhere x is a poisson random variable with
mean k. The round-trip-time reply and the probe
are piggybacked onto the sub-stream packet. As
every sub-stream packet contains timestamps at
the origin and receiving end, the probe does not
introduce any additional overhead. It is distin-
guished from a normal sub-stream packet by simply
flipping the packet ID field to a negative value.

We anticipate that the future version of the Seg-
ment Sender will also participate in the new content
re-distribution process. Its role will be to deliver the
whole segment to other peers.

4. Performance evaluation

We evaluate DeMSI under a simplex (one-way)
network as shown in Fig. 4-1 emulated by the NS-
2 network simulator [25]. The network is made up
of eight hop-links. Each cloud represents a combina-
tion of 3 Pareto traffic sources as cross-traffic. In par-
ticular, each of the clouds c1, c4, c5, c8 also contains
3 CBR traffic sources. Pareto sources are good
approximation of the web traffic that is self-similar,
whereas CBR sources are to approximate other
long-lived streaming traffic. To simulate the asym-
metric upstream/downstream bandwidth offered by



Fig. 4-1. Configuration of the simulated network for performance evaluation.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 755
mainstream ADSL modems of today, every peer is
offered a 32 kB/s connection to the network. On
the other hand, the consumer has a 192 kB/s connec-
tion to the network. The maximum gross upstream
rate Rup max offered by each peer is also set to
32 kB/s. In other words, assuming the cross-traffic
arrives at its maximum rate allowed at its link, each
of the four tight hop-links: r1–r9, r4–r9, r5–r9, r8–r9
allows at most one peer streaming at maximum rate,
while another is streaming at marginally less than the
maximum rate simultaneously. Although every link
has the same propagation delay of 1ms, the band-
width allocated to each link, the average rate of each
cross-traffic source, and the shape parameter of each
Pareto traffic source is different in order to promote
heterogeneity. As the flow of the control packets is of
low volume and the control packets are small in size,
the impact of control flow delay and its difference
between the consumer and each peer is insignificant
relative to the difference in delays of the sub-stream
flows. Therefore we focus on emulating the down-
stream paths (towards the consumer) of the network.

Fig. 4-2 illustrates how the system is set up for
the experiments to be carried out for evaluation.
We split the peers into 2 groups of 10. One group
consists of peers with odd peer ID numbers, while
another group consists of peers with even numbered
peer IDs. Each group is assigned to be executed on a
Pentium 4 2 Mhz class workstation. The consumer
peer is executed on one of the two workstations.
Since we emulate a network in real-time using NS-
2, we assign the third workstation for the NS-2
exclusively. NS-2 has to be executed in real-time
mode under Windows XP such that it can catch
up with the events occurring in real-time. Normally,
during the scheduling or re-scheduling process, the
consumer tries to establish a TCP connection with
the selected candidate peer before the control flow,
consists of delivery requests and round-trip-time
requests, commences. The candidate peer becomes
an active serving peer by pushing directly to the
consumer a sub-stream flow of content fragments
on UDP packets. Under the NS-2 scenario, the
way to establish TCP connections remain as nor-
mal. However, UDP flows are emulated. The
UDP packets from an active serving peer are sent
to the NS-2 workstation as if it is the consumer.
NS-2 eventually forwards most UDP packets to
the real consumer at emulated rates and with emu-
lated delay. Some packets are not forwarded due
to emulated packet loss occurred in the middle of
the network.

We have implemented a prototype of DeMSI
which includes a Player with a progress monitor
user interface as shown in Fig. 4-3. Although a
DeMSI peer is both a consumer and a content ser-
ver, we have implemented a prototype that supports
an optional serving-peer-only execution. With this



Fig. 4-2. Physical system configuration for performance evaluation.

756 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
option, the consumer related components including
the Player and its user interface, Segment Receiver,
Scheduler, Re-scheduler and the Peer Monitor are
turned off. The process under this execution option
is compact enough to allow multiple instances of it
to be executed on the same workstation for evalua-
tion purpose. The prototype is implemented in Java
1.4.2 with Java Media Framework 2.1.1. The per-
ceived dynamic service level statistics: Rj, lj, Tj,
and number of active serving peers are collected
and written into a file once a second for further
analysis. On the other hand, each claim and peer-
point of congestion mapping update resulted from
a pair-wise flow correlation test is written into a file
whenever it becomes available.

We encode a small portion of a video clip using
MPEG-1 with a constant consumption rate Rcontent

of 100 kB/s for evaluations. We use a rather legacy
MPEG-1 format simply due to the constraint of the
Java Media Framework that we have leveraged on a
quick implementation of the primitive Player agent.
The clip consists of 25 10.24-s segments. Each seg-
ment that is ready to play contains 1024 fragments.
The size q of each fragment is 1kB. The data utilizes
96% of a stream packet on average. We use a toler-
ance level lFEC of 0.2 for the FEC such that each
segment encoded with FEC contains 1280 frag-
ments. The Peer Hunter agent has been imple-
mented as a stub that simply reads from an XML
formatted file a pre-defined list of candidate peers
as if they are discovered as per hunting request. In
order to ensure the congestion occurs in the experi-
ments, each candidate j is assigned the following
every time when DeMSI is started:

Rj ¼ Rup maxð1� ljÞU ; lj ¼ 0:001;

T j ¼ 1 ms; tj is assigned a random value

When DeMSI is started, it has no knowledge of con-
gestion information. Therefore, the initial selection
of peers is essentially by random. We use the a of
0.84 for all experiments such that if peers deliver
at Rup max, the Scheduler will schedule four peers
to stream. Segments are distributed to peers evenly.
Each segment Si, 5 6 i 6 19 is distributed to eight
peers. Each segment Si, 0 6 i 6 4, 20 6 i 6 24 is
distributed to four peers. Four peers are dedicated
servers. Table 4.1 provides the details of the
assignment.

4.1. Finding the optimal parameters for

correlation tests

First, we survey a range of parameter value pairs:
poisson probe rate and correlation time, in order to
find out the optimal combination for the point-of-
congestion inference algorithm under DeMSI’s



Fig. 4-3. DeMSI player UI showing the progress bars (shown in green) of each sub-stream flow and the inferred POC on the lower-right
(shown in grayish red). Each blue number shown within a POC block represents the ID of a peer believed to have pushed sub-stream
through that POC. A blue number tuple separated by a colon represents hID of the peer from which the sub-stream is deliveredi:hID of the

fragment to be receivedi. The black numbers represent the start and end points of a sub-stream expressed in fragment ID. (For
interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

Table 4.1
Distribution of segments to peers

Peers Segments assignment

P0, P5, P10, P15 S0 . . .S24 (dedicated server)
P1 . . .P4 S0 . . .S9

P6 . . .P9 S5 . . .S14

P11 . . .P14 S10 . . .S19

P16 . . .P19 S15 . . .S24

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 757
aggregated streaming scenario. For each parameter
pair, we start DeMSI and play the video two times
in a row. Then we restart DeMSI and play the video
two times again. Each positive claim (where two
flows share a point of congestion) from the pair-wise
comparison of flows is verified against the actual
network topology. Each playback typically gener-
ates tens of positive claims and the number of posi-
tive claims decreases in subsequent playback
without quitting DeMSI. The reason is that as
DeMSI accumulates knowledge of where the con-
gestion points are, it avoids visiting more than one
peer in each partially identified group. Hence the
chance of getting positive claims decreases. Our
experience is that the number of positive claims gen-
erated out of the third playback in the same DeMSI
session is of little statistical value. This survey is also
helpful for us to determine an optimal value to use.
We have tested a range of correlation time between
2 and 8 s. The results basically exhibit a trade-off
between accuracy of inference and number of posi-
tive claims during a playback. Accuracy improves as
the correlation time increases, but the rate of
increase is very small when the correlation time is
more than 5 s. On the other hand, the number of
claims decreases at a converging rate as the correla-
tion time increases. This is expected because the
sub-stream flow from a peer is short-lived. The
probability of having two peers stream together
for as long as the correlation time decreases as the
correlation time increases. Therefore, we have nar-
rowed down the survey to correlation time between
3 and 5 s. The d of 0.2 is determined. We first try a
few variety of the mean probing rates with fixed



758 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
correlation time of 4 s. This survey is conducted
under the network topology as shown in Fig. 4-1
but without cross-traffic. The congestion in the
hop-links r1–r9, r4–r9, r5–r9, r8–r9 is made possible
by a reduction of bandwidth to 64kB/s instead. The
result suggests an obvious increase in accuracy as
the probing rate increases, perhaps except that the
accuracy of claims for the probing rate of 10 is
slightly less than that for the probing rate of 8, with-
out d filtering. This is possibly due to statistical arti-
fact resulted from a small number of samples in the
survey. Table 4.1-1a shows the result of the survey.

Despite of the fact that an increase of probing
rate increases the accuracy, we stop at the probing
rate of 10/s. Since the probes is sent in-band with
the sub-stream flow, the probing rate is directly pro-
portional to the minimum gross upstream rate such
that

Rup min ¼
q

Uk

A probing rate of 10 translates to 10.4 kB/s accord-
ing to our configuration. A further increase of
Rup min reduces the coverage of low-end broadband
community where the upstream bandwidth of each
connection can be as low as 16 kB/s.

This accuracy figures as shown in Table 4.1-1a
are particularly discouraging. However, when the
congestion is partly due to cross-traffic, the accuracy
improves significantly as shown in Table 4.1-1b. We
change the focus on surveying a variety of correla-
tion times but fix the probing rate at 10/s. Fortu-
Table 4.1-1a
Implications of increasing probing rate and the use of d using the corr
used

Probing
rate (/s)

Interval b/w
correlation tests
(no. of probes)

Total no. of correct
positive claims

No. of correc
claims survive
d filtering

5 20 45 26
8 32 44 27

10 40 52 41

Table 4.1-1b
Implications of increasing correlation time and the use of d using the pro
used

Correlation
time (s)

Interval b/w
correlation
tests (no. of probes)

Total no. of
correct positive
claims

No. of correc
claims survive
filtering

3 30 125 108
4 40 100 93
5 50 52 47
nately, the network with cross-traffic resembles the
internet more closely than the network without
cross-traffic.

4.2. Efficiency of scheduling and re-scheduling

processes

This section provides more insights about the
performance of the streaming task scheduling and
re-scheduling algorithms. The objectives of the eval-
uation are as follows:

1. To show that the concept of the proactive peer
selection algorithm based on congestion avoid-
ance is useful under DeMSI’s decentralized stor-
age scenario.

2. To show how our reactive re-scheduling algo-
rithm enhances the performance of any proactive
scheduling strategies.

In order to achieve the first objective, the algo-
rithm has to be independent of its underlying infer-
ence algorithm. That is, the pair-wise flow
correlation test algorithm by Rubenstein [1]. The
experiment has to assume that the inference algo-
rithm is 100% accurate on the point-of-congestion
inference such that it can show how well the concept
works when it is compared against the peer selection
based on end-to-end bandwidth measurement [15]
(or ‘‘best-bandwidth-first’’ as we refer to in the
remaining of this paper). We achieve such indepen-
dence by injecting the correct peer-point of conges-
elation time of 4 s – the network topology without cross-traffic is

t positive
d after

Total no. of
positive claims
incl false positives

Accuracy, accuracy
with d filtering
(col 3/col 5, col 4/col 5)

119 0.378, 0.218
74 0.595, 0.365
91 0.571, 0.451

bing rate of 10/s – the same network topology with cross-traffic is

t positive
d after d

Total no. of positive
claims incl false
positives

Accuracy, accuracy
with d filtering
(col 3/col 5, col 4/col 5)

162 0.772, 0.667
115 0.870, 0.809
60 0.867, 0.783



3.5

4

4.5

5

5.5

6

6.5

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191 201 211

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs
AC-ideal-nores
BW-nores

Fig. 4.2-1a. Average number of active serving peers (sub-streams) – aim for less.

Table 4.2-1
Notations to be used in Figs. 4.2-1–4.2-8

Notations

AC-ideal-nores Peer selection by ideal congestion avoidance
without Re-scheduler

AC-ideal Peer selection by ideal congestion avoidance
with Re-scheduler

AC-nores Peer selection by congestion avoidance using
correlation tests without Re-scheduler

AC Peer selection by congestion avoidance using
correlation tests with Re-scheduler

BW-nores Peer selection by best-bandwidth-first without
Re-scheduler

BW Peer selection by best-bandwidth-first with
Re-scheduler

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 759
tion mappings into the data structure of the Peer
Cache and Peer Monitor agents, before the stream-
ing session starts. We override the correlation test
algorithm completely in this experiment. We then
repeat the experiment and present the comparison
using the correlation test algorithm.

In addition, we turn off most Re-scheduling func-
tionalities except the handling of active serving
peers going offline, and the handling of loss rate
exceeding lFEC. In other words, the streaming ses-
sions in this experiment relies almost completely
on proactive scheduling of streaming tasks except
in the event that requires emergency switch-over.
As a reminder, the Scheduler agent schedules
streaming tasks mainly at the beginning of a seg-
ment delivery. The partitioning of a segment is
revised only when it proceeds with the next segment.
We run the experiment under the network topology
with cross-traffic as shown in Fig. 4-1. The experi-
ment involves running and quitting the DeMSI
Player for 5 times. Each time the Player plays the
video for 3 repetitions without quitting DeMSI.
We repeat the experiment for each of the following
configuration:

1. Peer selection based on end-to-end bandwidth.
2. Peer selection based on congestion avoidance

with ideal inference simulation.
3. Peer selection based on congestion avoidance

with correlation test algorithm.

We also work on the second objective in this
experiment by repeating for each of the above con-
figuration with the Re-scheduler fully enabled.

The dynamic service level statistics of each active
peer is aggregated and extracted once a second dur-
ing the playback. The statistics from the 5 runs are
aligned by the repetition number and the elapsed
time of the playback. Each record of statistics from
the 5 runs over the same elapsed timeline and repe-
tition number are averaged.

Figs. 4.2-1a, 4.2-2a, 4.2-2c, 4.2-3a and 4.2-3c
show how far the peer selection based on congestion
avoidance can go ideally. The notations being used
in Figs. 4.2-1–4.2-8 are described in Table 4.2-1.
Under the congestion avoidance selection strategy,
the average number of active serving peers (hence
number of sub-streams) scheduled by the consumer
at almost any time of the playback is lower than
those scheduled by the consumer using selection
based on end-to-end bandwidth. The average utiliza-
tion of each active serving peer is also higher than
that its bandwidth-based counterpart at almost any
time of the playback. Likewise, the consumer using
selection based on congestion avoidance yields lower
average round-trip-times between the consumer and
peers, than the consumer using selection based on
end-to-end bandwidth. As expected, the lower aver-
age round-trip-times lead to lower average loss rates
than the counterpart, as shown in Figs. 4.2-4a and



3.5

4

4.5

5

5.5

6

6.5

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191 201

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs
AC-nores
BW-nores

Fig. 4.2-1b. Average number of active serving peers (sub-streams) – aim for less.

3.5

4

4.5

5

5.5

6

6.5

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191 201

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs

AC-ideal
BW-nores

Fig. 4.2-1c. Average number of active serving peers (sub-streams) – aim for less.

3.5

4

4.5

5

5.5

6

6.5

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs

BW-nores
AC

Fig. 4.2-1d. Average number of active serving peers (sub-streams) – aim for less.

760 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
4.2-4b. There is one characteristic in common. That
is, the difference in performance between the two
selection strategies, in terms of any type of statistics,
converges towards the end of the playback. This is
because there are only 4 peers available to deliver
the last 5 segments: S20 . . .S24, and 3 peers out of 4
share the same hop-link. As the Segment Cache
has accumulated a considerable amount of frag-
ments towards the end of the streaming session,
the Scheduler does not need to contact the dedicated
servers for help. As a result, the same set of peers is
selected for the delivery of the last 5 segments
regardless of the selection strategy. Hence the differ-
ence in performance converges towards the end.

However, when we compare the average aggre-
gated net content receive rates between the two



3.5

4

4.5

5

5.5

6

6.5

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs
BW

BW-nores

Fig. 4.2-1e. Average number of active serving peers (sub-streams) – aim for less.

3.5

4

4.5

5

5.5

6

6.5

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs

AC-ideal-nores
AC-ideal

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191 201 211

Fig. 4.2-1f. Average number of active serving peers (sub-streams) – aim for less.

3.5

4

4.5

5

5.5

6

6.5

elasped time (s)

av
er

ag
e 

no
. o

f s
er

vi
ng

 p
ee

rs

AC-nores
AC

1119181713121111 6141 51 101 121 131 141 151 161 171 181 191 201

Fig. 4.2-1g. Average number of active serving peers (sub-streams) – aim for less.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 761
selection strategies, as shown in Fig. 4.2-5a and 4.2-
5d, the figures achieved by the peer selection based
on congestion avoidance are lower than those
achieved by the selection based on end-to-end band-
width. It is indeed the case that the consumer
employing the congestion avoidance selection strat-
egy takes longer than the one employing the best-
bandwidth-first strategy to finish streaming. This is
largely due to the phenomenon of diversity on peer
revisit. The selection of peers by best-bandwidth-
first promotes diverse selections on subsequent revi-
sit of previously used peers that have encountered
congestion before. This can be illustrated by an
example. When peers sharing a congested link are
selected and scheduled to stream, their end-to-end
bandwidths perceived by the consumer decrease



18

19

20

21

22

23

24

25

26

27

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191 201 211

elasped time (s)

av
er

ag
e 

ne
t u

ps
tr

ea
m

 r
at

e 
(k

B
/s

)

AC-ideal-nores
BW-nores

Fig. 4.2-2a. Average net content upstream rate of active serving peers – aim for more.

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191 201

elasped time (s)

18

19

20

21

22

23

24

25

26

27

av
er

ag
e 

ne
t u

ps
tr

ea
m

 r
at

e 
(k

B
/s

)

AC-nores
BW-nores

Fig. 4.2-2b. Average net content upstream rate of active serving peers – aim for more.

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191 201
18

19

20

21

22

23

24

25

26

27

av
er

ag
e 

ne
t u

ps
tr

ea
m

 r
at

e 
(k

B
/s

)

AC-ideal
BW

elasped time (s)

Fig. 4.2-2c. Average net content upstream rate of active serving peers – aim for more.

762 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
considerably. When the next segment delivery is due
to be scheduled, the selection of alone is no longer
enough. Thus the selection algorithm adds two
more peers: which apparently have similarly slow
end-to-end receive rate perceived by the consumer
during the previous playback, due to a previous
selection of P5, P6, P7, P8 which share another con-
gested link. Now since only P6, P7 are selected, the
actual receive rate increases considerably from the
original estimate. The outcome is an increase of
aggregated receive rate from the selection: P0, P1,
P2, P3, P6, P7. The larger the set of active peers
selected, the higher the chance of encountering such
a phenomenon. In contrast, the congestion avoid-
ance selection tends to avoid fluctuations in per-
ceived end-to-end receive rate. Unless the peer has



1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191
18

19

20

21

22

23

24

25

26

27

av
er

ag
e 

ne
t u

ps
tr

ea
m

 r
at

e 
(k

B
/s

)
AC
BW

elasped time (s)

Fig. 4.2-2d. Average net content upstream rate of active serving peers – aim for more.

40

45

50

55

60

65

70

75

80

ro
un

d-
tr

ip
-t

im
e 

(m
s)

AC-ideal-nores
BW-nores

elasped time (s)

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191 201 211

Fig. 4.2-3a. Average round-trip-time between the consumer and the active serving peers – aim for less.

40

45

50

55

60

65

70

75

80

ro
un

d-
tr

ip
-t

im
e 

(m
s)

AC-nores
BW-nores

elasped time (s)

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191 201

Fig. 4.2-3b. Average round-trip-time between the consumer and the active serving peers – aim for less.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 763
encountered independent congestion before during
the streaming, the headroom for the previously per-
ceived receive rate to grow is limited.

Fortunately, the aggregated net content receive
rates can be boosted by the Re-scheduler as shown
in Figs. 4.2-5b, 4.2-5c and 4.2-5e. The boost is
regardless of the selection strategy being used for
scheduling and re-scheduling. Fig. 4.2-6 shows that
the Re-scheduler participates on easing the fluctua-
tions of the aggregated receive rates as well. As the
Re-scheduler acts upon slower-than-expected sub-
stream flows in a defensive manner by adding a
redundant peer to assist the streaming, it slightly
increases the average number of active serving peers
at almost any second of the playback regardless
of the selection strategy. Figs. 4.2-1e, 4.2-1f and



40

45

50

55

60

65

70

75

80

ro
un

d-
tr

ip
-t

im
e 

(m
s)

AC-ideal
BW

elasped time (s)

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191 201

Fig. 4.2-3c. Average round-trip-time between the consumer and the active serving peers – aim for less.

40

45

50

55

60

65

70

75

80

ro
un

d-
tr

ip
-t

im
e 

(m
s)

elasped time (s)

AC
BW

1 1019111 21 31 41 51 61 71 81 111 121 131 141 151 161 171 181 191

Fig. 4.2-3d. Average round-trip-time between the consumer and the active serving peers – aim for less.

0.001

0.0011

0.0012

0.0013

0.0014

0.0015

1019181716151413121111 111 121 131 141 151 161 171 181 191 201 211

elasped time (s)

av
er

ag
ed

 lo
ss

 r
at

e

AC-ideal-nores
BW-nores
AC-ideal
BW

Fig. 4.2-4a. Average packet loss rate of sub-stream flows from active serving peers – aim for less.

764 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
4.2-1g illustrate this. This is perhaps the cost of
smoothing down the aggregated receive rate with a
minor boost. However, as Figs. 4.2-1c and 4.2-1d
show, this cost is small relative to the significant per-
formance improvement of the congestion avoidance
selection strategy over the best-bandwidth-first
counterpart. Other statistics show no evident or
dominating differences after enabling the fully func-
tional Re-scheduler in the experiments. As the
congestion avoidance selection promotes smoother
end-to-end receive rate when it is compared to the
best-bandwidth-first selection, it reduces the fre-
quency of re-scheduling as Fig. 4.2-7 shows.

Another crucial feature of the Re-scheduler is to
ensure smooth transition in the event of peer failure,
and to reduce the impact of such events on the aggre-



1019181716151413121111 111 121 131 141 151 161 171 181 191 201 211

80

90

100

110

120

130

140

150

160

170

elasped time (s) 

av
er

ag
ed

 R
 (

kB
/s

)

AC-ideal-nores
BW-nores

Fig. 4.2-5a. Average aggregated net content receive rate perceived by the consumer – aim for smoothness and at least Rcontent.

elasped time (s) 

av
er

ag
ed

 R
 (

kB
/s

)

80

90

100

110

120

130

140

150

160

170
BW-nores
BW

1019181716151413121111 111 121 131 141 151 161 171 181 191

Fig. 4.2-5b. Average aggregated net content receive rate perceived by the consumer – aim for smoothness and at least Rcontent.

0.001

0.0011

0.0012

0.0013

0.0014

0.0015

1019181716151413121111 111 121 131 141 151 161 171 181 191 201

elasped time (s)

av
er

ag
ed

 lo
ss

 r
at

e

AC-nores
BW-nores
AC
BW

Fig. 4.2-4b. Average packet loss rate of sub-stream flows from active serving peers – aim for less.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 765
gated streaming. We examine the impact of a single-
peer failure on aggregated receive rates during a play-
back. We shut down a peer when it becomes active
and is pushing a sub-stream of fragments to the con-
sumer. Then the aggregated receive rates and the
number of active serving peers obtained for the 10 s
before and after the failure event are captured. This
is repeated 5 times on each peer-selection strategy.
Out of 10 trials, 9 of them exhibit no sudden drop
in aggregated receive rate. Six of the nine cases exhibit
a varying degree of burst in the next 2–5 s after the
failure event. During the burst period, the number
of active serving peers often increases by 1. It implies
that in most cases, there are 2 peers being re-sched-
uled to finish the outstanding streaming task. The
remaining 3 of them exhibit no obvious changes. It
is observed that the trials using the best-bandwidth-
first selection strategy exhibit less evident burst in



elasped time (s) 

av
er

ag
ed

 R
 (

kB
/s

)

80

90

100

110

120

130

140

150

160

170
AC-ideal-nores
AC-ideal

1019181716151413121111 111 121 131 141 151 161 171 181 191 201 211

Fig. 4.2-5c. Average aggregated net content receive rate perceived by the consumer – aim for smoothness and at least Rcontent.

elasped time (s) 

av
er

ag
ed

 R
 (

kB
/s

)

80

90

100

110

120

130

140

150

160

170
AC-nores

BW-nores

1019181716151413121111 111 121 131 141 151 161 171 181 191 201

Fig. 4.2-5d. Average aggregated net content receive rate perceived by the consumer – aim for smoothness and at least Rcontent.

elasped time (s) 

av
er

ag
ed

 R
 (

kB
/s

)

80

90

100

110

120

130

140

150

160

170
AC-nores
AC

1019181716151413121111 111 121 131 141 151 161 171 181 191 201

Fig. 4.2-5e. Average aggregated net content receive rate perceived by the consumer – aim for smoothness and at least Rcontent.

766 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
aggregated receive rate than those using the conges-
tion avoidance counterpart. This is expected because
the size of the active peer set resulted from the best-
bandwidth-first selection strategy is often larger than
that resulted from the congestion avoidance strategy.
In addition to the fact that the utilization of each
active serving peer, under the best-bandwidth-first
strategy, is lower than that under the congestion
avoidance strategy, the contribution of each active
peer under the best-bandwidth-first strategy is rela-
tively less significant than that under the congestion
avoidance counterpart. This applies to the impact
of peer failure as well. Fig. 4.2-8 illustrates an exam-
ple of a short burst due to re-scheduling upon peer
failure from one of the playback trials using the ideal
congestion avoidance selection strategy.



0

20

40

60

80

100

120

140

160

180

1 2 3
playback repetition

va
r(

R
)

BW-nores
BW
AC-nores
AC
AC-ideal-nores
AC-ideal

Fig. 4.2-6. Variance of net content receive rates obtained from
each playback. The rates are averaged over 5 runs. The lower the
variance, the more stable (smooth) the receive rates perceived
over the course of the playback.

0

50

100

150

200

250

300

350

400

450

500

1 2 3
playback repetition

re
-s

ch
ed

ul
e 

fr
eq

ue
nc

y 
ov

er
 5

 r
un

s

BW
AC
AC-ideal

Fig. 4.2-7. Total number of re-schedules during each playback
over 5 runs. Note that as the congestion avoidance algorithm
using correlation tests takes time to infer the peer-point of
congestion mappings. The performance of the first play is similar
to that when the best-bandwidth-first peer-selection is used.

90

95

100

105

110

115

120

125

130

104 106 108 110 112 114 116 118 120 122
elasped time (s)

ag
gr

eg
at

ed
 R

 (
kB

/s
)

AC-ideal
A peer fails 
at this point 

Fig. 4.2-8a. A typical impact of a single-peer failure on aggre-
gated net content receive rate from an example playback.

4.8

5

5.2

5.4

5.6

5.8

6

6.2

104 106 108 110 112 114 116 118 120 122
elasped time (s)

no
. o

f s
er

vi
ng

 p
ee

rs

AC-ideal

A peer fails 
at this point 

Fig. 4.2-8b. A typical impact of a single-peer failure on number
of active serving peers from an example playback.

A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 767
Finally, we repeat the experiments using the con-
gestion avoidance selection with correlation test as
the underlying inference algorithm. As shown
in Figs. 4.2-1a versus 4.2-1b, and 4.2-2a versus
4.2-2b, 4.2-2c versus 4.2-2d, 4.2-3a versus 4.2-3b,
4.2-3c versus 4.2-3d, and 4.2-4a versus 4.2-4b, the
difference in performance between the correlation
test version and the selection based on end-to-end
bandwidth is less evident than that using the ideal
version. This is expected as the correlation tests
cannot give the full picture of the peer-congestion
points relationships, although false positives in the
groupings are rare. At its best out of all rounds of
experiments, the algorithm successfully identifies
all 4 points of congestion with 3 peers in each.
Although the selection algorithm avoids picking
more than one peer from each group when there
are enough candidates, there are still occasions
where more than one peer from the same group is
selected as active peers at the same time. False neg-
atives, which disintegrate the groupings, may be
introduced when those peers in the same group
are tested for correlation, while there are not
enough active peers in that group to produce con-
gestion. Moreover, as the point of congestions are
inferred incrementally during the streaming session,
the performance statistics obtained from the first
playback of each DeMSI Player session have
adversely affected the average values over all runs
by some degree. We deliberately include the statis-
tics from the first playback in the overall averages
because, in reality, each streaming session should



768 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
probably encounter a significant population of dis-
covered candidates that have not been contacted
before. In addition, the network path between the
consumer and a previously contacted peer will
change [9]. Some of the previously inferred knowl-
edge may become invalid. The opportunity of new
exploration is always there for DeMSI.

5. Conclusion and future work

This paper presents an infrastructural solution to
address aggregated media streaming from a decen-
tralized collection of unreliable subscriber resources,
under the scenario where the media content is col-
lectively stored at the subscriber ends. Unlike other
P2P resource sharing solutions, each subscriber is
responsible for only a small portion of the content
rather than a complete replication of it. Our simula-
tions demonstrate the effectiveness of the peer selec-
tion algorithm that employs a proactive congestion
avoidance strategy, which only requires coarse-
grain point-of-congestion inference and clustering
of peers, under DeMSI’s scenario. It can be con-
cluded that the use of congestion avoidance strategy
in peer selection outperforms the use of best-band-
width-first strategy in terms of the following goals
set out in Section 1:

1. To maximize the utilization of the network and
peers.

2. To minimize the number of peers to serve the
content.

3. To minimize the frequency of re-scheduling or
emergency switching-over to other candidates
over the course of streaming.

We also demonstrate the power of our novel
approach to promote smooth reactive re-scheduling
of aggregated streaming tasks. It has been shown to
improve the performance of aggregated streaming,
in particular on the streaming rate and its smooth-
ness regardless of which proactive peer-selection
strategy has been used in scheduling and re-schedul-
ing. The combined use of the proactive peer-selec-
tion and the re-scheduling algorithm simply brings
the best of both worlds together.

It is anticipated that the smoothening of aggre-
gated receive rate by using reactive re-scheduling,
in events of fluctuating perceived receive rate of a sin-
gle peer, can also be achieved solely by scheduling as
the segment size decreases. As the segment size
decreases, the frequency of scheduling increases. In
that case, the scheduling process has more up-to-date
data on dynamic service level metrics. Therefore, its
adaptability in changing network conditions
increases. However, it is expected that the decrease
of segment size reduces the frequency of claims pro-
duced by the correlation test algorithm being used
for the point-of-congestion inference. Hence the
longer it takes to infer. One way to work around this
problem is to have more consecutive segments dis-
tributed to each peer such that the continuity of the
sub-stream flow from a peer can be maintained
across schedules, in order to ensure enough time
for a correlation test against another flow. However,
smaller segment size also implies more loading on the
network caused by more frequent use of control
packets by the Scheduler for sending delivery
requests to the active peers. In contrast, the Re-
Scheduler sends additional delivery requests to other
peers only when there is a need.

As we have discovered from the experiments, our
inference algorithm is particularly vulnerable to false
positives from the correlation tests of the sub-stream
flows. The existing peer-point of congestion map-
pings can be easily disintegrated by false positives.
It is due to the fact that the introduction of false pos-
itives into the group leads to subsequent correlation
tests of an existing peer that is correctly identified
against the one that is not. Hence an increase in
the probability of removing correctly identified peers
out of the group together with the incorrect ones.
Nevertheless, our conservative approaches applied
to correlation tests have significantly reduced the
rate of false positives in the results. Our experiments
also confirm that the correlation tests yield more
accurate inference under asymmetric network with
shared links congested by heavy cross-traffic, than
under the same asymmetric network with shared
links congested by tight bandwidth assignment. A
possible explanation is that the shared links with
cross-traffic promote varying differences in each
other. The outcome is a network that is more asym-
metric than that without cross-traffic. The phenom-
enon is in line with the findings discussed in [2]
that the correlation test performs better under an
asymmetric network than under a symmetric one.

The subject of P2P aggregated media streaming is
large and involves a diverse collection of disciplines
such as security, networking, agent-oriented design
and development, artificial intelligence, and statis-
tics. The future research directions of DeMSI are
also diverse. We outline the most important ones
in descending order of priority:



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 769
5.1. Peer hunting

As discussed in Section 3.4, DeMSI works inde-
pendently from the resource discovery algorithms.
However, resource discovery is one of the most crit-
ical components of this infrastructure, but unfortu-
nately, there are yet to have any existing resource
discovery substrates that can be ‘‘plugged into’’
DeMSI nicely. Major enhancement on the design
of the substrate is expected.

Our future direction on the evaluation of
resource discovery substrates will orient around dis-
tributed hash table (DHT) systems that have the
notion of locality in the search. Good candidates
of such substrates include Kelips [36] and Pastry
[18]. In particular, we will pay more attention to
those that utilize gossip protocol such as Kelips as
it manages to offer constant lookup time and over-
head bandwidth regardless of the number of peers
in the system [36].

5.2. Intelligent pattern learning for enhanced

proactiveness in peer-selection

Peer-selection approaches based on past history
of network characteristics are proved effective in
aggregated streaming scenario. However, the
approach discussed in this paper does not proac-
tively predict whether the candidate peer is available
at the time of selection, and the probability that the
peer will become unavailable during the delivery. In
that sense, DeMSI is completely reactive when it
comes to the dynamics of peer availability. Selection
based on past history and even prediction of peer
availability as well as the network characteristics
should be an interesting field of research. Inspired
by the fact that users of peer-to-peer file-sharing sys-
tems generally have a regular usage pattern over
time [22,23], the availability of peers and their
underlying network characteristics over time should
also have a pattern. Such properties can be
exploited by the peer selection algorithm such that
only the peers that are believed to be most probably
available at the time of selection are chosen. Like-
wise, it is anticipated that the peer selection can also
be based on the prediction of the streaming rate of
the candidate peer, and even the prediction on
peer-point of congestion mappings at the time of
selection. Hefeeda et el in [15] have briefly proposed
a pure statistical method of estimating current avail-
ability of a peer upon request by the consumer. The
estimation process is situated at the peer end. How-
ever, the architecture does not allow prediction of
future availability due to the fact that the size of
the data sample for estimation is probably too large
to be maintained collectively on the consumer side
in order to promote prediction. For example, the
consumer has no way to predict whether the candi-
date peer selected to be contacted is actually avail-
able at all. Moreover, the estimation algorithm
assumes that the usage pattern repeats every 24 h,
which probably can only cover a narrow range of
users.

Let us narrow down the focus to the peer avail-
ability prediction for now. There are two main
approaches on the architecture for pattern learning.
The first approach is to have the peer collect the
usage statistics and send a summary of it to the con-
sumer regularly. The regularity here is possibly an
interval of at least a day. The consumer then analy-
ses the summary and infer the future availability of
a peer incrementally. In this approach, the summary
has to be as compact as possible and the interval of
summary generation cannot be too frequent in
order to minimize overhead to the network. On
the other hand, the second approach is to have the
consumer infer the future availability of a peer
based on past experience of connection attempts
to that peer. This approach does not require any
actions on the peer side.

It is anticipated that the architecture may employ
some of the existing incremental learning algorithms
on time-series data such as [24]. In traditional neural
networks such as the back-propagation neural net-
works, the network has to be trained with a stream
of data samples for a number of iterations in order
to predict what the next data sample in the stream
is. When new data samples come in, the network
has to be re-trained with the original set of data
samples plus the new data samples in order to
ensure accurate predictions. In contrast, the incre-
mental learning algorithm allows the network to
be trained incrementally using the new data samples
together with a fixed-sized metadata or ‘‘hypothe-
sis’’. The outcome of the training is a renewed
hypothesis and it can be used for the next training.
This model can be applied to the first approach as
mentioned above: The summary to be sent from
the peers regularly is the hypothesis resulted from
incremental training with availability and usage
data obtained since the last training at the peer side.
The past experience ‘‘hypothesis’’ or metadata of
each candidate peer is to be stored persistently at
the consumer side across multiple streaming



770 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
sessions. However, there must be a limit on the
number of peers with which the past experience
can be stored. The size of the hypothesis, its update
interval and the prediction accuracy are open issues.
On the other hand, the second approach is even
more challenging as it has to deal with availability
data resulted from polls (trial connection attempts)
occurred irregularly over the time series. Although
the perceived data can be grouped and expressed
in terms of some interpolated and accumulated sta-
tistics as a function of poll rate over a time period,
the accuracy of the statistics itself is difficult to be
consistent along the time line. It is impossible for
DeMSI to maintain a consistent poll rate over a
time period as there are too many candidates to
be polled. In addition, the consumer may bring
the DeMSI offline at any time. Therefore, the sec-
ond approach is unlikely to be of consideration.

5.3. Publishing of new contents to peers

We have discussed the storage strategy of DeMSI
in this paper. However, it cannot be considered
complete without the content publishing and re-dis-
tribution processes. It can be very costly if a new
content is published to the peers from a single
source such as the content provider itself. A more
scalable and cost effective solution is to employ a
power-law approach: The content provider first
publishes the content in blocks of segments to an
initial set of peers. Then those peers are scheduled
to do the re-distribution work on behalf of the con-
tent provider. Each peer that receives the re-distri-
bution is scheduled to re-distribute the new
segments again in different combinations to its local
peers subsequently. Such a decentralized approach
has to face with the challenge of making sure every
single peer that comes online at a later time can be
synchronized with the new content. Another chal-
lenge is to ensure evenness of the re-distributions
such that the peers in a local community are not
biased to offer a particular range of segments of
the content. The re-distribution strategy must
ensure some degree of redundancy or overlap in
the range of segments to be offered by a local collec-
tion of peers.

5.4. Incentive model

Since the purpose of the DeMSI is to ease the
workload of a traditional single point (or client–ser-
ver based) CDN by offloading it to the subscriber
peers, it is inherent to hope that the longer and
the more peers stay online the more workload can
be offloaded from the provider. However, who cares
if the provider does not offer any incentive for those
who stay online? The incentive can be calculated
based on accumulated online time and the amount
of content data delivered to other consuming peers.
In other words, the system must be able to record
the above usage statistics reliably and accurately.
Since the delivery of content is decentralized, the
accounting service has to rely on the peers to report
usage statistics. It is anticipated that such a decen-
tralized usage accounting model is subject to higher
risk of fraud attacks from malicious users, than the
conventional centralized model that is pretty much
under the content provider’s control.

5.5. VCR operations

The current version of DeMSI is capable of deliv-
ering video content at VBR (variable bit rate). How-
ever, the Player can only support trivial VCR
operations such as play, pause, and stop. More
complex VCR functions such as slide-bar style video
skipping, fast forward and fast reverse scan require
DeMSI to deliver video at CBR (constant bit rate).
Since most stream-able video coding technologies
such as MPEG-4 [5] have coding dependencies
between video frames in a GOP (group of pictures)
[37], any video skipping operations will fail if
DeMSI does not know where a GOP starts (where
the I-frame is) and where a requested frame ends
(in terms of fragment ID). In other words, the size
and structure of a DeMSI’s segment and fragment
can no longer be independent of the video coding.
The use of CBR to deliver video promotes implicit
mappings between the frame structure of the video
coding and the structure of DeMSI’s segment and
fragment. The size of each GOP of the stream can
be consistent due to the use of CBR to deliver video,
and it can be completely fit into a constant number
of fragments nGOP of a segment such that the total
number of fragments that made up a segment n is
divisible by nGOP. On the other hand, if VBR is
used, there will be additional overhead on tagging
the stream with explicit mapping information as
the size of each GOP and frame of the stream can
be different from one another.

Another implication of supporting video skip-
ping functions is that the Scheduler will no longer
request every fragment of the segment to be deliv-
ered from the active serving peers. In other words,



A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772 771
if a segment has 10 s worth of normal playing time,
it becomes only 2 s under fast forward scan that is 5
times faster than normal. In that case, DeMSI has
to look for more peers up front to serve more
upcoming segments than that under normal playing.
As DeMSI has to react quick enough when the user
requests any video skipping functions, it has to rely
more heavily on the dedicated servers than that
under normal playing, especially at the beginning
of the operation. The impact on DeMSI in terms
of the above mentioned aspects is what we have to
look into further if video skipping functions are
supported.

References

[1] D. Rubenstein, J. Kurose, D. Towsley, Detecting shared
congestion of flows via end-to-end measurement, IEEE/
ACM Transactions on Networking 10 (3) (2002).

[2] O. Younis, S. Fahmy, On efficient on-line grouping of flows
with shared bottlenecks at loaded servers, Technical Report
CSD-02-018, Purdue University, August 2002.

[3] M. Handley, S. Floyd, J. Padhye, J. Widmer, TCP Friendly
Rate Control (TFRC) Protocol Specification – RFC 3448,
January 2003.

[4] Onion Networks Inc., Java FEC Library v1.0.3. Available
from: <http://www.onionnetworks.com/developers/>.

[5] MPEG-4 Industry Forum FAQ. Available from: <http://
www.m4if.org/resources/mpeg4userfaq.php>.

[6] Dixon, Streaming Media: Trends and Formats, Manifest
Technology, 2003.

[7] Bouras, Kapoulas, Konidaris, Sevasti, A dynamic distrib-
uted video on demand service, in: 20th IEEE International
Conference on Distributed Computing Systems-ICDCS
2000, Taipei, Taiwan, April 10–13, 2000, pp. 496–503.

[8] Akamai Technologies Inc. Available from: <http://www.
akamai.com>.

[9] V.N. Padmanabhan, L. Qiu, H.J. Wang, Server-based
inference of Internet link lossiness, in: Infocom 2003, IEEE,
2003.

[10] R. Teixeira, K. Marzullo, S. Savage, G.M. Voelker, In
Search of Path Diversity in ISP Networks, IMC 03, ACM,
October 2003.

[11] T. Nguyen, A. Zakhor, Path diversity with forward error
correction (PDF) system for packet switched networks, in:
Infocom 2003, IEEE, 2003.

[12] J.G. Apostolopoulos, M.D. Trott, Path diversity for
enhanced media streaming, in: IEEE Communications
Magazine, IEEE, August 2004.

[13] K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, S. Wen,
Concast: design and implementation of an active network
service, IEEE Journal on Selected Area in Communications
19 (3) (2001) 426–427.

[14] T. Nguyen, A. ZakHor, Distributed video streaming with
forward error correction, Packet Video Workshop 2002,
Pittsburgh PA, USA, April 2002.

[15] M. Hefeeda, A. Habib, D. Xu, B. Bhargava, B. Botev,
CollectCast: a peer-to-peer service for media streaming,
ACM Multimedia 2003, Berkeley CA, USA, November 2003.
[16] M. Coates, R. Hero, A. Nowak, B. Yu, Internet tomogra-
phy, IEEE Signal Processing Magazine 19 (3) (2002).

[17] D. Katabi, C. Blake, Inferring congestion sharing and path
characteristics for packet interarrival times, MIT-LCS-TR-
828, December 2001.

[18] A. Rowstron, P. Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, in: Proceedings of 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), Heidelberg, Germany, November 2001.

[19] S. Saroiu, P.K. Gummadi, S.D. Gribble, SProbe: a fast
technique for measuring bottleneck bandwidth in uncooper-
ative environments, in: Infocom 2002, IEEE, 2002.

[20] B. Byers, M. Luby, M. Mitzenmacher, A. Rege, A digital
fountain approach to reliable distribution of bulk data, in:
Proceedings of the ACM SIGCOMM 98, Vancouver, British
Columbia, August 1998, pp. 56–67.

[21] A. Bestavros, J. Byers, K. Harfoush, Inference and labeling
of metric-induced network topologies, Computer Science
Department, Boston University, Boston, MA, USA, Tech.
Rep., BUCS-2001-010, June 2001.

[22] S. Saroiu, P. Krishna Gummadi, S.D. Gribble, Measuring
and analyzing the characteristics of Napster and Gnutella
hosts, Multimedia Systems Journal 8 (5) (2002).

[23] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large
networks, IEEE/ACM Transactions on Networking 12 (2)
(2004).

[24] K. Okamoto, S. Ozawa, S. Abe, A fast incremental learning
algorithm of RBF networks with long-term memory, in:
Proceedings of the International Conference on Neural
Networks, 2003 (IJCNN2003-Portland).

[25] UCB/LBNL/VINT Groups, Network Simulator NS-2.
Available from: <http://www.isi.edu/nsnam/ns>.

[26] V. Padmanabhan, H. Wang, P. Chou, K. Sripanidkulchai,
Distributing streaming media content using cooperative
networking, in: Proceedings of the ACM International
Workshop on Networking and Operating Systems Support
for Digital Audio and Video (NOSSDAV’02), Miami Beach,
FL, USA, May 2002.

[27] H. Deshpande, M. Bawa, H. Garcia-Molina, Streaming live
media over a peer-to-peer network, Technical report, Stan-
ford University, August 2001.

[28] Marshall Brain, Howstuffworks ‘‘How File Sharing Works’’.
Available from: <http://computer.howstuffworks.com/file-
sharing1.htm>.

[29] S.M. Lui, S.H. Kwok, Interoperability of peer-to-peer file
sharing protocols, ACM SIGecom Exchanges 3 (3) (2002)
25–33.

[30] J.E. Berkes, Decentralized peer-to-peer network architecture:
Gnutella and Freenet, University of Manitoba Winnipeg,
Manitoba, Canada, 2003.

[31] Peer-to-Peer (P2P) and How Kazaa Works. Available from:
<http://www.kazaa.com/us/help/glossary/p2p.htm>.

[32] K. Tutschku, A measurement-based traffic profile of the
eDonkey filesharing service, passive and active network
measurement, in: 5th International Workshop, PAM 2004,
Antibes Juan-les-Pins, France April 19–20, 2004. Proceed-
ings, LNCS, vol. 3015/2004.

[33] B. Cohen, Incentives Build Robustness in BitTorrent, May 2003.
Available from: <http://bittorrent.com/bittorrente con.pdf>.

[34] C.H. Ding, S. Nutanong, R. Buyya, Peer-to-peer networks
for content sharing, Technical Report, GRIDS-TR-2003-7,

http://www.onionnetworks.com/developers/
http://www.m4if.org/resources/mpeg4userfaq.php
http://www.m4if.org/resources/mpeg4userfaq.php
http://www.akamai.com
http://www.akamai.com
http://www.isi.edu/nsnam/ns
http://computer.howstuffworks.com/file-sharing1.htm
http://computer.howstuffworks.com/file-sharing1.htm
http://www.kazaa.com/us/help/glossary/p2p.htm
http://bittorrent.com/bittorrentecon.pdf


772 A.K. Wah Yim, R. Buyya / Journal of Systems Architecture 52 (2006) 737–772
Grid Computing and Distributed Systems Laboratory,
University of Melbourne, Australia, December 2003.

[35] IntelliDNS, Available from: <http://www.intellidns.com>.
[36] I. Gupta, K. Birman, P. Linga, A. Demers, R. Van Renesse,

Kelips: Building an efficient and stable P2P DHT through
increased memory and background overhead, in: Proceed-
ings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), 2003.

[37] C.M. Huang, K.C. Yang, J.S. Wang, Support fast scan
operations with video streaming technology, in: Proceedings
of the 2004 IEEE International Conference on Multimedia
and Expo, ICME 2004, June 2004.

[38] Y. Guo, K. Suh, J. Kurose, D. Towsley, A peer-to-peer on-
demand streaming service and its performance evaluation, in:
Proceedings of 2003 IEEE International Conference on
Multimedia & Expo (ICME 2003), Baltimore, MD, July 2003.

[39] Y. Guo, K. Suh, J. Kurose, D. Towsley, P2Cast: Peer-to-
peer patching scheme for VoD service, in: Proceedings of the
12th World Wide Web Conference (WWW-03), Budapest,
Hungary, May 2003.

http://www.intellidns.com

	Decentralized media streaming infrastructure (DeMSI): An adaptive and high-performance peer-to-peer content delivery network
	Introduction
	Related work
	Architecture of DeMSI
	Overview of functional components
	Storage strategy
	Forward error correction and segment structure

	The knowledgebase of discovered peers
	Peer hunting
	Scheduler and segment cache
	Segment receiver
	Peer monitor
	Re-scheduler
	Segment Sender

	Performance evaluation
	Finding the optimal parameters for �correlation tests
	Efficiency of scheduling and re-scheduling processes

	Conclusion and future work
	Peer hunting
	Intelligent pattern learning for enhanced proactiveness in peer-selection
	Publishing of new contents to peers
	Incentive model
	VCR operations

	References


