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Abstract—The ever-increasing demand for cloud services re-
sults in large electricity costs to cloud providers and causes
significant impact on the environment. This has pushed cloud
providers to power their data centers with renewable energy
sources more than ever. Among the different ways of adopting
renewable energy sources, on-site power generation using wind
and solar energy has gained considerable attention by large
companies and proved its potential to reduce data centers’ carbon
footprint and energy costs. Efficient utilization of renewable
energy sources is challenging due to their intermittency and
unpredictability. Cloud providers with multiple Geo-distributed
data centers in a region can exploit the temporal variations in on-
site power and grid power price by routing the load to a suitable
data center in order to reduce cost and increase renewable energy
utilization. To achieve this goal, we propose a fuzzy logic-based
load balancing algorithm that acts with no knowledge of future.
We conduct extensive experiments using a case study based on
real world traces obtained from National Renewable Energy
Laboratory (NREL) and Energy Information Administration
(EIA) in the US, and Google cluster-usage. Compared to other
benchmark algorithms, our method is able to significantly reduce
the cost without a priori knowledge of the future electricity price,
renewable energy availability, and workloads.

I. INTRODUCTION

Data centers used for hosting cloud applications are known
to be consuming large amount of electricity leading to high
operational cost for the cloud providers and high carbon
footprint on the environment. According to a report from
NRDC1 [1], in 2013, US data centers alone consumed 91
billion kilowatt-hours of electricity, equivalent to two-year
power consumption of all households in New York city. This is
projected to increase to roughly 140 billion kilowatt-hours and
is responsible for the emission of nearly 150 million metric
tons of carbon pollution per annum in 2020. Accordingly,
cloud service providers are working hard to reduce their energy
consumption and their dependence on power generated from
fossil fuels (i.e., Brown energy) having adverse impact on the
environment.

Companies such as Google2, Microsoft3 and Amazon4

are working towards this goal by using renewable energy

1Natural Resources Defense Council, www.nrdc.org.
2http://www.google.com.au/green/energy/
3http://www.microsoft.com/environment/renewable.aspx/.
4http://aws.amazon.com/about-aws/sustainable-energy/.

sources (i.e., Green energy) to power their data centers and
making direct investments in on-site green power generation.
Photovoltaic solar panels that directly convert sunlight into
electricity and wind turbines that capture wind energy and
turn it into electricity are among the most popular on-site
power sources used by contemporary data centers. For example
Amazon Web Services (AWS) is building a wind farm that
will be operational by end-2016 that generates 40 percent of
its electrical usage from renewable energy sources5. Powering
data centers entirely with these renewable energy sources is a
challenging issue due to the intermittency and unpredictability
of wind and solar energy. Therefore, to serve their users,
providers end up using grid power or brown energy, besides
their on-site renewable energy sources, in data centers. Yet, to
minimize brown energy usage, they need to obtain the highest
possible renewable energy utilization.

There are considerable number of studies illustrating the
potential of using “geographical load balancing” (GLB) in
reducing brown energy usage and accordingly maximizing re-
newable energy utilization [2], [3], [4]. GLB provides such an
opportunity for providers having multiple geographically dis-
tributed data centers by allowing for “follow the renewables”
routing [3]. Additionally, GLB also allows for routing the
load to places with lower grid power prices even if renewable
energy sources are currently fully utilized. This eventually
leads to significant cost savings for the cloud provider.

Although the GLB approach benefits cloud providers sig-
nificantly, it raises an interesting, and challenging question:
“with limited or even no a priori knowledge of the future
workload, and dynamic and unpredictable nature of renewable
energy sources, how does one allocate requests to each data
center such that the total cost of power consumption is mini-
mized and accordingly the overall renewable energy usage is
maximized? (see Figure 1).

In this paper, we aim to address the above practical and
yet fundamental question. First, we characterize the optimal
offline load balancing algorithm in which, to a certain time
window, future knowledge of renewable energy traces and
workload (i.e., arriving time and duration of requests) of each
data center site are assumed to be known. Then, we show that
the optimal strategy is computationally prohibitive and suffers

5http://www.reuters.com/article/2015/07/14/
us-amazon-iberdrola-idUSKCN0PO1PF20150714



Fig. 1. System Model.

from the “curse of dimensionality” [5]. This makes the optimal
load balancing computationally intractable, particularly when
the future window size, the number of data center sites, and
number of requests grow. It is in fact considerably difficult to
balance the load optimally, even when the exact knowledge
about the future is available.

To deal with the complexity, we propose a fuzzy logic-
based heuristic for GLB that optimizes the overall cost and
the renewable energy utilization with no future knowledge.
The fuzzy logic-based load balancing method works based on
the recent history of the load and availability of renewable
energy sources in data centers. It routes requests according to
comparison between the suitability values, each calculated as
an output of a fuzzy inference engine for the corresponding
data center.

The fuzzy inference engine, as input, uses the utilization
of renewable energy and the amount of brown energy usage
for the data center, along with the average electricity price
in the data center’s location within a certain time window of
a recent history. According to fuzzy rules, the fuzzy engine
calculates a value illustrating the suitability of the data center
for accommodating the current request. The fuzzy logic-based
load balancing method uses all suitability values calculated in
this way to make the final decision regarding routing a request.

The main contributions of the paper are:

1) We characterize the optimal offline GLB, in which the
exact future demand is assumed to be known a priori
and show that the optimal strategy is computationally
intractable.

2) We propose a fuzzy logic-based load balancing algo-
rithm that provides a significant cost savings without
any knowledge of future demands, renewable energy
sources, and prices in electricity market beforehand.

3) We evaluate our proposed algorithm using simulation
of a case study designed according to the real world
traces of meteorological data and electricity prices
under real data center workloads.

The rest of the paper is organized as follows: Section II
describes the system model and formally defines the GLB

problem. We introduce optimal load balancing algorithm in
Section III and we discuss its intractability. In Section IV,
we propose fuzzy logic-based load balancing after a brief
introduction to fuzzy systems. The performance evaluation
of the proposed strategy and comparison with benchmark
algorithms are presented in Section V. Finally, our conclusions
and future work are presented in Section VII.

II. SYSTEM MODEL

We focus on how to dynamically provision the service
capacity in geographically dispersed data centers serving user
requests arriving in a single entry point (e.g., a provider portal’s
interface) such that both the overall “utilization of the on-site
renewable energy sources” is maximized and the monetary
“cost” of the system is minimized. First, we introduce a
general model for this setting, and then we formulate the GLB
problem.

A. Preliminaries

Most cloud providers offer their services in multiple loca-
tions world-wide called regions. For example, Amazon Web
Services (AWS)6 currently has data centers located in 9
different regions; three in Asia Pacific, two in Europe, one
in the US east, two in the US west, and one in South America.
Each region has a collection of n isolated data centers D within
the region, often called zone. These data centers are located
in geographically diverse locations within a region and each
uses various sources of energy. In our model, we assume data
center di ∈ D (1 ≤ i ≤ n) has two main sources of electricity:
power generated by local on-site renewable energy sources
(e.g., solar, wind or mixture) and utility grid.

Suppose that the cloud provider receives a set of m service
requests R = {r1, ..., rm}, in the specific time window, from
cloud users who do not have preferences over data centers
in the region. A request can vary from the one submitted for
acquiring container-based instances or hypervisor-based virtual
machines (VMs) to a job-based request for running an appli-
cation in the specific time period. A request rj (1 ≤ j ≤ m)
is denoted by three-tuple (aj , qj , lj), where aj is the arrival
time of the request within the time window, qj is the required
quantity of processing units (e.g., total number of ECUs7 for
VMs), and lj is the lifetime of the request (i.e., the holding
time of VMs). In practice, the lifetime and arrival time of a
request is not known by the provider in advance, e.g., a cloud
provider does not know when next VM request arrives and
how long the user will hold allocated VMs. Note that, in our
model, requests must be served based on the order of arrival
in a first come first served fashion. No request can be delayed
in favor of another request.

We consider a discrete-time model in which the amount of
power generated by on-site renewable energy sources per each
time slot (e.g., kWh) is given for every data center. Let ei,t
denote the units of power generated from renewable sources
at time slot t in data center i and not consumed by currently
accommodated requests. The value of ei,t dynamically changes
based on the weather condition and availability of renewable

6Amazon Web Services, http://aws.amazon.com/.
7In Amazon Web Services (AWS) terminology, 1 EC2 Compute Unit (ECU)

is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.



energy sources on the location and is assumed to be difficult to
predict. The cost of power generated from renewable sources
is considered to be zero for the cloud provider. However, if
power supply from renewable sources is not enough to cover
the demand in the data center, the shortage will be supplied
from the grid. We make an assumption that the data center
buys electricity from a wholesale market and the spot price
of electricity varies over time according to the location of the
data center. Let pi,t be the price of electricity at the time slot
t at the location of data center i.

We assume that by accommodating a request, the cloud
provider on average consumes a constant rate of energy per
time slot to fulfill the user requirement (e.g., 100 Watt-hour).
Therefore, the provider with x units of available renewable
energy at time slot t is only able to accommodate up to x
requests with unit quantity demand and unit power usage per
time slot for free.

For the sake of simplicity, we assume that values of qj ,
ei,t and pi,t are reported according to the rate of energy
consumption per smallest unit of demand, e.g., qj shows the
total units of power consumption by a request.

B. Geographical Load Balancing Problem

Cloud users often do not have preference over different
zones (data centers) in a region. This gives the cloud provider
an opportunity to route users’ requests to data centers with
higher availability of renewable energy sources and lower mar-
ket price of electricity. The problem is to optimally distribute
requests among data centers such that the overall renewable
energy consumption is maximized and the total incurred cost
is minimized.

Suppose that the cloud provider offers its services in
multiple data centers D = {d1, d2, ..., dn} in a given region.
Let si,t denote the total number of computing units consumed
by active requests (i.e., not finished) accommodated in data
center i at time t, that is:

si,t =
∑

rj∈Ri,t

qj (1)

where Ri,t is the set of requests that are active in data center
i at time t.

Suppose that the cloud provider can precisely predict the
following values for every time slot t in a future time window
of size T (1 ≤ t ≤ T ):

1) R = {r1, ..., rm} list of requests arriving in different
time slot,

2) the arrival time aj , quantity qj , and lifetime lj of the
request rj ,

3) ei,t, the total units of power generated from renew-
able sources at time t in each data center, and

4) pi,t, the spot price of electricity per unit power at
time t in the location of each data center.

Assuming that the future knowledge is available for all
the aforementioned values, the load balancing problem can
be defined as the minimization problem of the total cost C
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Fig. 2. An example of optimal Geographical Load Balancing.

computed as:

C = min

n∑
i=1

T∑
t=1

pi,t × (si,t − ei,t)
+
, (2)

where (x)+ = max(0, x). Equation (2) minimizes the total
cost of power usage assuming that perfect future knowledge
in a window of size T is available.

The main challenge of problem (2) is that how to optimally
redirect arriving requests to different data centers di ∈ D such
that the total cost of the grid power usages is minimized.

Figure 2 illustrates an example of optimal GLB with two
data centers and a future time window of size 6. A set of
6 requests labeled D to I with shown configurations arrive
within the window. The availability of renewable power units
(non-shaded cells) and electricity price per each time slot
for both data centers are also shown. The figure depicts the
optimal way of distributing requests between the data centers,
which leads to the minimal cost of 1.7 within the window. The
total cost is computed according the summation of the price
for power units consumed in the shaded units. The optimal
solution is obtained by checking all possible combinations of
assigning the 6 requests to different data centers. Interested
readers might check that no other allocations lead to a total
cost lower than 1.7. Note that earlier received requests A to
C are optimally assigned to data centers in former rounds of
the optimization process; so they are not considered in the
cost calculation and only affect the availability of renewable
energy.

III. OPTIMAL GEOGRAPHICAL LOAD BALANCING AND
ITS INTRACTABILITY

In this section, we derive the optimal solution for the GLB
problem (explained in the previous section) and show that such
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Fig. 3. Decision tree for Geographical Load Balancing.

an optimal solution is computationally intractable. The optimal
solution can be obtained by constructing a decision tree that
covers all possible combinations.

We start with an initial state including renewable energy
units available in all data center. For every arriving request
within the window, there are n different possible placement
options (i.e., the number of data centers in the region), which
specifies the branching factor in our decision tree. Nodes
of the tree keep the state and branches change the state
by accommodating the associated requests in different data
centers. We expand the tree by placing upcoming requests in
all possible data centers presuming earlier requests are located
according to the placement in upper levels of the tree. The
process continues until all arriving requests in the window
are covered. A path from the root to a leaf of the tree that
generates the lowest cost determines the optimal solution.
Figure 3 illustrates the process.

Let R = {r1, ..., rm} be the list of requests arriving
in future time window (am ≤ T ) sorted according to the
arrival time of requests, i.e., a1 ≤ a2 ≤ a3 ≤ ... ≤ am.
Placing request rj in data center di will change the availability
of renewable power units ei,t during the lifetime of the
request. We define a state variable e as an n-tuple of T -
sets e = {{e1,1, .., e1,T }, ..., {en,1, .., en,T }}, where every set
ei = {ei,1, .., ei,T } shows the availability of renewable power
units for data center i (1 ≤ i ≤ n) for the period of [1..T ]. The
cost of accommodating a request rj in data center di, when
the state is e can be computed as follows:

c(rj , di) =

max(T,aj+lj−1)∑
t=aj

(qj − ei,t)
+ × pt , (3)

where max(T, aj+ lj−1) assures that cost calculation is done
within the window and (qj − ei,t)

+ counts the total units of
brown energy used by the request rj per each time slot.

Algorithm 1 shows the pseudo-code of the recursive func-
tion for the minimum cost calculation in the window based
on the availability of renewable energy and electricity prices
for each time slot. Lines 8 to 11 compute the cost incurred by
placing request rj in data center di. The outer loop in Line 6
checks every possible placement option for request rj and finds
the minimum cost by a recursive call for the remaining requests
at Line 12.

Algorithm 1 is brute-force search and makes a decision
tree by branching factor n upto m levels. This leads to the
total number of 1 + n + n2 + n3 + ...nm+1 = nm+1−1

n−1
function calls, i.e, O(nm) different state variables. Hence, the
overall computational complexity of algorithm is O(nm) that
offers an exponential time solution for Equation (2), given

Algorithm 1 Optimal Geographical Load Balancing Algorithm
Input: j, e
Output: mincost

1: function GLB-OPT(j, e)
2: if j > T then
3: return 0
4: end if
5: mincost← −∞
6: for i← 1 to n do
7: e′ ← e
8: for t← aj to min(T, aj + lj − 1) do
9: c(rj , di)← (qj − e′i,t)

+ × pi,t
10: e′i,t ← (e′i,t − qj)

+

11: end for
12: cost← c(rj , di) + GLB-OPT(j + 1, e′)
13: if cost < mincost then
14: mincost← cost
15: end if
16: end for
17: return mincost
18: end function

a bounded number of data centers. Given that, in practice,
m could be considerably large even for small size window
(T ), the algorithm is computationally intractable. This time
complexity can be improved using techniques such as branch
and bound. However, it does not reduce the worst-case time
complexity. If the lifetime of requests is bounded (i.e., aj < k)
and is considerably smaller than the window (i.e., k � T ),
the time complexity can also be improved proportional to the
difference between k and T by using a dynamic programming
technique. We do not discuss details of such algorithms further
here.

IV. FUZZY LOGIC-BASED LOAD BALANCING

In the previous section, we showed that the optimal GLB
is hard to achieve, even the prefect knowledge of renewable
energy traces, electricity prices, and future demands are known
in advance. In this section, we present a fuzzy logic-based
load balancing algorithm that only uses recent data history to
optimize the load balancing problem. First, we provide a brief
introduction to fuzzy logic systems and why we selected fuzzy
control. Then, we explain our proposed fuzzy logic-based load
balancing (FLB) method to address the problem of GLB with
no future knowledge.

A. Fuzzy logic systems

In general, a fuzzy logic system is a reasoning structure
that provides a means for converting linguistic strategies into
control decisions. By using simple linguistic rules, it can attain
a nonlinear mapping of an input space to an output space. For
example, with information about how fast you are driving and
how close the object is, a fuzzy logic system can accordingly
provide required pressure on the brakes.

Figure 4 depicts a typical fuzzy inference system. The
inputs are transformed into fuzzy sets using the fuzzification
module. For example, the height of 180cm, as an input, is
converted to a fuzzy set specifying the degree of tallness. A
fuzzy set is characterized by a Membership Function (MF)
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Fig. 4. A typical fuzzy inference system.

specifying to what degree a value belongs to the corresponding
fuzzy set. In a fuzzy inference system, each input and output
variable has its own set of membership functions. The fuzzy
Inference module using a set of fuzzy rules defined in the rule-
base maps an input space to an output space. Fuzzy rules are
defined in form of “IF-THEN” rules by a designer to relate
input with output variables. For example a rule can be defined
as:

if height is very high and weight is very low then
healthiness is low.

The defuzzification module transforms the aggregated fuzzy
set generated by inference module into a crisp value, e.g, 20%
for the healthiness.

Fuzzy logic is conceptually easy to understand and mathe-
matical concepts behind fuzzy reasoning, even though subtle,
are very simple. Moreover, fuzzy logic systems are good at
dealing with uncertainty and lack of perfect information. In
non-linear systems with an arbitrary complexity and large
number of inputs, fuzzy logic reasoning is among the best
applicable techniques [6]. It is difficult to find a mathematical
solution for our cost optimization problem where various and
complex parameters are affecting decisions regarding request
routing in GLB and there is no exact future knowledge
available. Many research studies (e.g., [2], [3]) tackled the
GLB problem using optimization techniques such as convex
optimization, Integer programming, etc. Most of these tech-
niques require accurate future knowledge of renewable energy
availability, while achieving exact future knowledge is not easy
if not possible. Moreover, such optimization techniques pro-
vide certain solutions without considering imposed uncertainty
and errors of predicted values.

We choose fuzzy logic to tackle our problem as it is simple
and is one of the most effective ways in handling the uncer-
tainty and multiple input variables. In addition, fuzzy logic-
based systems can be easily tuned using expert knowledge
and manipulating rules or fuzzy sets. In the next section, we
propose a fuzzy logic-based technique to tackle the complex
and intractable problem of GLB. To the best of our knowledge,
we are the first to propose fuzzy logic-based controller for the
GLB problem.

B. Fuzzy logic-based load balancing

Our proposed fuzzy logic-based load balancing method
works based on a simple and intuitive idea that arriving
requests must be redirected to the most suitable data center
such that the least cost incurs. In order to achieve this goal,
we use a fuzzy inference engine designed to give a suitability

TABLE I. FUZZY ASSOCIATE MEMORY FOR FUZZY INFERENCE
ENGINE RULES.

Ui Bi Fi Suitability
low low - veryhigh
low high - high
mid low - high
mid high - mid
high low low mid
high low mid mid
high low high low
high high low mid
high high mid low
high high high verylow

value for data center i according to the following input values
computed within a window of size W in the recent history:

1) The utilization of renewable energy sources (Ui): is a
value in the range [0, 1] and is computed as the ratio
of the number of used to the total number of available
renewable power units.

2) Amount of brown energy consumption (Bi): is a value
in the range [0,+∞) and is computed as the ratio of
the total number of units of brown power units used to
the total number of available renewable power units.

3) Average price of electricity in the location (Fi): is the
average price for an unit of power.

The fuzzy inference module based on the above inputs
determines the suitability value, as an ouput, for each data
center. We used a Mamdani fuzzy inference system [6] with
centroid of area defuzzification strategy. All the MFs are
triangular functions defined as shown in the Figure 5. The
proposed fuzzy inference module uses the rules shown in the
fuzzy associative memory in Table I. As an instance, the rule
in the fifth row of the table can be interpreted as follows:

If Ui is high and Bi is low and Fi is low then suitability
is mid.

The output of the fuzzy inference engine, which varies
between 0 and 1, specifies the suitability of each data center
for routing the arriving request, where 0 shows the lowest
suitability and 1 shows the highest suitability. Figure 5(d)
shows MFs for the output of the fuzzy inference engine. The
proposed fuzzy logic-based load balancing method computes
the suitability value for all data centers and route the current
request to a data center with the highest value of suitability.
It finds the firing level of each rule (the degree to which the
rule matches the inputs) and then calculates the output of each
rule using fuzzy operators. Finally, the engine aggregates the
individual rules outputs and obtains the overall fuzzy output
of the system. The fuzzy output is converted to a crisp value
by means of the defuzzification strategy.

V. PERFORMANCE EVALUATION

We conducted experiments based on simulation to study the
performance of fuzzy logic-based load balancing (FLB). Our
aim is to understand the renewable energy utilization and cost
performance of FLB in realistic settings. In order to achieve
our goal, we consider a case study based on real-world traces
for the workload, renewable availability, and electricity prices.
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A. Experimental Setup

1) Workload Setup: In order to generate IaaS workload for
our case study, we use traces of Google cluster-usage [7]; as
no publicly available workload trace of real-world IaaS clouds
currently exists that we know of. This dataset includes the
resource requirements of tasks submitted by 933 users to a
Google cluster of 12K physical servers over a time period
of 29 days. In our settings, we are interested in a workload
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Fig. 6. Normalized workload.

containing requests for IaaS cloud services; however, Google
dataset lacks such information. We therefore generate requests
for each user in the Google dataset as if the user runs the tasks
in an IaaS cloud environment such as EC2. In this regard, it is
worth mentioning that in the Google cluster, tasks of different
users might be scheduled onto a single server, while in a public
IaaS cloud, tasks are executed in the user’s allocated capacity
environment (e.g., tasks are executed in a VM or a container).

Traces include records of submitted tasks each of which has
resource requirements related to CPU, memory and disk [7].
As 93% of the Google cluster physical servers have the same
computing capability, we align our capacity unit to that of
a physical server in the cluster. For each user, we use a
scheduling algorithm that assigns or releases capacity unit (e.g.
a VM or a container) based on the resource requirements of
the tasks. Whenever a user submits a task, the scheduling al-
gorithm checks if it can accommodate the task in the currently
allocated capacity; otherwise it allocates a new capacity unit.
The scheduling algorithm also releases a capacity unit when
there is no running task using that unit. As a result, we obtain
list of requests for acquiring and releasing units of capacity in
the data center and create a trace of roughly 470K requests.
The normalized workload generated according to the explained
method using the one-month Google cluster traces is illustrated
in Figure 6. We assume that the power consumed by the unit
capacity is on average 250W [8].

2) Configuration of data centers: We consider a group
of 3 data center sites for the US-Southwest region in the
following locations: Prewitt in New Mexico (NM), Phoenix
in Arizona (AZ) and Los Angeles in California (CA). Data
centers locations have been selected based on the availability
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of meteorological data traces in the database of National
Renewable Energy Laboratory (NREL) [9]. All data centers
use wind turbines (GE 1.5MW wind turbine with efficiency
of 40%) and solar panels (500m2 with efficiency of 30%)
to produce electricity for local usage. Capacity of all data
centers are set in a way that it does not lead to any request
rejections. As shown in Figure 7, data centers are assumed to
be connected to the utility grid and are able to buy electricity
from a nearby hub (delivery points). The wholesale electricity
price information for each hub is collected from the website
of Energy Information Administration (EIA) [10]. Data center
sites in NM and AZ are connected to Palo Verde hub and the
data center site in LA is connected to the SP-15 hub. Figure 8
shows the price of electricity for the wholesale market at each
hub for a period of 30 days.

3) Renewable traces: To capture the availability of solar
and wind energy in the location of each data center, we
use meteorological data traces by NREL [9] with 1-hour
granularity between 1st and 29th of May 2013.

We presume each data center uses a GE 1.5MW wind
turbine to generate wind power. To estimate the average wind
power production per hour, the model proposed by Fripp
and Wiser [11] is employed where the wind speed, the air
temperature, and the air pressure measurements in the location
of each data center collected from NREL traces are fed into
the model.

Similarly, the Global Horizontal Irradiance (GHI) in the
location of each data center is used to calculate the output for
solar photovoltaics (PV) power. Each data center uses power
generated by the PV panels of 500m2 total area with tilt angle
of 45◦ degree and PV cell efficiency of 30%. We calculate
the PV power module output on the tilt surface based on the
model in [12].

The summation of the power generated from these two
sources per hour is computed as hourly available renewable
power for every data centers. Figure 9 shows a sample five
days of the total generated power from the renewable sources
for different data centers.

4) Benchmark Algorithms: In Section III, we showed the
exponential time complexity of the offline optimal GLB algo-
rithm and its intractability. Running the simulation of such an
algorithm is prohibitive in the settings of the discussed case
study. Therefore, we consider the following benchmarks GLB
algorithms in order to study the performance of FLB.

Future-Aware Best Fit (FABEF): This algorithm is sim-
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Fig. 9. Renewable power generation for five days.

ilar to Algorithm 1 without performing recursive calculations.
That is, it routes each request to a data center leading to
the lowest cost of the request accommodation within the
future window irrespective of upcoming requests. The FABEF
algorithm has the full knowledge of electricity price and
renewable energy traces to a certain future time window.

Round Robin (RR) : It routes requests to data centers in
circular order with null information about the status of data
centers.

Highest Available Renewable First (HAREF): The
HAREF algorithm routes requests to the data center with the
highest amount of available renewable energy at the current
time slot.

B. Experimental Results and Analysis

We utilize CloudSim [13], a discrete-event Cloud simulator
including models of virtualized computing infrastructures, and
create a supporting module for the GLB. We model a cloud
provider with a set of three data centers (zones) configured and
connected to a nearby hub as explained in subsection V-A2.
We use the electricity price for each hub form EIA [10] in the
period of experiment. We refer to each data center according
to its state, namely California (CA), Arizona (AZ), and New
Mexico (NM). The renewable (green) power availability at
each data center is also defined according to the settings in
subsection V-A3. We performed several numerical experiments
to evaluate the cost and green power utilization of FLB. Each
experiment carried out for 29 days according to the workload
setup driven form real-world traces of Google as explained in
Section V-A1.

We set the cost per each data center as total units of power
used from the utility grid multiplied by the corresponding
electricity price. Total cost of the cloud provider is calculated
as the summation of all data centers’ cost. The green energy
utilization is also computed as the ratio of total number green
power units used to the total units of green power generated
in each data center for the period of experiment.

1) The performance analysis of FLB against benchmark
algorithms: In this section, we study the cost savings and
renewable power utilization of FLB algorithm against other
benchmark algorithms. All reported results are normalized to
the outcome of RR algorithm which has the worst performance
and both FLB and FABEF use the window size of 5 hours.
Figure 10 shows the normalized total cost divided by the cost
in each data center. The figure illustrates that FABEF, which is
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Fig. 10. The total cost of different algorithms normalized to the outcome of
the RR algorithm.
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Fig. 11. The green power utilization of different algorithms normalized to
the outcome of the RR algorithm.

equipped with future knowledge, has the best performance with
14% cost savings against simple RR algorithm. FLB, which
uses past information for the decision making, has the second
best results with only 2.5% lower cost savings compared to
FABEF. The HAREF algorithm is able to gain 7.5% cost
savings which shows that cloud providers are able to save
cost even using a simple HAREF strategy compared to naı̈ve
algorithm such as RR.

Figure 11 depicts the total amount of green power utiliza-
tion by each algorithm. As it can be seen, HAREF, which
greedily routes requests to a data center with highest currently
available green power, utilizes the highest amount of green
energy. However, this does not necessarily lead to the lowest
cost for the provider. As shown in Figure 10, both FABEF and
FLB generate significantly lower cost compared to HAREF
while they utilize green energy 0.7% and 2% lower, respec-
tively (Figure 11).

2) Impact of recent history window size on the FLB per-
formance: We further analyze the cost performance of FLB
under different sizes of the recent history window. Figure 12
shows that the normalized total cost of FLB and FABEF as
respectively past and future window size is increased from
1 hour to 12 hours. As we expected, the cost performance
of FABEF increases when more future data is available to
the algorithm. However, increasing the size of the recent past
history for FLB algorithm does not necessarily enhance its
performance. As it can be seen, in our case study, the best cost
performance is achieved when the window size of 5 hours is
selected. In practice, in order to get the best outcome of FLB,
one must tune the window size according to the settings of
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Fig. 12. Effect of window size on the total cost performance of FLB and
FABEF normalized to the outcome of the RR algorithm.

workload and the environment.

VI. RELATED WORK

Over the last decade, power management techniques to
minimize data centers’ costs and environmental impacts have
gained considerable attention by both academia and industry.
Large data centers such as those used by big companies like
Google and Amazon can host thousands of physical servers
and require up to tens of megawatts electricity to power
them [14]. As result, service providers are under huge pressure
to reduce their energy consumption and its associated costs.

Most of the early research studies on energy efficiency
focus on making green data centers using optimization tech-
niques within a single data center; techniques such as CPU
dynamic voltage and frequency scaling (DVFS) [15], vir-
tualization and VM consolidation [16], [17], and workload
scheduling [18]. An extensive survey and taxonomy of these
can be found in [19]. A large body of recent literature focus
on reducing energy costs targeting geographically distributed
data centers. These group of works mainly devise techniques
for workload distribution across Geo-distributed data centers
in order to achieve performance objectives such as cost
minimization, renewable energy maximization, and emission
minimization. Rahman et al. [20] present a comprehensive
survey on data center power management using geographic
load balancing.

One of the early studies on GLB is done by Liu et al. [3].
Using GLB, they propose algorithms to maximize renewable
energy utilization and show how dynamic electricity price can
affect brown energy usage. An extension to this work has been
done by Lin et al. [2], where they propose online algorithms
to exploit the potential of geographical diversity of internet-
scale services on renewable energy utilization. As part of their
research, they show the optimal portfolio of solar and wind
energy sources in GLB. Similar to their work, we consider
GLB to reduce energy cost and to maximize renewable energy
utilization. However, we propose fuzzy logic-based load bal-
ancing algorithm with no future knowledge, while they propose
online algorithms optimizing over a window of predicted future
loads.

Similarly, He et al. [21] considered the sustainability of
data centers by proposing socially-responsible load scheduling
for data centers where they consider emission cost as the social



cost. Chen et al. [22] proposed a scheduling algorithm that
considers the workload fluctuation, jobs’ deadline, variable
green energy supply, outside temperature, and data center
cooling dynamics. All these studies consider data centers
with on-site free of charge power generations from renewable
energy sources.

There is another class of research efforts assume that
data center must pay for the power drawn from the off-site
renewable energy source. Le et al. [23] considered load dis-
tribution across data center sites by including capping energy
usage from non-renewable sources. Gao et al. [24] propose a
framework, which is compared to the method by Le et al. [23],
for request-routing and traffic engineering considering changes
in workload and carbon footprint. They attempt to balance the
three-way trade-off between access latency, carbon footprint,
and electricity costs. Zhang et al. [25] proposed the GreenWare
framework to maximize the renewable energy utilization of
Geo-distributed data centers. They assume that renewable
energy is more expensive than brown energy.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a fuzzy logic-based algorithm for cost and
energy efficient load balancing among multiple data centers of
a cloud service provider. We also showed that optimal offline
geographical load balancing is hard to achieve even if the
perfect future knowledge about upcoming requests and their
characteristics (i.e., arrival, size and lifetime), availability of
renewable energy sources, and electricity price are known in
advance. Considering the complexity of optimal load balancing
and the difficulty of achieving complete and exact future
knowledge, we designed and proposed an algorithm based
on the fuzzy logic inference systems called FLB. The FLB
algorithm provides a non-linear mapping from the inputs like
recent utilization of the renewable power, the amount of brown
(utility grid) energy consumption, and average electricity price
to an output showing the appropriateness of the data center
for the request redirection. Our evaluation using simulation
of a case study designed according to real-world traces of
workload, renewable energy sources, and electricity market
prices showed that our proposed method is able to significantly
reduce the cost of the cloud provider. We also demonstrated
the impact of recent history window size on the performance of
the FLB algorithm and its importance for the decision making.
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