
Simulation Modelling Practice and Theory 39 (2013) 76–91
Contents lists available at SciVerse ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat
Energy-aware simulation with DVFS
1569-190X/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2013.04.007

⇑ Corresponding author at: CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France. Tel.: +33 561336924.
E-mail addresses: tguerout@laas.fr (T. Guérout), monteil@laas.fr (T. Monteil), dacosta@irit.fr (G. Da Costa), rnc@unimelb.edu.au (R. Neves Ca

raj@csse.unimelb.edu.au (R. Buyya), malexand@laas.fr (M. Alexandru).
Tom Guérout a,b,c,⇑, Thierry Monteil a,c, Georges Da Costa b, Rodrigo Neves Calheiros a,
Rajkumar Buyya e, Mihai Alexandru a,d

a CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
b IRIT/Toulouse University, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
c Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
d Univ de Toulouse, INP, LAAS, F-31400 Toulouse, France
e Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne, Australia
a r t i c l e i n f o

Article history:
Received 30 November 2012
Received in revised form 29 April 2013
Accepted 30 April 2013
Available online 4 June 2013

Keywords:
Grid computing
Cloud computing
Simulation
Energy-efficiency
DVFS
a b s t r a c t

In recent years, research has been conducted in the area of large systems models, especially
distributed systems, to analyze and understand their behavior. Simulators are now com-
monly used in this area and are becoming more complex. Most of them provide frame-
works for simulating application scheduling in various Grid infrastructures, others are
specifically developed for modeling networks, but only a few of them simulate energy-effi-
cient algorithms. This article describes which tools need to be implemented in a simulator
in order to support energy-aware experimentation. The emphasis is on DVFS simulation,
from its implementation in the simulator CloudSim to the whole methodology adopted
to validate its functioning. In addition, a scientific application is used as a use case in both
experiments and simulations, where the close relationship between DVFS efficiency and
hardware architecture is highlighted. A second use case using Cloud applications repre-
sented by DAGs, which is also a new functionality of CloudSim, demonstrates that the DVFS
efficiency also depends on the intrinsic middleware behavior.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Simulators are now commonly used to study the energy consumption of data centers [1,2]. Indeed, the increasing use of
data centers and the high amount of energy demanded by them, make the analysis of their energy consumption extremely
important. Several metrics to evaluate their efficiency are widely used (PUE,ERE) [3] and research is ongoing to find new
ways to reduce energy consumption and improve energy efficiency metrics. This leads to improvement and/or creation of
new algorithms that require extensive testing phases to validate their effectiveness.

Each phase of development and testing of these algorithms are very long due to the number of attempts required to check
and improve their performance. Real platforms can be used on these validation phases, but it involves a significant prepa-
ration time, and physical measurements are not always possible or easy to acquire and reproduce, depending on the avail-
able equipment. Hence, simulators are commonly used in this area.

The article focuses on the comparison between energy-aware simulations and real experiments, especially using DVFS
(Dynamic Voltage and Frequency Scaling). This comparison handles the problem of how to choose a simulator that offers
lheiros),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2013.04.007&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2013.04.007
mailto:tguerout@laas.fr
mailto:monteil@laas.fr
mailto:dacosta@irit.fr
mailto:rnc@unimelb.edu.au
mailto:raj@csse.unimelb.edu.au
mailto:malexand@laas.fr
http://dx.doi.org/10.1016/j.simpat.2013.04.007
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat


T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 77
some energy-aware modeling tools, how to improve it, how to validate its new functionalities based on energy consumption
and finally how to use it to conduct accurate simulations.

The use of DVFS is common in HPC and Grid systems, but not commonly developed in simulators. For this reason, this
article initially presents a DVFS integration and validation phase. This phase demands many detailed steps, from the power
model study to how to define an application scenario to use in real experiments and simulations in order to achieve precise
validation.

This article is organized as follows. Sections 2 and 3 present a state of the art on energy models, energy-aware tools, sim-
ulators, DAG (Directed Acyclic Graph) and DVFS. Sections 4.1 and 4.2 describe implementation of DVFS and DAG that have
been added to CloudSim. Section 5 presents the validation phase of the DVFS implementation in the simulator. In Section 6,
two use cases are detailed and a comparison between simulations and real experiments is established. The first one uses a
parallel Grid application described in Section 6.1 and the second one presents Cloud simulation using both DVFS and DAG in
Section 6.2. Finally, Section 7 concludes the article and presents ideas for future work.
2. State of the art

This section presents state of the art concepts and tools that are relevant for energy-aware studies. In simulation, one of
the main challenges is how to develop a power model that fits as best as possible the behavior of a real host. In the domain of
real life tools for energy efficiency, virtualized environments provide several techniques for reducing energy consumption,
through virtual machines and host management. These solutions are listed in this section and used on both simulations and
experiments. Moreover, a list of widely used energy-aware simulators actually available is presented. The last point is about
DAGs which, are commonly used to represent relevant applications in the domain of scientific computing.

2.1. Power models

Rivoire et al. [4] established a comparison list between many different energy models. Two categories are defined: com-
prehensive models and high-level models called black-box models. Comprehensive CPU models were proposed by Joseph and
Martonosi [5] and by Isci and Martonosi [6]. These models achieve high accuracy in terms of CPU power consumption and
rely on specific details of the CPU micro-architecture. High-level models are more general, and disregard specific low-level
details of the operation and characteristics of the modeled infrastructure. Nevertheless, they increase portability of the mod-
el and simulation speed. These simple models sacrifice the accuracy of computation, but do not require detailed knowledge
of the architecture of processors used.

In this article, the high-level approach is applied. The linear power model used at fixed frequency is:
PTOT ¼ ð1� aÞPCPUIdle þ aPCPUFull
where a is the CPU load and PCPUIdle and PCPUFull are the power consumed by the CPU at 0% and 100% of utilization, respec-
tively. Alternatively, more accurate models could be used as in the work by Da Costa et al. [7].

2.2. Energy-aware tools

Energy-aware tools are solutions that can be used at different levels, allowing the minimization of the power consump-
tion of each host in a data center. Some solutions act on hosts or on the network. In this article, only the host level is ad-
dressed and this section presents three common energy-aware tools that require that all used hosts utilize system
virtualization technology.

The first solution, called ON/OFF method, turns off hosts underutilized (compared to a threshold) and switches them on
again if necessary. All processes running on an underutilized host are moved to other hosts, and then the underutilized host
is switched off. Conversely, when all the hosts are over-utilized and the demand is high, one or more hosts are switched on
again. This process has only one goal, which is to reduce the number of switched-on hosts on a given time.

As described above, it is sometimes necessary to use migration mechanisms [8] to move processes between hosts. Migra-
tion allows the transfer of a running virtual machine (and its entire environment) from one host to another. These transfers
are not free in terms of energy consumption, because every change requires some time where data is transferred between
source and destination. It is also important to take into account the total cost of such action. This technique allows the re-
lease of some hosts and their deactivation, at the same time that the remaining running hosts can be used at their maximum
potential (consolidation).

Finally, DVFS (Dynamic Voltage and Frequency Scaling) [9] can dynamically change the voltage and frequency of a CPU of
a host according to its load. In the Linux kernel, DVFS can be activated in five different modes: Performance, PowerSave, User-
Space, Conservative, and OnDemand. Each mode has a governor to decide whether the frequency must be changed (increased
or decreased) or not. Three of these five modes use a fixed frequency: Performance uses the CPU at its highest frequency, Pow-
erSave uses the lowest frequency and the UserSpace mode allows the user to choose one of the available frequencies for the
CPU. The two last modes, Conservative and OnDemand, have a dynamic behavior. It means that the CPU frequency can vary
over time regarding the CPU demand. The governors of these two modes work with thresholds (one or two) and periodically



78 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91
check whether the CPU load is under (or over) these thresholds before making the decision to change the CPU frequency. The
Conservative governor works with an up_threshold and a down_threshold. When the CPU load is above the up_threshold the
frequency is increased, and when the CPU load is below the down_threshold the CPU frequency is decreased. This mode is
progressive, and each CPU frequency change is performed at one step step using all available frequencies. The OnDemand
mode uses only one threshold and favors system performance by directly setting the fastest frequency when the CPU load
exceeds the threshold. A decreasing CPU frequency, performed at steps as in the Conservative mode, is performed if the CPU
load stays below the threshold for a predefined amount of time.

A lower frequency, which implies a weaker voltage, reduces CPU power consumption but also slows down the CPU com-
putation capacity. Regarding the time spent with I/O operations, the efficiency of DVFS depends on the system architecture.
In some cases, it also slows down the I/O time when DVFS affects the frequency of the FSB (Front Side Bus). If a frequency
change only affects the multiplier between the FSB and the CPU frequency, I/O performance is not affected.

2.3. Simulators

SIMGRID [10] is a simulator that provides basic functionality for simulation of distributed applications in heterogeneous
distributed environments. Its use is well suited for evaluation of heuristics, prototyping, development, and improvement of
grids applications.

GroudSim [11] offers event-simulation tools for grid computing and cloud computing. The main areas of simulation are
file transfers, the cost of resources and the calculation of operating costs. It can be used with a package containing informa-
tion about the probability of hardware failure. In this case, the event module can detect errors occurring on the host or on the
network and initiate a process of reconfiguration of the concerned entities.

GSSIM [12,13] is a simulator that allows the study of scheduling policies with a flexible description of the architecture and
interactions between modules. Standard formats are accepted for description of workflows, such as Standard Workload For-
mat (SWF) and Grid Workload Format (GWF). An XML file can be defined to include more detailed information (e.g., time con-
straints). GSSIM allows virtualization and also integrates energy models and an accurate representation of the resource
usage.

GreenCloud [14] is an extension of the network simulator ns2 [15]. It provides a detailed modeling and analysis of the
energy consumed by the elements of the network servers, routers and links between them. In addition, it analyzes the load
distribution through the network, as well as communications with high accuracy (TCP packet level). In terms of energy,
GreenCloud defines three types of energy: calculation (CPU), communications, and physical computing center (cooling sys-
tem), and includes two methods of energy reduction: DVS (Dynamic Voltage Scaling) to decrease the voltage of switches and
DNS (Dynamic Network Shutdown) that allows to shut down switches when it is possible.

CloudSim [16] is a toolkit for modeling and simulation of Infrastructure as a Service (IaaS) cloud computing environ-
ments. It allows users to define the characteristics of data centers, including number and characteristics of hosts, available
storage, network topology, and patterns of data centers’ usage. It allows the development of policies for placement of virtual
machines on hosts, allocation of cores to virtual machines, and sharing of processing times among applications running in a
single virtual machine. Energy modeling in CloudSim allows termination of hosts for energy saving, virtual machine migra-
tion, and integration of energy models. The application layer is managed by brokers, which represent users of the cloud infra-
structure, that request creation of virtual machines in the data center. A broker can simultaneously own one or more virtual
machines, which execute application tasks. Virtual machines are kept operating while there are tasks to be executed, and
they are explicitly deallocated by the broker when all the tasks finish. Capacities of both virtual machines and hosts’ CPUs
are defined in MIPS (Million Instructions Per Second). Tasks, called cloudlets, are assigned to virtual machines and defined
as the number of instructions required to their completion.

Other commercial energy-aware simulators can be found in [1,2].
None of the available open source simulators contains a model for DVFS. Therefore, a model for this technique has been

developed and incorporated in the CloudSim simulator, because this simulator contains abstractions for representing distrib-
uted Cloud infrastructures and power consumption.

2.4. Directed acyclic graph

Direct Acyclic Graph (DAG) or workflow applications are a popular model for describing scientific distributed applica-
tions. Such applications are composed of a number of tasks (which are represented as nodes in the graph) that have data
dependency relationship between them (modeled as the directed vertices from the parent task to the child task). Execution
of a child task cannot start until all its parents completed their execution and generated their output. Indeed, the outputs are
required by the child task so as to use them as inputs for its execution.

Several algorithms were developed for execution of DAGs in clusters [17,18], grids [19,20], and Clouds [21,22]. However,
these existing algorithms typically focus in reducing execution times (in clouds and grids) or the execution time and/or exe-
cution cost (in the case of Clouds).

Recently, works were developed towards energy-efficient execution of workflows in clusters via DVFS [23,24]. However,
more research is necessary in this area in order to evaluate the current approaches against well known and widely used
workflow applications [25]. Therefore, the simulation model introduced in this article can be a valuable tool for developers



T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 79
of such algorithms, as it allows them to obtain quicker turnaround time during development of new algorithms, as it is dem-
onstrated in a case study in Section 6.2.
3. DVFS in the Linux kernel

DVFS is enabled in the Linux kernel since 2001. It can be used by installing the cpufrequtils package and its documentation
gives detailed informations about all modes behavior. It is located in the kernel documentation (linux-x.y.z/Documentation/
cpu-freq) and all DVFS sources code are also available in this folder: linux-x.y.z/drivers/cpufreq.

This DVFS module allows the system to switch between the five different modes as per the user’s convenience, by select-
ing their governor. Once the DVFS package is installed and configured, information about the system and the governors can be
obtained:

� CPU(s) affected by the DVFS;
� Available governors (one for each mode);
� Available frequencies of the host. These frequencies are directly defined by the type of host and CPU;
� Maximum and Minimum available frequencies are also stored in separated files. In some cases it is useful to set them

with specific values;
� Transition latency: meaning the minimum interval time the system check the CPU load;
� The current governor in use.

Each DVFS mode can be configured in different ways by setting specific parameters values.

� Sampling rate: defines the minimum time interval between two frequency changes;
� Thresholds: The OnDemand and Conservative modes compare the current CPU load with predefined thresholds. By setting

custom values, the user can adapt their behavior.

The following information about statistics usage of each mode can also be obtained:

� The time spent on each frequency;
� The total frequency transitions;
� A detailed table of frequency changes, with the number of transitions between one frequency to the others.

4. New functionalities in CloudSim

In this section, the features developed and incorporated to the CloudSim simulator in order to support modeling and sim-
ulation of DVFS and workflow applications are described.

4.1. DVFS in CloudSim

The core features for DVFS simulation were added to a new package, called DVFS. In this package (Fig. 1), governors of the
five modes of DVFS, as they are present in the Linux kernel and described in Sections 2.2 and 3, were implemented. Their role
is to determine if the frequency of the CPU must be changed and their decision is directly related to their intrinsic decision
rule. In the simulator, a frequency change directly impacts the capability of CPUs, measured in MIPS.

The use of DVFS directly affects the performance of the CPU capacity (and hosts), which are subject to regular changes
during simulations. This also involves changing the way the simulator handles the placement and management of virtual
machines. For example, if the system decides to reduce the frequency, the sum of capacities of all virtual machines (VMs)
may temporarily exceed the maximum capacity of the host. In this case, the size of each VM must temporarily be adjusted
downward in proportion to the capacity of the new host. The same situation occurs when one or more new virtual machines
have to be added to a host already in use. If the sum of capacities of the virtual machines already running in the host plus the
capacities of new virtual machines created exceeds the capacity of the host, the size of all virtual machines has to be de-
creased before adding the new virtual machines to the host.

Also, when part of the capacity of a host is released, capacities of virtual machines still active may increase. This event
occurs when a virtual machine has finished its execution or when the CPU frequency is increased. In this case, the capacity
of all the remaining virtual machines are scaled up regarding the free capacity of the host, while taking care to do not exceed
its maximum capacity.

The inclusion of DVFS in CloudSim required changes in the management of events performed by the simulation core. In
fact, the PowerSave mode induces a delay in the execution of tasks as the CPU operates at its lower frequency. Under these
conditions, the evolution of sequential events should be directly linked with the end of each event. The static description of
events (Fig. 2a) is no longer valid because it does not take into account the execution delay (illustrated in Fig. 2b). Thus, a
new option has been added to enable creation of events at the end of the execution of a broker, which means that all cloudlets



Fig. 1. UML diagram of DVFS package in CloudSim.

Fig. 2. (a) Shows an example of a base CloudSim event scheduling with a static description of events start dates at maximum frequency (no execution delay
in this case). (b) Shows an example of a base CloudSim event scheduling with a static description of events start dates, executed using PowerSave mode
ðFused ¼ Fmax

2 Þ, which implies delay in brokers execution. In this case it is easy to see that brokers execution sequence is not correct because of static event
description does not take into account generated delays (leading to a superposition of brokers execution). (c) Shows an example of dynamic trigger of
events. This new option added in CloudSim allows to use low frequencies that incur delays during cloudlet execution without disturbing the results of the
simulation. The first event of the simulation is defined at t = 0 and then brokers defined with a post-event continue the events sequence.

80 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91



Fig. 3. Class diagram of support for modeling and simulation of power-aware DAGs in CloudSim.

T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 81
contained in the broker have finished their execution before the start of the next broker. When a broker is instantiated, it can
contain the specification of a post-event that triggers a new event which starts the execution of a new sequence of cloudlets.

The last change in the simulator is the energy model. Indeed, the energy model used depends on the host to be modeled in
the simulation. Model definition used in this experiment is described in Section 5.2.
4.2. DAGs in CloudSim

Model and simulation of execution of power-aware DAGs in CloudSim was enabled with a series of extensions to the basic
CloudSim objects in order to make them aware of the dependencies between tasks, as well as to account for data transfer
between virtual machines. This implementation is independent from, and was developed concurrently with, the implemen-
tation by Chen and Deelman [26]. This implementation targets modeling and simulation of energy consumption and DVFS
during workflow execution, whereas Chen and Deelman’s focused in a realistic modeling of workflow management systems,
including advanced scheduling techniques, such as task clustering and fault-tolerant scheduling, without emphasis on
power-aware simulation.

The class diagram of the extension supporting power-aware DAGs in CloudSim is depicted in Fig. 3. A WorkflowEngine
class, which models a system that manages the scheduling of tasks, has been developed. It reads DAG description files in



82 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91
the DAX format, from the Pegasus project1 and translates the DAG elements in CloudSim objects: tasks are translated to Cloud-
lets objects and files are converted to DataItem objects.

The WorkflowEngine schedules the DAG for execution. The DAG and the types and cost of available VM types are the in-
put parameters for the DAG scheduling policy, which is defined as an abstract class Policy. Concrete implementations of this
class incorporate algorithms for provisioning of VMs (i.e., decision on number of machines required by the application and
their start and end times) and DAG scheduling.

At any moment when a VM is idle and the next task scheduled for execution on that VM is ready (i.e., all the required
DataItems are already copied to the VM), the WorkflowEngine dispatches such task for execution. Upon completion of exe-
cution of a task, all the DataItems generated as output of the task are available in the VM where the task was executed. The
WorkflowEngine then requests to the WorkflowDatacenter the transfer of DataItems to the VMs where children of the task
are scheduled for execution.

WorkflowDatacenter class extends CloudSim’s Datacenter class. The difference between the former and the latter is that
the former includes new classes that help in modeling network contention for transfer of data between virtual machines,
which are the Channel and Transmission classes. Channel represents a channel for transmission of data between VMs, whereas
the Transmission class models one single data transfer.

The actual data (i.e., the files generated by one workflow task that is required by its children) is modeled in the DataItem
class. At each simulation step, the amount of data of the Transmission that is considered already transferred is calculated
based on the elapsed simulation time and the available bandwidth for the particular transmission. When the total amount
of data defined in the object is complete, a message is sent to the WorkflowEngine advising the availability of the DataItem,
so it can proceed with the dispatching of ready tasks.

5. DVFS Validation on one host

This section describes how the DVFS implementation in CloudSim has been validated using a simple test application. The
test application has been created, like a benchmark, with different CPU load phases to be sure that the validation process
handles different situations of frequency change.

The objective of this section is to validate the behavior of DVFS and model of energy consumption in CloudSim. The main
idea is to execute a sequence of instructions on a real host with a Linux kernel with DVFS enabled and measure the total
energy consumption. Then it comes to accurately simulate the same experiment in CloudSim with DVFS activated and com-
pare both values of execution time and energy consumption between CloudSim and those of the real host in each mode of
DVFS. This process needs to be very precise to have accurate results, this is why the methodology is especially emphasized in
this article.

5.1. Experimental framework

All experiments were performed on a standard host (called HOST thereafter) equipped with an Intel (R) Core (TM) 2 Quad
CPU Q6700@2.66 GHz with 4 GB of RAM memory, running Ubuntu 10.4 LTS (Linux kernel 2.6.32). All measurements of energy
consumption were made with a wireless plogg2 power-meter which allows to measure and save energy consumption in real
time. One value can be obtained each second with a very high precision (>10�4 W).

5.2. Energy consumption calibration

In order to calibrate the calculation of the energy consumption in the simulator, it is first necessary to know the frequency
values (Table 1) allowed by the CPU of the host. In CloudSim, the frequency is expressed in MIPS, indeed, simulator frequen-
cies have been calculated proportionally to the host HOST frequencies values. Then, power values given by the host at 0% and
100% of CPU utilization, called PCPUIdle and PCPUFull for each frequency (i.e., 2 � Nb_Freq measurements) are measured (Table 2)
and used in the simulator to create the equivalent power model.

5.3. Methodology

The challenge is to perform an experiment that involves many frequency changes to test the behavior of DVFS, but also
phases of constant load to use the power model over its entire range. In this scenario, the maximum CPU load value has been
chosen to be 96% since it is enough to trigger frequency changes in dynamic DVFS modes.

Chronologically, the progress of the experiment, shown in Fig. 5, is:

� (A) progressive increase of CPU load from 0% to 96%.
� (B) a phase of stressed CPU load of 96%.
1 https://www.confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.
2 http://www.plogginternational.com/products.shtml.

http://https://www.confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://www.plogginternational.com/products.shtml


Table 1
Available frequencies on HOST (in GHz), and those added in CloudSim (in MIPS).

Frequencies

HOST (GHz) 1.60 1.867 2.133 2.40 2.67
%⁄Fmax 59.925 69.93 79.89 89.89 100
CloudSim (MIPS) 1498 1748 1997 2247 2500

Fig. 4. Decomposition of loop in C language.

Table 3
Examples of CPU loads and execution durations of each [VMx,Cloudletx] defined using Host1 with a capacity of 1000 MIPS.

VM/Cloudlet

C1 C2 C3 C4

CPU load (%) 10 10 2 2
Duration (s) 1.5 0.8 7.5 4

Table 2
Powers (in W) given by HOST at 0% and 100% of CPU load for each frequency.

CPU load Frequencies (GHz)

1.60 1.867 2.113 2.40 2.67

0% (PCPUIdle) 82.7 82.85 82.95 83.10 83.25
100% (PCPUFull) 88.77 92.00 95.5 99.45 103.0

T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 83
� (C) progressive decrease of CPU load from 96% to 50%.
� (D) peak CPU load to 80%.
� (E) progressive decrease of CPU load from 80% to 30%.
� (F) peak CPU load at 96%.
� (G) a phase of constant CPU load of 30%.

To run this scenario on the host HOST, a test application was implemented in C language. The desired average load is ob-
tained by performing a loop, illustrated in Fig. 4 where each iteration is composed of a calculation period and a sleep period.
When DVFS is enabled, the CPU load is checked every sampling rate (10 ms). To be sure that the decision of the DVFS governor
is taken directly linked with the CPU load generated by the computation loop, each time iteration of the loop must be exactly
equal to the interval sampling rate.

This scenario is modeled in CloudSim by running a set of brokers, each containing one or several VMs in which cloudlets
are executed. As explained in Section 4.1, a broker may contain a post-event, which starts when all the VMs contained in it
have finished their execution. By defining different types of VMs (with different MIPS) and different types of cloudlets (exe-
cuting different number of instructions), it is possible to increase and manage the CPU load accurately. The size of a VM de-
fines the percentage increase to the CPU load and the size of the cloudlet defines the execution time of the VM. So, this
scenario is created by a set of brokers that launch a series of VMs and cloudlet pairs. Finally, to have the same interval sam-
pling rate as in the Linux kernel, the simulation time interval is set to 10 ms.

Here is an example of how the CPU load is generated in CloudSim using different types of Host/VM/Cloudlets:

Host1: 1000 MIPS.
VM1: 100 MIPS, Cloudlet1: 150 Millions of Instructions.
VM2: 20 MIPS, Cloudlet2: 80 Millions of Instructions.

Considering the above hosts, VMs, and cloudlets, four combinations of VMs/Cloudlets can be used to generate different CPU
loads on Host1, as follows:



Fig. 5. CPU load comparison between the real host HOST and CloudSim simulation, using each DVFS mode.

84 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91
C1 ¼ ½VM1;Cloudlet1�; C2 ¼ ½VM1;Cloudlet2�
C3 ¼ ½VM2;Cloudlet1�; C4 ¼ ½VM2;Cloudlet2�
Table 3 shows the CPU load and the length of each defined combination. In this example, if several couples of VM/Cloudlet
like C3 are launched one after the other, with an interval of 1 s between them, the CPU load increases smoothly (2%). If five
couples of C1 are launched at the same time, it allows the creation of a peak load of 50% during 1.5 s.
5.4. CPU load comparison

Fig. 5 presents CPU load curves at maximum frequency obtained during the experiment on the host HOST and during
CloudSim simulation. At maximum frequency, the challenge was to have exactly the same CPU load, to be sure that all sim-
ulations started with the same conditions. Then the experiment was launched in the three other DVFS modes to evaluate the
behavior of the simulator.

Scenario phases (A) to (G) are well distinguishable in Fig. 5. Indeed, Performance graph represents exactly the scenario
defined in Section 5.3.

The Conservative CPU load graph (Fig. 5b) shows only small CPU load variations from phase (A) to (B) due to its progressive
step by step increasing of the CPU frequency. No other changes can be observed in relation to the Performance graph, justified
by the fact that CPU load never drops under its down_threshold (20%), implying that the CPU frequency stays at its maximum
value until the end of phase (G).

The OnDemand mode (Fig. 5c) shows more CPU load variations during its execution. The behavior of the OnDemand mode
favors host performance by increasing the CPU frequency to its maximum as soon as the CPU load exceeds the threshold.
Once the CPU load frequency drops below this same threshold, the CPU frequency is decreased step by step. This interesting
behavior can be easily observed, for example, during the (C) phase, in which abrupt CPU load changes can be observed: while
the CPU load is being lowered, passing below the threshold of 95%, the OnDemand governor gradually decreases the CPU



Fig. 6. CPU frequency changes during CloudSim simulations using the OnDemand mode.

Table 4
Results of the comparison between HOST and CloudSim in each evaluated DVFS mode. Percentages errors concern the energy consumption results.

DVFS mode HOST CloudSim Error (%)

Duration (s) Energy (W h) Duration (s) Energy (W h)

Performance 213 5.72 213 5.61 1.92
OnDemand 213 5.57 213 5.49 1.43
Conservative 213 5.68 213 5.64 1.71
PowerSave 259 6.37 260 6.33 0.63

T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 85
frequency. Each time the CPU frequency is decreased, the CPU load increases proportionally until the frequency used begets a
CPU load over 95%. At this moment, the OnDemand governor sets the CPU frequency at its maximum value and this situation
occurs until the end of this phase. These CPU frequency changes can be observed in Fig. 6.

Finally, the analysis of the PowerSave mode (CPU frequency fixed at minimum) execution graph (Fig. 5d) allows to under-
stand that this mode causes delay in tasks execution as the CPU is requested more computing power than it can provide. All
scenario phases are sequentially executed, but by using the lowest CPU frequency, the CPU load never has an opportunity to
decrease. The decreasing (C) phase is observable a short moment at Time ’ 165 s. The total execution time using this DVFS
mode is significantly longer than the execution time obtained with the other modes.
5.5. Energy consumption comparison

Table 4 summarizes the execution time and energy consumption of various experiments and simulations, and compares
the energy consumption value in terms of error rate.

It is interesting to note that in an experiment like the one presented in this section, results in terms of execution time and
energy consumption follow the logic of the different modes of DVFS and there is a consistency between real measurements
and the results of the simulator.

Conservative (Fig. 5b) and OnDemand (Fig. 5c) modes have execution times similar to the Performance for two different
reasons. As explained in the previous section, the Conservative mode smoothly increases the CPU frequency to its maximum
value during the (A) phase, and then continues using the fastest one because the CPU load never falls below its down_thresh-
old. Indeed, from (B) to the end of the (G) phase, this mode has exactly the same behavior as Performance and there is no
execution delay during the (A) phase, leading to an equal total execution time. About the OnDemand mode, it mainly pre-
vents performance loss by increasing the CPU frequency to its maximum directly when necessary, so no execution delay oc-
curs. In an energy consumption point of view, the OnDemand mode is the one that gives the best result because of its more
responsive behavior to decrease the frequency compared to the Conservative mode. The result of the PowerSave mode can be
explained because theoretically this mode gives the lowest live consumption at a given time t, but here the duration is much
longer due to the low CPU frequency, which is not always favorable in terms of energy consumption for a CPU intensive
application. Table 4 shows that the validation phase has been conducted in proper conditions, with accurate real measure-
ments and well-defined simulations with a worst percentage energy consumption error of 1.92%.

The next section presents two DVFS use cases that involve more complex applications.



Table 5
Grid’5000 Reims site available frequencies, and power measurements at Idle and Full CPU states, which both use 0% and 100% of the whole 24 cores of a node,
respectively.

Grid’5000 Reims site

Available frequencies (GHz) 0.8 1.0 1.2 1.5 1.7

Power (W) Idle 140 146 153 159 167
Full 228 238 249 260 272

86 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91
6. Evaluation

After validating the DVFS modeling in CloudSim with a simple application, this section presents two more complex DVFS
use cases. The first one involves a parallel Grid application implementing an electromagnetic method called TLM (Transmis-
sion Line Matrix Method). The second one presents simulations of Cloud applications represented by DAGs which give attrac-
tive DVFS usages.

These two evaluation cases use applications that involve CPU-intensive computing, I/O and network communications.
More precise power models for disk or network could be used, but it is not the main focus of this section and, as detailed
by Da Costa et al. [27], the CPU power consumption takes the largest part of total power consumption of a host. However,
the power consumption generated by disk and network usage has not been totally ignored in this section. Results given in
Sections 6.1.6 and 6.2.2 are based on measurements performed on the Grid’5000 Reims site with disk and network stressed
applications. Most of the time, results showed an increase of power consumption inferior to PDUs precision (6 W). In addi-
tion, these measurement inaccuracies lead to small error percentages on the energy consumption value, and are considered
in both real experiments and simulations. The simulations power models used on the experiments are based on these real
experimental values.
6.1. Parallel MPI application

6.1.1. TLM description
The Transmission Line Matrix method (TLM) is a numerical method for electromagnetic simulation that fills the environ-

ment of the electromagnetic field propagation with a network of transmission lines. The modeling of a propagation field in-
side a given medium is possible thanks to the equivalence that exists between the electric and magnetic fields and voltages
and currents in a transmission line network. A detailed presentation of the TLM method, also in a three-dimensional ap-
proach, is presented by Hoeffer [28].

The resolution of this method in parallel on a Grid computing environment is based on a division of the structure along
the three axes. Volumes are assimilated to tasks executed on each host, CPU, or processor core, exchanging information via
the MPI library (Message Passing Interface). Indeed, the TLM task has to communicate (send data) with its neighbors, which
introduces an important amount of time spent with network communication.
6.1.2. Application and hardware characteristics
The MPI library used for the TLM application case study is OpenMPI. One critical point of this library that has to be con-

sidered is the pooling time. The pooling time is the time during which a task is waiting to receive data sent by its neighbors.
Although this could be regarded as a sleeping time, this is not the case when the OpenMPI library is used, because the CPU is
fully used during this time. This is why it is very important, in energy-aware experiments, to take into account this param-
eter. A frequency change to a lower frequency during a pooling time is much less efficient than in a phase when the CPU load
tends towards 0%. This characteristic of the MPI library and a non-pooling implementation are discussed by White and Bova
[29].

For this first evaluation case, hosts of the Grid’5000 [30] Reims site have been used to run the real experiments. Power
characteristics and available frequencies of this site are given in Table 5. These nodes have a surprising behavior using DVFS
concerning the hard disk throughput. After many experiments using DVFS on different modes, either using a fixed frequency
or a dynamic mode, it appeared that the time spent on I/O was also affected by the DVFS. In other words, if the CPU frequency
decreases, so does the I/O speed. This means that on the architecture of these particular hosts3, DVFS affects both the Front
Side Bus frequency and the multiplier (to obtain the CPU frequency).

Knowing these characteristics, two models to study the energy consumption of this application can be defined. The first is
the analytical one, which allows the computation of an estimation of the power consumption. The second one is the event
model, which is used in the simulation, to represent the behavior of the application by a sequence of events. Results of these
two models are analyzed and compared with real experiments values in Table 6.
3 https://www.grid5000.fr/mediawiki/index.php/Reims:Hardware.

http://https://www.grid5000.fr/mediawiki/index.php/Reims:Hardware


Fig. 7. Graphical representation of the functioning decomposition of the TLM in the simulator.

Table 6
Comparison between Grid’5000 Reims site experiment results obtained with the analytical model and simulations. Percentage errors are computed relatively to
Grid’5000 experiments results. Experimental results are based on an average of 20 executions given a Time and Energy standard deviation value inferior to
150 s and 22 W h in both DVFS modes, respectively.

DVFS modes

Performance OnDemand

Time Energy (W h) Time (s) Energy

Value Error Value Error Value Error Value Error

Simulation 3790 �0.07% 478 �1.44% 4932 �0.1% 613 �0.8%
Analytic 3882 2.69% 499 2.88% ø ø ø ø
Experiments 3793 ø 485 ø 4937 ø 618 ø

T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 87
6.1.3. Analytical model
The model introduced next allows the calculation of the energy consumption of the experiments, if the frequency used is

known. As explained below in Section 6.1.2, the model has to take into account the pooling time and the slow down relation
between the CPU frequency and the disk throughput.

H: Node used.
Tcpu and Tnet: CPU and Network time.
Ddisk: Amount of data to be written on the disk in number of elements.
Thdisk(fi): Disk throughput at frequency fi.
F = {f1, f2, . . . , fn�1, fn}: Available frequencies on node H, with fn�1 < fn.
lH
cpuðfiÞ and hH

cpuðfiÞ: Power given by node H at 0% and 100% of CPU load.
lH
diskðfiÞ: Power given by node H when disk is used.

The prediction model of CPU, network and disk of the TLM presented by Alexandru et al. [31] was used: Tcpu = C1 + nlnx-

nynzC2, Tnet ¼ Lþ nxny

D

� �
� 4nl and Ddisk = nx � ny � nz, with nx, ny, nz dimensions of the TLM environment, nl the number of iter-

ations, C1 and C2 constants estimated by past experiments, L and D are latency and network throughput.
The total energy E is:
E ¼ Tnet � hH
cpuðfiÞ þ ðTcpu � f nÞ

hH
cpuðfiÞ

fi

" #
þ Ddisk

ThdiskðfiÞ

� �
� lH

diskðfiÞ
6.1.4. Event model
The event model represents how the TLM application has been modeled in the CloudSim simulator (Fig. 7). In the sim-

ulation, all 24 tasks are hosted by one CloudSim host with 24 cores. In one node, the generated amount of data I/O is written
on the disk shared by the 24 tasks of a node. Therefore, in the simulation, the I/O throughput and capacity have to be rep-
resented by one host shared by all tasks. This method has been applied because the storage management of the simulator



88 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91
does not allow slowing down the I/O speed when using DVFS. As explained in paragraph Section 6.1.2, the disk throughput is
slowed down at the same rate than the CPU frequency on some architectures. Because of this, in the simulation, DVFS has to
be enabled on the host that simulates the disk capacity. Finally, the network workflow generated by the MPI communication
between tasks and nodes is represented by a single CloudSim host shared by all others. With this simulation architecture, all
capacities of CPU, disks and Network are respected.
6.1.5. Experiments on Grid’5000
Experiments were conducted in the Grid’5000 Reims site, whose configuration is: HP ProLiant DL165 G7, CPU: AMD Opter-

on 6164 HE 1.7 GHz, 12 MB L3 cache, 44 nodes with 2 CPUs to 12 cores per CPU (1056 cores).
The TLM was performed on both nodes using 100%, or about 48 cores, with one TLM task on each core. The input param-

eters are: nx = 172, ny = 90, nz = 12 and nl = 26,000. Throughput and network latency measured in Reims are: D = 700 Mbit/s
and L = 4 � 10�5 s.

Deployment of TLM on Grid’5000 Reims site has been done in a Kadeploy4 environment using two DVFS modes:

� Maximum Frequency (1.7 GHz) in Performance mode.
� OnDemand mode, which allows the kernel to dynamically change the CPU frequency depending on current CPU load.

During these experiments, a bash script collected and saved the power delivered by all used nodes. Grid’5000 Reims site
allows the use of PDUs (Power Distribution Units), which give a power measurement every 3 s, with a precision of about 6 W.
6.1.6. Results
Table 6 shows the results between the two defined models defined real experiments. The analytical model allows the

quick computation of an estimation of the execution time and energy consumed using equations related to the size of the
TLM structure and power characteristics (CPU, network, and disk) of hosts. The event model is applied in the CloudSim sim-
ulator with a virtual representation of the application and hardware behavior as explained in Section 6.1.4. This model al-
lows the simulation of the two DVFS modes, Performance and OnDemand, used in real experiments, and gives both accurate
results of execution time and energy consumed. The analytical model gives also good results for the Performance mode, but
unlike the event model, it cannot be used with the dynamic DVFS mode OnDemand. In fact, dynamical frequency changes
regarding the CPU load on each host cannot be accurately modeled with this method.

About energy consumption values, the OnDemand mode achieves worse results than the Performance one. As explained in
Section 6.1.2, this is caused by the slow down of the I/O time when the CPU frequency decreases and the pooling time during
MPI communications. These results need to be more detailed because, in the standard DVFS behavior, the OnDemand mode
always achieves better energy consumption results. On the Reims site, during a CPU load stressed phase, the OnDemand
mode performs as expected, dynamically decreasing or increasing the frequency regarding its threshold. However, when
a TLM task is waiting for data from its neighbors, the CPU load remains at 100% because of the pooling characteristic. In fact,
the OnDemand governor does not change the CPU frequency and therefore introduces high power consumption. During an I/O
phase, the CPU load goes to 0% and the OnDemand governor quickly decreases the CPU frequency, which leads to I/O slow
down proportional to the new lower frequency. This behavior during network and I/O times is the reason why the OnDemand
mode is not efficient in these experiments.
6.2. DAG simulations

The aim of the DAG simulations is to show the effectiveness of the use of DVFS, in different configurations, to save energy
during DAG execution. An application represented by a DAG is an application with an execution flow split in ordered tasks
(Fig. 9). One task can have both children that have to be executed after its end, and parents that have to be executed before its
start. These dependencies are translated in files that are generated as a result of the execution of a parent and used as input
for the execution of the child.

The longest path, from an entry task (i.e., tasks that do not have parents) to an exit task (i.e., tasks that do not have chil-
dren) is called critical path. The minimum execution time is bounded by the duration of tasks in the critical path in the DAG. If
a DAG contains several critical paths, a critical sub-graph which contains all the critical paths are defined and taken into ac-
count. Considering that these paths are not variable, the execution time of the DAG is equal to the end time of critical path’s
last task. Each task outside this critical sub-graph is called non-critical task and can be slowed down without risking delaying
the DAG execution.

The workflow model considers tasks dependencies, execution time of each task, and the amount of data that each task has
to send to its children. The time required for the data to be transmitted from the VM running the parent to the VM running
the child determines the communication time of tasks, and this time is equal to 0 if both tasks are executed on the same VM.
This communication time is taken into account during the analysis of the DAG to determine the critical path.
4 Deployment system for cluster and grid computing: https://www.gforge.inria.fr/projects/kadeploy/.

http://https://www.gforge.inria.fr/projects/kadeploy/


Fig. 8. Graph of optimal fixed frequency depending on Grid’5000 Reims site power characteristics and Slack-Time, which varied from (0.1 � Ttask) to
(5 � Ttask). Ttask is the execution time of a given task, and the X axis unit is Slack�Time

Ttask
.

Fig. 9. The Sipht DAG application with 30 tasks used for simulations. For detailed informations about execution time and data item sizes of this DAG 5.

T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 89
In order to establish a theoretical lower bound on the energy saving enabled by utilization of DVFS for DAG execution, the
scheduling algorithm used for scheduling DAGs to VMs allocates each task to a different host. This forces data to be trans-
ferred at the end of each task execution, because tasks are not sharing virtual machines. Development of new scheduling
algorithms able to optimize number of hosts and execution time are subject of future work.

The DAG application used for these simulations is Sipht30, which is depicted in Fig. 9. This DAG is an instance of Sipht
which is a workflow to automate the encoding of genes. This workflow uses a fairly large number of applications but has
a very stable behavior in both time execution and data sizes5. Data transfer times are inferior to the execution tasks times.
6.2.1. Slack-time algorithm and optimal frequency
The principle of slowing down non-critical task is to find the best energy-aware frequency to execute those tasks. This opti-

mal frequency depends on the power characteristics of hosts used, the particular workflow topology, and the ratio between
the task duration and the slack-time duration. The slack-time of a task is the time interval between its end and the earliest
start time of its child. A task belonging to a critical path is not subject to slack-time.

The Grid’5000 Reims site’s characteristics (showed in Table 5) have been used on this experiment. Optimal frequencies
computed regarding the slack-time are shown in Fig. 8. This figure was obtained by computing the energy consumption of
a task by varying its duration and its slack-time, for each frequency. Then, the lowest energy consumption value and its cor-
responding frequency, called optimal frequency, are saved for each ratio Slack�Time

Ttask
. In these experiments, the only valid values

for optimal frequency are those available on the Grid’5000 Reims site, and this is why Fig. 8 shows discrete decrease fre-
quency results.
5 https://www.confluence.pegasus.isi.edu/display/pegasus/SIPHT+Characterization.

http://https://www.confluence.pegasus.isi.edu/display/pegasus/SIPHT+Characterization


Table 7
Energy consumption results (in W h) comparison between the three DVFS modes used in DAG
simulations. The gains of UserSpace and OnDemand modes are computed relatively to the power
consumption value of the Performance mode.

DAG fileSipht_30 DVFS modes

Performance UserSpace (Fopt) OnDemand

Energy (W h) 3241 2817 2751
Gain (%) ø 13.1% 15.1%

90 T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91
The method for computing the slack-time for each non-critical task of the DAG was obtained from Kimura et al. [32], which
presents a study of reducing energy consumption using slack-time and DVFS. Others studies about workflow overheads were
presented by Chen and Deelman [33] and Nerieri et al. [34].

6.2.2. Results
The following Table 7 shows the energy consumption obtained of the Sipht30 application using different DVFS policies.
The OnDemand mode is very efficient: during CPU burn phases, the frequency is set to its maximum, and during lower

CPU computation phases and after a task has finished its execution (i.e., CPU idle), the frequency decreases to its minimum
available value, which has the lowest power consumption, and resulted in a gain of 15.1%. Performance and UserSpace (Fopt)
modes do not change their frequency, which is of course not the most efficient behavior when the CPU is in idle state. Nev-
ertheless, the use of the optimal frequency for each non-critical task is a suitable solution, resulting in a gain of 13.1% com-
paring to the Performance mode.

7. Conclusion

The purpose of this article was to provide an overview of the available energy-aware simulators and to describe the nec-
essary tools required in a simulator to obtain accurate simulations in terms of energy consumption. After describing how
both DVFS and DAGs have been incorporated in CloudSim, the methodology applied to evaluate the DVFS accuracy was ex-
plained in details in Section 5 and showed a worst energy consumption percentage error smaller than 2%, as compared to a
real host, using a simple test bench application. This section highlighted the importance of the calibration phase, which de-
mands a good knowledge of application, middleware, and hardware.

The evaluation section gives interesting conclusions about DVFS behavior, which was found to be closely linked with the
internal architecture of the hosts and application functioning. Indeed, concerning the impact of the used architecture, exper-
iments of the Grid application TLM demonstrated a strict relation between CPU frequency and I/O speed. In this section, one
intrinsic application behavior that impacts DVFS was also explained, showing that the pooling time also points out the lack of
efficiency of the OnDemand mode in this situation. In DAG simulations, the aim was to show the efficiency of slowing down
non-critical tasks regarding their slack-time by using different DVFS modes. Results compared the energy consumption ob-
tained using optimal fixed frequencies in Performance and UserSpace mode, and the dynamic OnDemand mode, which re-
sulted in a gain of 15.1%. These two experimental situations demonstrated the importance of analyzing the environment
in which DVFS is used, otherwise it may not necessarily always be efficient in terms of energy saving.

Proposed perspectives include establishing a set of energy-aware information about distributed platforms (such as
Grid’5000) including their efficiency for different types of applications (parallel, DAGs, Client/Server, etc.). The next step is
to explore the fact that the simulator is DVFS-enabled and energy-aware to test several energy saving strategies using dif-
ferent virtual machine scheduling policies and data center internal topologies. It will allow the comparison of existing strat-
egies and their impact on energy, power, and performance. Another future step of this work is to use both energy-aware
techniques and quality of service policies to develop green scheduling algorithms for different classes of applications.

Acknowledgement

The experiments presented in this paper were carried out using the Grid’5000 experimental testbed, being developed un-
der the INRIA ALADDIN development action with support from CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

References

[1] M. Kocaoglu, D. Malak, O. Akan, Fundamentals of green communications and computing: modeling and simulation, Computer 45 (9) (2012) 40–46.
[2] B. Aksanli, J. Venkatesh, T. Rosing, Using datacenter simulation to evaluate green energy integration, Computer 45 (9) (2012) 56–64.
[3] M. Patterson, Energy Efficiency Metrics, Energy Efficient Thermal Management of Data Centers, Springer, 2012.
[4] S. Rivoire, P. Ranganathan, C. Kozyrakis, A comparison of high-level full-system power models, in: Proceedings of the 2008 Conference on Power Aware

Computing and Systems, HotPower’08, USENIX Association, Berkeley, CA, USA, 2008, p. 3.
[5] R. Joseph, M. Martonosi, Run-time power estimation in high performance microprocessors, in: Proceedings of the 2001 International Symposium on

Low Power Electronics and Design, ISLPED ’01, ACM, New York, NY, USA, 2001, pp. 135–140.

http://https://www.grid5000.fr
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0005
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0010
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0015
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0015
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0020
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0020
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0020
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0025
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0025
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0025


T. Guérout et al. / Simulation Modelling Practice and Theory 39 (2013) 76–91 91
[6] C. Isci, M. Martonosi, Runtime power monitoring in high-end processors: methodology and empirical data, in: Proceedings of the 36th Annual IEEE/
ACM International Symposium on Microarchitecture, MICRO 36, IEEE Computer Society, Washington, DC, USA, 2003, p. 93.

[7] G. Da Costa, H. Hlavacs, Methodology of measurement for energy consumption of applications, in: 11th IEEE/ACM International Conference on Grid
Computing (GRID), 2010, IEEE, 2010, pp. 290–297.

[8] C.C. Keir, C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live migration of virtual machines, in: Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2005, pp. 273–286.

[9] T. Kolpe, A. Zhai, S. Sapatnekar, Enabling improved power management in multicore processors through clustered dvfs, in: Design, Automation Test in
Europe Conference Exhibition (DATE), 2011, pp. 1–6.

[10] H. Casanova, A. Legrand, M. Quinson, Simgrid: A generic framework for large-scale distributed experiments, in: Tenth International Conference on
Computer Modeling and Simulation, 2008. UKSIM 2008, 2008, pp. 126–131.

[11] S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer, Groudsim: an event-based simulation framework for computational grids and clouds, in:
Euro-Par 2010 – Parallel Processing Workshops, Lecture Notes in Computer Science, Springer, 2011.

[12] S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek, J. Waglarz, Gssim-a tool for distributed computing experiments, Scientific Programming 19 (4)
(2011) 231–251.

[13] K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Weglarz, Grid scheduling simulations with GSSIM, in: International Conference on Parallel and Distributed
Systems, vol. 2, 2007, pp. 1–8.

[14] D. Kliazovich, P. Bouvry, Y. Audzevich, S. Khan, Greencloud: a packet-level simulator of energy-aware cloud computing data centers, in: IEEE Global
Telecommunications Conference GLOBECOM, 2010, pp. 1–5.

[15] T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2, Springer, 2011.
[16] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, Cloudsim: a toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms, Software: Practice and Experience 41 (1) (2011) 23–50.
[17] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors, ACM Computing Surveys 3 (4) (1999) 406–

471.
[18] Z. Shi, J.J. Dongarra, Scheduling workflow applications on processors with different capabilities, Future Generation Computer Systems 22 (6) (2006)

665–675.
[19] J. Yu, R. Buyya, K. Ramamohanarao, Workflow scheduling algorithms for grid computing, in: F. Xhafa, A. Abraham (Eds.), Metaheuristics for Scheduling

in Distributed Computing Environments, Springer, 2008.
[20] A. Hirales-Carbajal, A. Tchernykh, R. Yahyapour, J.L. González-Garcı´ a, T. Röblitz, J.M. Ramı́rez-Alcaraz, Multiple workflow scheduling strategies with

user run time estimates on a grid, Journal of Grid Computing 10 (2) (2012) 325–346.
[21] E.-K. Byun, Y.-S. Kee, J.-S. Kim, S. Maeng, Cost optimized provisioning of elastic resources for application workflows, Future Generation Computer

Systems 27 (8) (2011) 1011–1026.
[22] S. Abrishami, M. Naghibzadeh, D. Epema, Deadline-constrained workflow scheduling algorithms for IaaS clouds, Future Generation Computer Systems

29 (1) (2013) 158–169.
[23] H. Kimura, M. Sato, Y. Hotta, T. Boku, D. Takahashi, Emprical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-

scalable high performance cluster, in: Proceedings of the 2006 IEEE International Conference on Cluster Computing, IEEE Computer Society, 2006.
[24] L. Wang, G. von Laszewski, J. Dayal, F. Wang, Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with dvfs, in:

Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 368–377.
[25] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, K. Vahi, Characterization of scientific workflows, in: Proceedings of the 3rd Workshop on Workflows in

Support of Large-Scale Science (WORKS’08), IEEE, 2008.
[26] W. Chen, E. Deelman, WorkflowSim: A toolkit for simulating scientific workflows in distributed environments, in: Proceedings of the 8th IEEE

International Conference on eScience (eScience’12), IEEE Computer Society, 2012.
[27] G. Da Costa, H. Hlavacs, K. Hummel, J.-M. Pierson, Modeling the energy consumption of distributed applications, in: I. Ahmad, S. Ranka (Eds.),

Handbook of Energy-Aware and Green Computing, Chapman & Hall, CRC Press, 2012 (chapter 29).
[28] W. Hoeffer, The transmission-line matrix method – theory and applications, IEEE Transactions on Microwave Theory and Techniques 33 (10) (1985)

882–893.
[29] J. White III, S. Bova, Wheres the overlap? An analysis of popular MPI implementations, in: Proceedings of the Third MPI Developers and Users

Conference, Citeseer, 1999.
[30] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, B. Quetier, O. Richard,

Grid’5000: a large scale and highly reconfigurable grid experimental testbed, in: The 6th IEEE/ACM International Workshop on Grid Computing, 2005,
p. 8.

[31] M. Alexandru, T. Monteil, P. Lorenz, F. Coccetti, H. Aubert, Efficient large electromagnetic problem solving by hybrid tlm and modal approach on grid
computing, in: International Microwave Symposium, Montral, Canada, 17–22 June 2012.

[32] H. Kimura, M. Sato, Y. Hotta, T. Boku, D. Takahashi, Emprical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-
scalable high performance cluster, in: IEEE International Conference on Cluster Computing, IEEE, 2006, pp. 1–10.

[33] W. Chen, E. Deelman, Workflow overhead analysis and optimizations, in: Proceedings of the 6th Workshop on Workflows in Support of Large-Scale
Science, WORKS ’11, ACM, New York, NY, USA, 2011, pp. 11–20.

[34] F. Nerieri, R. Prodan, T. Fahringer, H. Truong, Overhead analysis of grid workflow applications, in: Proceedings of the 7th IEEE/ACM International
Conference on Grid Computing, IEEE Computer Society, 2006, pp. 17–24.

http://refhub.elsevier.com/S1569-190X(13)00078-6/h0030
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0030
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0030
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0035
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0035
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0035
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0040
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0040
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0045
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0045
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0050
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0050
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0055
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0055
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0060
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0060
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0065
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0065
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0065
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0065
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0065
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0070
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0070
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0070
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0070
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0075
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0075
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0080
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0080
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0085
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0085
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0085
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0090
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0090
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0090
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0095
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0095
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0095
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0100
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0100
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0100
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0100
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0100
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0105
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0105
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0110
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0110
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0110
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0115
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0115
http://refhub.elsevier.com/S1569-190X(13)00078-6/h0115

	Energy-aware simulation with DVFS
	1 Introduction
	2 State of the art
	2.1 Power models
	2.2 Energy-aware tools
	2.3 Simulators
	2.4 Directed acyclic graph

	3 DVFS in the Linux kernel
	4 New functionalities in CloudSim
	4.1 DVFS in CloudSim
	4.2 DAGs in CloudSim

	5 DVFS Validation on one host
	5.1 Experimental framework
	5.2 Energy consumption calibration
	5.3 Methodology
	5.4 CPU load comparison
	5.5 Energy consumption comparison

	6 Evaluation
	6.1 Parallel MPI application
	6.1.1 TLM description
	6.1.2 Application and hardware characteristics
	6.1.3 Analytical model
	6.1.4 Event model
	6.1.5 Experiments on Grid’5000
	6.1.6 Results

	6.2 DAG simulations
	6.2.1 Slack-time algorithm and optimal frequency
	6.2.2 Results


	7 Conclusion
	Acknowledgement
	References


