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Abstract—Cloud applications often rely on shared-nothing
distributed databases that can sustain rapid growth in data
volume. Distributed transactions (DTs) that involve data tuples
from multiple geo-distributed servers can adversely impact the
performance of such databases, especially when the transactions
are short-lived in and require immediate response. The k-way
min-cut graph clustering algorithm has been found effective
to reduce the number of DTs with acceptable level of load
balancing. Benefits of such a static partitioning scheme, however,
is short-lived in Cloud applications with dynamically varying
workload patterns where DT profile changes over time. This pa-
per addresses this emerging challenge by introducing incremental
repartitioning. In each repartitioning cycle, DT profile is learnt
online and k-way min-cut clustering algorithm is applied on a
special sub-graph representing all DTs as well as those non-DTs
that have at least one tuple in a DT. The latter ensures that the
min-cut algorithm minimally reintroduces new DTs from the non-
DTs while maximally transforming existing DTs into non-DTs in
the new partitioning. Potential load imbalance risk is mitigated
by applying the graph clustering algorithm on the finer logical
partitions instead of the servers and relying on random one-to-one
cluster-to-partition mapping that naturally balances out loads.
Inter-server data-migration due to repartitioning is kept in check
with two special mappings favouring the current partition of
majority tuples in a cluster—the many-to-one version minimising
data migrations alone and the one-to-one version reducing data
migration without affecting load balancing. A distributed data
lookup process, inspired by the roaming protocol in mobile net-
works, is introduced to efficiently handle data migration without
affecting scalability. The effectiveness of the proposed framework
is evaluated on realistic TPC-C workloads comprehensively using
graph, hypergraph, and compressed hypergraph representations
used in the literature. Simulation results convincingly support
incremental repartitioning against static partitioning.

Keywords—Cloud databases; workload; distributed transac-
tions; incremental repartitioning; load-balance; data migration;

I. INTRODUCTION

Nowadays, electronic data are being generated in an un-
precedented speed with the dynamic and planetary expansion
in e-commerce, online business processing, digital media, and
social networks. It is estimated that 2.3 trillion gigabytes of
digitised data are generated everyday around the globe [1].
As an example, in an average day, over 30 billion pieces of
contents are shared in Facebook while 4 billion hours of videos

are watched in YouTube [1]. In recent years, such Internet-
scale Web applications scale-out instantaneously using Cloud
computing technologies. Shared-nothing distributed databases
in combination with horizontal data partitioning, provide a
key mechanism to handle this massive data explosion and
to scale to billions of concurrent users. Unfortunately, tra-
ditional approaches can hardly adopt the dynamic workload
characteristics without expansive data redistributions and load
balance operations within a geo-distributed cluster [2]. With
the dynamic nature of user-facing interactive Web applications
driving Online Transaction Processing (OLTP) workloads, its
simply not possible for a static partitioning and placement
model to work effectively by only adding more servers and
hard disks to the cluster. By nature, OLTP transactions are
small-sized and short-lived with an immediate response time
requirement. At the same time, within a partitioned database,
DTs occur frequently and span across multiple servers creating
unscalable communications in transaction processing [3]. In
addition, to adopt dynamic workloads, large-scale data migra-
tions are required involving significant cost in terms of I/O,
database resources, and potential downtime.

Recently proposed techniques for workload-aware data
partitioning [4], [5] monitor the transactional logs and period-
ically create workload networks using graph or hyper graph
representation. Each edge in a workload graph connects a
pair of tuples originated from the same transaction whereas
a hyper edge connects all tuples within a transaction in a
hypergraph. Later, these workload representations are clustered
using k-way min-cut clustering, and then randomly placed
across the set of physical servers within a database cluster. As
long as workload characteristics do not change dramatically,
and tuples from a cluster stay together in a physical server,
the occurrences and adverse impacts of DTs are reduced
rapidly. A number of centralised data lookup and routing
mechanisms are also proposed to support such dynamic data
redistribution. Large-scale OLTP service providers develop
partition management solutions like YouTube’s Vitess [6],
Tumblr’s JetPants [7], and Twitter’s Gizzard [8] to deal with
rapid data growth. Nonetheless, the underlying data placements
are not transparent to application codes, and redistributions are
not aware of workload dynamics. Furthermore, none of these
techniques provide any explicit way to minimise physical data
migrations over WAN, and global load balance at the same
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time for a geo-distributed shared-nothing database cluster.

In this paper, we present a proactive workload-aware in-
cremental repartitioning framework which transparently redis-
tributes database tuples to ensure minimum data migrations
and global load balance. Transactional logs are collected peri-
odically then undergo a pre-processing and classification stage
before generating workload networks for min-cut clustering.
A unique transaction classification process is introduced to
identify purely distributed transactions and non-distributed
ones containing moveable data tuples that are also contained
in a DT. This novel classification removes the shortcomings
of selective swapping of tuple sets for local load balancing
by extending the size of workload network, and over the time
reduces the impact of DTs ensuring global optimisation in both
load balance and data migrations. We also perform a detail
sensitivity analysis by representing the workload networks in
fine, exact, and coarse granularity using graphs, hypergraphs,
and compressed hypergraphs. In contrary to previous works,
a fixed number of clusters are created from the workload
network for the total number of logical data partitions in the
entire database instead of the number of physical servers. This
provides finer control in load balance over the set of both
partitions and servers. We also avoid tuple-level replications
to observe the quality of incremental repartitioning under
worst-case scenario of DTs. We also propose two innovative
cluster-to-partition mapping strategies that cater for minimising
both physical data migrations and distribution imbalance. Our
distributed data lookup mechanism ensures high-scalability,
and guarantees a maximum of two lookups to locate a tuple
within the partitioned database.

To evaluate the quality of incremental repartitioning, we
devise a set of metrics and also provide a way to admin-
istratively direct a particular repartitioning objective using a
composite metric. Finally, we compare the quality of the
proposed incremental repartitioning framework against a static
partitioning configuration similar to [4] implementing random
one-to-one cluster-to-partition mapping with different work-
load representations. More specifically, we compare 12 dif-
ferent database configurations with different settings–3 work-
load representations and 3 mapping strategies for static and
incremental repartitioning. Our simulation based experimental
results using realistic TPC-C workload signify the trade-offs
between different repartitioning approaches while showing
the clear shortcomings of a static partitioning in achieving
dynamic data redistributions for OLTP databases.

The main contributions are summarised in below:

• Investigating possible design choices for workload
network representations and their applicability.

• Proposing a proactive transaction classification tech-
nique that identifies DTs and moveable non-DTs to
create workload networks.

• Presenting two cluster-to-partition mapping strategies
that ensure minimum inter-server data migrations and
load imbalance across partitions and servers.

• Developing a scalable distributed data lookup tech-
nique that requires a maximum of two I/O roundtrips
to locate a data tuple within the entire database.

• Devising a set of quality metrics for the incremental
repartitioning process defining different objectives.

The remainder of this paper is organised as follows: we
review the related works in brief in Section II; a high-level
overview of the proposed framework is discussed in Section
III; Section IV details the steps, formulations, and design
philosophies with necessary illustrations; Section V discusses
the experimental results comparing to a static partitioning
framework; and finally Section VI concludes the paper.

II. RELATED WORK

Workload-aware load balance with I/O overhead minimi-
sation in distributed database systems was studied before
for finding optimal data placement strategy in shared-nothing
parallel databases [9]. Recent works primarily focus on OLTP
workloads for scaling-out the Cloud applications to minimise
the number of DTs. Workload-aware data replication and
partitioning approach is first introduced by [4] for OLTP
databases. The authors proposed ‘Schism’ which represents
the transactional workload as a graph, and performs k-way
replicated graph partitioning to minimise the effect of DTs.
However, ‘Schism’ usually generates very large graphs, does
not deal with dynamic workload changes, and the more gen-
eral problem of repartitioning. Transactional workloads are
modeled as compressed hypergraph in [5] by hashing data
tuple’s primary key to reduce the overhead of k-way clustering.
The authors propose ‘SWORD’, an incremental repartitioning
technique which moves a fixed amount of data in a regular
interval upon notifying workload changes, and by observing
the increase in the percentage of DTs from a predefined
threshold. However, this reactive approach only ensures local
load balance, and does not always guarantees reduction in DTs.
Due to the selective swapping of the randomly compressed
tuple sets and newly transformed DTs, the quality of min-
cut clustering may lost, and gradually lead to global data
distribution imbalance. In [10], another automatic workload-
aware database partitioning method is proposed along with an
analytical model to estimate skew and coordination cost for
DTs. It uses the same graph based workload representation
of [4], and primarily focuses on optimal database design
based on workload characteristics. However, it did not consider
incremental repartitioning.

‘Elasca’ is proposed in [11], where a multi-object
workload-aware online optimiser is developed for optimal par-
tition placement ensuring minimum data movement, however
it does not support incremental repartitioning. A distributed
lookup method for transactional databases requiring special
‘knowledge nodes’ for coordination is proposed in [12], how-
ever it may perform incorrect routing due to inconsistent
values. In contrast, our proposed distributed lookup operation
is based on the well known concept of roaming [13], and
it always guarantees consistent results with a maximum of
two lookups. In [14], a Social Partitioning and Replication
middleware–(SPAR) is proposed that explores the social net-
work graph from user interaction, and then performs joint
partitioning and replication to ensure local data semantics for
the users. Similarly, in [15], temporal activity hypergraphs are
used to model user interactions in social network, and then
min-cut clustering is used to minimise the impact of DTs with
minimum load imbalance. However, none of these techniques
explore the incremental repartitioning problem, and the effect
of data migrations in global load balance.
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Fig. 1. An overview of the workload-aware incremental repartitioning framework using numbered notations from 1-6 representing the overall work flow. Steps
3a to 3g represent the flow of workload analysis, representation, clustering, and repartitioning decision generation.

III. PROPOSED SYSTEM OVERVIEW

An overview of the proposed framework is shown in
Figure 1. We assume a set of coordinator nodes serving clients’
requests, and manage the executions of transactional queries.
Coordinators are connected with a set of geo-distributed data
nodes where the logical partitions reside. Each logical partition
contains a location catalogue where the residing tuples loca-
tions and their current partition ids are persisted as key-value
pairs. Note that, individual data nodes can be synchronously
replicated as master-slave within independent groups to ensure
high availability which is a common deployment practice.
Thus, in this work we do not explicitly handle tuple level
replication like [4]. Coordinators also administer partition
management operations (like split, merge, and migration) and
incoming read/write workload balance. Streams of transac-
tional logs are continuously pulled by the analyser node, and
pre-process for analysis either in a time or workload sensitive
window. Analyser node can also cache the most frequently
appeared tuple location in a workload-specific catalogue which
is kept updated upon inter-partition data migrations. Following
Figure 1, the input of the workload-aware incremental reparti-
tioning component (in dotted rectangle) is transactional logs,
and the output is a partition-level data migration plan. The
overall process has four primary steps:

Pre-processing, Parsing, and Classification. Client ap-
plications submit transactional queries in step 1, which is
then processed by a distributed transaction coordinator that
manages the distributed data nodes. Upon pulling the streams
of transactional workloads in step 2, individual transactions are
processed to extract the contained SQL statements at step 3a.
For each SQL statement, the primary keys of individual tuples
are extracted, and corresponding partition ids are retrieved
from the embedded workload specific location catalogue in

step 3b. In the classification process (3c), original DT and
moveable non-DTs are identified along with their frequency
counts in the current workload, and their associated costs of
spanning multiple servers.

Workload Representation and k-way Clustering. In
step 3d, workload networks are generated from the extracted
transactional logs gathered in the previous step using graph
or hypergraph. Tuple-level compression can further reduce the
size of workload network. Since transactional graphs cannot
fully represent transactions with more than two tuples using
pair-wise relationship, we cannot directly minimise the impact
of DTs in the workload. However, graph representations are
much simpler to produce, and it adopted wide ranges of
application specific usages that also help us to understand
its importance in creating workload networks. On the other
hand, hypergraphs can exploit exact transactional relationships,
thus the number of hyper edge cuts exactly matches the
number of DTs. Yet, popular hypergraph clustering libraries
are computationally slower than the graph clustering libraries,
and produce less effective results [4].

In reality, with the increase in size and complexity, both
of these representations are computation intensive in ma-
nipulation. Furthermore, compression techniques can confine
an algorithm within a specified target, dramatic degradation
in clustering quality and overall load balance occur with a
high compression ratio [5]. Finally, workload networks are
clustered using k min-cut clustering employed by the graph
and hypergraph clustering libraries in step 3e.

Cluster-to-Partition Mapping. At step 3f, a mapping
matrix is created with the counts for tuples that are placed
in the newly created cluster and originated from the same
partition as the matrix element. The produced clusters from the
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min-cut clustering are then mapped to the existing set of logical
partitions by following three distinct strategies. At first, we
employ uniform random tuple distribution for mapping clusters
to database partitions which naturally balances the distribution
of tuples over the partitions. However, there is no proactive
consideration in this random strategy for minimising data
migrations. The second strategy employs a straight forward
but optimal approach. It maps a cluster to a respective partition
which originally contains maximum number of tuples from that
cluster, hence minimum physical data migrations take place.

In many cases, this simple strategy turns out to be many-
to-one cluster-to-partition mapping, and diverges uniform tuple
distribution. Again, incremental repartitioning can create server
hot-spot as similar transactions from new workload batches
will always drive more new tuples to migrate into a hot server.
As a consequence, overall load balance decreases over time,
which is also observed in our experimental results. A way
to recover from this situation is by ensuring that cluster-to-
partition mapping remains one-to-one, which is used as the
third strategy. This simple, yet effective, scheme restores the
original uniform random tuple distribution with the constraint
of minimising data migrations. Finally, in step 3g, based
on different mapping strategies and applied heuristics a data
migration plan is generated, and then forwarded to the data
tuple migrator module in step 5.

Distributed Location Update and Routing. The analyser
node keeps a workload specific location catalogue for the
most frequently accessed tuples, and updates the associated
locations at each repartitioning cycle in step 4. The analyser
also directly invokes the corresponding data nodes to perform
data migrations in step 6 without interrupting the ongoing
transactional services. Until a tuple fully migrates to a new
partition, its existing partition serves all the query requests.
Distributed databases using range partitioning require keeping
a central lookup table for the clients to retrieve tuples. Hash
partitioning requires the client to use a fixed hash function to
lookup the required tuples in the specified server. Consistent
hash partitioning [16] employs distributed lookup mechanism
using distributed hash table. However, none of these parti-
tioning schemes provide scalable data lookup mechanisms for
successive data redistribution.

To solve this problem, we use the well established concept
of roaming from wireless telecommunications and computer
data networks. The problem of location independent routing
is already solved in IPv6 using Mobile IP [17], and in GSM
networks using roaming mobile stations [13]. In a similar way,
the attached location catalogue within each data partition keeps
track of the roaming tuples and their corresponding foreign
partitions. A maximum of two lookups are required to find a
tuple without client-side caching. With proper caching enabled,
this lookup cost can be even amortised to one for most of the
cases with high cash hit.

IV. WORKLOAD-AWARE INCREMENTAL REPARTITIONING

A. Problem Formulation

Let, S = {S1, ..., Sn} be the set of n shared-nothing
physical database servers where each Si = {Pi,1, ...,Pi,m}
denotes the set of m logical partitions reside in Si. Again, let,
Pi,j = {di,j,1, ..., di,j,|Pi,j |} denotes the set of tuples reside

TABLE I. SAMPLE DATABASE: PHYSICAL AND LOGICAL LAYOUT

Servers Partitions

S1 (10) P1: (5)={2, 4, 6, 8, 10}
P3: (5)={12, 14, 16, 18, 20}

S2 (10) P2: (5)={1, 3, 5, 7, 9}
P4: (5)={11, 13, 15, 17, 19}

in Pi,j . We can thus get the amount of tuples reside in Si

as DSi =
⋃

∀j Pi,j . Finally, DS =
⋃

∀i DSi denotes the total
amount of tuples in the entire partitioned database.

Let, W = {W1, ...,Wω} be the set of workload batches
within the database lifetime τ . Each Wi represents a particular
workload batch at the ith tick of τ where τ =

∑
∀i τi. The set

of transactions in any Wi is represented by T = {t1, ..., tz},
and can be either characterised as distributed (Tδ) or non-
distributed (Tη), thus T = Tδ

⋃
Tη and Tδ

⋂
Tη = φ where

Tδ = {tδ,1, ..., tδ,|Tδ|} and Tη = {tη,1, ..., tη,|Tη|}. Again, any
distributed or non-distributed transaction tδ,i or tη,i can occur
multiple time within Wi, hence, its frequency can be repre-
sented by either freq(tδ,i) or freq(tη,i). As any tδ,i can span
multiple servers, we define the cost of spanning as cost(tδ,i).
We consider the cost of spanning multiple partitions by a
transaction within a server negligible in terms I/O overhead.
Let’s define the problem of incremental repartitioning as:

Problem Definition: For a given transactional workload Wi

at ith observation, S homogeneous servers containing total P
logical partitions, and a maximum allowed imbalance ratio ε,
find an incremental repartitioning solution Xi from the output
of a k-way balanced clustering ζ which minimises the mean
impact of DTs in Wi and imbalance in DS across partitions
and servers having minimum inter-server data migrations.

In the following, we use illustrative examples using a
simple database construction with 20 data tuples distributed
using hash-partitioning over 4 logical partitions and 2 physical
servers as shown in Table I. A sample workload batch with
7 transactions and corresponding data tuples are also shown
in Table II. Finally, a detail illustration on how the cluster-
to-partition mapping strategies work with different workload
representations is shown in Figure 3.

B. Workload Modelling

We model the workload networks using three distinct rep-
resentations. Firstly, graph representation (GR) produces fine-
grain workload network although it is unable to fully capture
the actual transactional relationship between different tuples.
Yet, graph min-cut process can still generate high quality k-
way clustering and minimises the impact of DTs, unless the
overall graph size increases with workload variability, and
adequate level of sampling is performed [4]. Secondly, hyper-
graph representation (HGR) generates most accurate, and exact
workload networks thus also able to produce balanced clus-
ters with min-cut hypergraph clustering. Moreover, from our
empirical studies we found that, k-way min-cut balanced hy-
pergraph clustering produces more consistent results in terms
of achieving the repartitioning goals, and is also mentioned
in [15]. Finally, compressed hypergraph representation (CHG)
produces coarse-grain workload networks depending on the
compress level. With lower level of compression, less coarse
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At least one data tuple resides 
in a distributed transaction 

Transactions 

Non-distributed Distributed 

Non-moveable Moveable 

Otherwise 
At least two data tuples 
in different servers 

Otherwise 

Fig. 2. Transaction classification identifying DTs and moveable non-DTs.

networks are generated and k-way clustering performs better.
However, as shown in [5], as the level of compression increases
the quality of the clustering process degrades dramatically. We
formally define the individual representations as in below:

1) Graph Representation: A graph G = (V, Eg) represents
Wi where each edge eg ∈ Eg links a pair of tuples (vx, vy)
from V = {v1, ..., v|V|} ⊂ DS for a transaction ti where vi =
∃a∃b∃c da,b,c. Individual tuples from (vx, vy) connects to their
respective set of adjacent tuples Avx

and Avy
originated from

the same ti. Any edge within ti has a weight representing the
frequency of ti in Wi which co-access the pair (vx, vy), while
vertex weight represents the tuple’s size (in volume).

2) Hypergraph representation: A hypergraph, H =
(V, Eh) represents Wi where a hyperedge eh ∈ Eh charac-
terises a transaction ti and overlays its contained set of tuples
Vti ⊂ V . A hyperedge representing ti is associated with a
weight denoting the frequency of eh within Wi and its vertices’
weight represent data tuples’ size (in volume).

3) Compressed Hypergraph representation: A hypergraph,
H = (V, Eh) can be compressed by collapsing the ver-
tices to a set of virtual vertices V ′ using a simple hash
function on the primary keys [5]. A compressed hypergraph
Hc = (V ′, E′

h) represents Wi where each virtual hyperedge
e′h ∈ E′

h constitutes the set of virtual vertices v′eh ⊂ V ′ where
the original vertices of eh are mapped into and |v′eh | ≥ 2.
Virtual vertex weight represents the combined data volume
sizes of the corresponding compressed tuples. And hyperedge
weight represents the frequency of transactions which access
the corresponding virtual vertices. Cl denotes the compression
level as |V|/|V ′| and equals to 1 for no compression while to
|V| for full compression.

Figure 3 presents the workload networks as graph, hyper-
graph, and compressed hypergraph (with Cl = 0.5) for the
transactions listed in Table II.

C. Proactive Transaction Classification

In constructing the classification technique, we argue that
there always exists a group of tuples which are retrieved while
processing the DTs, and also participated in the execution
of non-distributed but frequently occurred transactions. These
particular groups of tuples when move into different database
servers due to the database repartitioning process can turn
the previously non-DTs into newly distributed ones. We use
this intuitive to classify the workload transactions into three

TABLE II. SAMPLE WORKLOAD

Transaction Data Tuples Class

T1 {1, 4, 5, 6, 7, 8, 10} DT

T2 {1, 4, 6, 9, 11} DT

T3 {9, 15, 17} Moveable Non-DT

T4 {9, 17} Moveable Non-DT

T5 {5, 7, 18} DT

T6 {15, 17} Non-moveable Non DT

T7 {2, 14, 16} Non-moveable Non DT

different categories – distributed, non-distributed moveable and
non-distributed non-moveable as shown in Figure 2. As an
example, transactions T1, T2, and T5 from the sample workload
of Table II are identified as distributed, whereas T3 and T4 are
labelled as moveable non-distributed. Finally, T6 and T7 are
discarded as purely non-distributed transactions.

Clearly, a number of non-distributed moveable transactions
will be remain protected within k-way clustering as the min-
cut clustering always tries to preserve as much as transactional
edges it could. As the tuples in these moveable transactions
did not participate into any DTs, they are residing in isolation
within the workload network. Thus, they are highly likely to be
preserved together in the same cluster after k-way clustering.
As an example shown in Figure 3, the non-distributed move-
able transactions T3 and T4 containing tuples with id 9, 15,
and 17 remain protected as non-distributed after performing k-
way clustering with all of three workload representations using
Metis [18] and hMetis [19] libraries.

If we added the DTs T1, T2, and T5 in the workload sub-
graphs, then at the next incremental repartitioning phase T3 and
T4 would have been appeared as DT. Since, tuple with id 9,
which by this time would have been already moved to another
partition located in a different physical server, would cause its
associated transactions to become distributed. There exists a
clear trade-off between the increase of size of the workload
networks and achieved benefits. At one end, the smaller is
the workload network, it will less computationally costly to
process with respect to time and I/O. On the other hand,
if we include all the workload tuples in the representations,
it may reduce the impact of DT better than in a particular
repartitioning cycle, but with the price of unwanted data
migrations to create new DTs. By aggressively classifying
the non-distributed moveable transactions, the quality of the
overall repartitioning process increases as the impact of DTs
decreases comparing to a static partitioning strategy as shown
later in our experimental results.

D. k-way Balanced Clustering of Workload

Given G and a maximum allowed imbalance ratio ε, we
can define the problem as find the k-way clustering ζG =
{V1, ..., Vk} that minimises transactional edge cut with the
balance constraint bounds by (1 + ε). Similarly, the k-way
constrained and balanced clustering of H is ζH = {V1, ..., Vk}
such that minimum number of hyper edges are cut having the
imbalance ratio ε. Analogously, the k-way balanced clustering
of Hc is ζHc

= {V ′
1 , ..., V

′
k} with an imbalance ratio ε aiming

at minimum virtual hyperedge cuts. Note that, we denote k as
the total number of logical partitions instead of the number
of physical servers. From our empirical experiments we find
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Fig. 3. Transactional workload modelling with 3 representations along with 4-way min-cut clustering, followed by 3 cluster-to-partition mapping strategies.

that executing the k-way clustering processing with k as the
number of partitions provide finer granularity in balancing the
distribution of data volume over the set of physical servers.

The k-way balanced clustering generates clusters of similar
size with respect to the number of tuples given a balance
constraint which is defined as kmax(W (Vi))/W (V ), and tells
whether the clusters are equally-weighted or not. Here, W (Vi))
is the sum of the weights of the vertices in Vi. The partitions
are said to be balanced if the balance measure is equals to or
close to 1 otherwise imbalanced if greater than 1.

E. Cluster-to-Partition Mapping Strategies

Figure 3 presents three distinctive cluster-to-partition map-
ping strategies (in matrix format) beneath their respective
workload network representations. The rows and columns of
the matrices represent partition and cluster id respectively.
Individual matrix element represents tuple counts from a
particular partition which is placed by the clustering libraries
under a specific cluster id. The shadowed locations in the
mapping matrix with the counts in bold face represents the
resulting decision block with respect to the particular cluster
and partition id. Individual tables below the matrices represent
the state of the physical and logical layouts of the sample
database. The last row of these tables reveals the counts of
inter- and intra-server data migrations for each of these nine
representative database layouts. The bold face numbers in the
layout tables at bottom denote most balanced distribution and
least count for data migrations. In below we explain the main
philosophies behind these mapping strategies in detail.

1) Random (R) Cluster-to-Partition Mapping: Naturally,
the best way to achieve load balance in any granularity is
to assign the clusters randomly. Clustering tools like Metis
and hMetis randomly generates the cluster ids, and do not
have any knowledge about how the data tuples are originally
distributed within the servers or partitions. As a straightforward
approach, the cluster ids can be simply mapped one-to-one to

the corresponding partition id as they are generated. Although,
this random assignment balances the workload tuples across
the partitions it not necessarily guarantees minimum inter-
server data migrations. As shown in Figure 3, the mapping
matrices labelled with Random and database layouts with GR-
R, HGR-R and CHG-R are the representatives of this class.

2) Max-Column (MC) Mapping: We aim at minimising the
physical data migration within the repartitioning process using
this strategy. In the cluster-to-partition mapping matrix the
maximum tuple count of an individual column is discovered,
and the entire cluster column is mapped to the represented
partition id of that maximum count. Thus, multiple clusters
can be assigned to a single partition. As maximum numbers of
tuples are originated from this designated partition therefore
they do not move from their home partition which reduces
the overall inter-server physical data migrations. For OLTP
workloads with skewed tuple distributions and dynamic data
popularity, the impact of DTs can rapidly decrease from this
greedy heuristic as tuples from multiple clusters may map to
a single partition in the same physical server. However, this
directly leads to data volume imbalance across the partitions
and servers. Mapping matrices labelled as MC with corre-
sponding database layouts of GR-MC, HGR-MC, and CHG-
MC represent this mapping strategy in Figure 3.

3) Max-Sub-Matrix (MSM) Mapping: To both minimise
load imbalance and data migrations, we fork lift the natural ad-
vantages of the previous strategies and combine them together.
At first, the largest tuple counts within the entire mapping
matrix are found and placed at the diagonally top left position
by performing successive row-column rearrangements. The
next phase begins by omitting the elements in the first row
and column then recursively search the remaining sub-matrix
for element with maximum tuple counts. Finally, all the
diagonal positions of the matrix are filled up with elements
having maximum tuple counts. Now, mapping the respective
clusters one-to-one to the corresponding partitions results both
minimum data migrations and distribution load balance. Note
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TABLE III. COMPARISON OF SERVER AND PARTITION-LEVEL balance

Method Sbalance Pbalance

GR-R 1.1 1.4

GR-MC 1.3 1.6

GR-MSM 1.1 1.2
HGR-R 1.0 1.2
HGR-MC 1.1 1.4

HGR-MSM 1.1 1.2
CHG-R 1.1 1.6

CHG-MC 1.2 1.4

CHG-MSM 1.1 1.4

that, multiple maximum tuple counts can be found in different
matrix positions, and the first such encountered element is
chosen for simplicity.

The MSM strategy works similarly to the MC strategy
as it prioritises the maximum tuple counts within the sub-
matrices, and map the clusters one-to-one to the partitions
like the Random mapping strategy thus preventing potential
load imbalance across both the logical partitions and physical
servers. In Figure 3, mapping matrices labelled as MSM,
and representative database layouts GR-MSM, HGR-MSM, and
CHG-MSM depict this mapping strategy.

F. The Balance Measure

For illustration purpose, we reuse the same balance mea-
sure [15] mentioned earlier while using the server and partition
weights instead of cluster weights. Considering GR-R database
layout as shown in Figure 3, there are total 20 tuples distributed
among two physical servers (S1, S2) and four logical partitions
(P1, ..., P4). These servers contain 11 and 9 tuples while the
partitions contain 4, 5, 7, and 4 tuples respectively which leads
to a balance value of (2 × 11)/(11 + 9) = 1.1 at the server-
level and (4 × 7)/(4 + 5 + 7 + 4) = 1.4 at the partition-
level. Table III presents the calculated balance measure for
these entire nine database layouts in both server and partition-
level where bold face values indicate lowest balance measure.
In overall, GR-MSM and HGR-MSM perform better than all
others primarily in terms of minimum data migrations and load
balance. From this elaborate illustration, it is clear that k-way
min-cut clustering of the workload network across partitions
gives better estimation of load balance, and finer degrees of
freedom for different cluster-to-partition strategies to minimise
intra- and inter-server physical data migrations.

G. Distributed Data Lookup

As mentioned in Section I and III, any centralised lookup
mechanism is always at risk to be the bottleneck in achieving
high-availability and scalability requirements. We take a so-
phisticated approach to distribute the data tuple lookup process
into individual database partition level. Thus, data migration
operations are totally transparent to distributed transaction
processing and coordination. By maintaining a key-value list of
roaming and foreign data id with their corresponding partition
id, individual partitions can answer the lookup queries. Tuples
are assigned permanent home partition id for its lifetime
when the database is initially partitioned using range, hash,
or consistent hash [16]. Home partition id only changes while
a partition splits or merges and these operations are overseen

by the coordinators as shown in Figure 1, thus transparent to
the lookup process. As the tuple locations are managed by
their home partitions, data inconsistency are strictly prevented.
Unless a tuple is fully migrated to another partition, and its
roaming location is written in the catalogue, the old partition
continue serving transactional processing.

When a tuple migrates to another partition within the
process of incremental repartitioning, only its respective home
partition needs to be aware of it. The target roaming partition
will treat this migrated tuple as a foreign and updates its
lookup table accordingly whereas the original home partition
will mark this tuple as roaming in its lookup table and update
its current location with the roaming partition’s id. A lookup
process always query the tuple’s home partition to retrieve
it. If the tuple is not initially found in its original location,
the lookup table entry thus immediately informs the most
recent location of the tuple and redirect the search towards the
roaming partition. Thus, a maximum of two lookup operations
can be required to find a tuple within the entire database.

Note that, the cost of physical data migration may increase
while using such distributed lookup process. With a high prob-
ability individual data migrations in the incremental repartition
process may involve running location update process up to
three physical servers serving the home partition and two
roaming partitions — current and target partitions. At present,
we are investigating the implication of this cost, and how to
include this in the formulation of quality measure.

H. Quality Measure for Incremental Repartitioning

In evaluating the performance of the incremental reparti-
tioning, previous works [4], [5] only measure the percentage of
reduction in DTs. However, this single measure fails to imply
any meaning conclusion about how the impact of distributed
transaction is minimised. Further, there are no measures for
overall load balance and data migrations. We propose three
independent metrics to measure the successive repartitioning
quality achieving three distinct objectives – 1) minimise the
impact of DTs; 2) minimise load imbalance; and 3) minimise
the number of physical data migrations.

The first metric measures the impact within a scale of 0
to 1 associating the frequency of DTs and their related the
cost of I/O. The second metric measures the tuple-level load
distribution over the set of servers using coefficient of variation
which effectively shows the dispersion of data load over suc-
cessive period of observations. The third metric measures the
mean inter-server data migrations for successive repartitioning
processes. By combining all three aforementioned mentioned
metrics, a composite metric is also proposed which represents
the mix of workload representation and cluster-to-partition
mapping strategy for a particular incremental repartitioning
cycle to achieve a certain objective. In the following, we model
these three representative metrics in detail.

1) The Impact of Distributed Transaction: Considering the
formal definitions provided in Section IV-A, we combine the
cost of spanning multiple physical server by any distributed
transaction tδ,i, cost(tδ,i) with the frequency of tδ,i within
Wi, freq(tδ,i). Here, cost(tδ,i) = Stδ,i = {∀v ∈ t : a |
∃a∃b∃c da,b,c = v} which denotes the number of physical
servers involved in processing tδ,i, whereas, cost(tη,i) = 1 for
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any non-distributed transaction tη,i. Note that, in reality this
cost represents the overhead of I/O over the network while
processing the DTs. Equation 1 below defines the spanning
cost of Tδ within Wi for all tδ,i ∈ Tδ

cost(Tδ) =
∑

∀tδ,i∈Tδ

cost(tδ,i)freq(tδ,i) (1)

Similarly, (2) denotes cost(Tη) for all tη,i ∈ Tη

cost(Tη) =
∑

∀tη,i∈Tη

freq(tη,i) (2)

Finally, the actual impact of Tδ can be defined as:

Id =
cost(Tδ)

cost(Tδ) + cost(Tη)
(3)

2) Load Balance: The measure of load balance across the
physical servers is determined from the growth of the data
volume with the set of physical servers. If we compute the
standard deviation of data volume σDS

for all the physical
servers, then, the variation of distribution of tuples within
the servers can be observed. This is equivalent to what we
discuss in Section IV-F as the balance measure. The coefficient
of variation (Cv) defines the ratio between σDS

and μDS

for all S under deployment, and independent of the unit of
measurement. Cv can tell the variability of tuple distribution
within the servers in relation to the mean data volume μDS

.
Equation 4 below determines the Cv of the load balance
measure for the entire cluster at any instance of observation.

Lb = σDS
/μDS

(4)

where μDS
= 1

n

n∑
i=1

DSi
and σDS

=

√
1
n

n∑
i=1

(DSi
− μDS

)2

3) Inter-Server Data Migrations: For any given Wi, the
total of inter-server data migrations within τi can be normalised
by dividing with the mean data volume μDS

. As shown in (5),
Dm measures the quality of inter-server data migration with
respect to the given workload Wi.

Dm = Mv/μDS
(5)

where Mv is the total number of migrations during the current
observation window.

I. Composite Metric (Cm)

Let, Cm be the composite metric with weight factors ωId ,
ωLb

, and ωDm
respectively for the objective measures Id, Lb,

and Dm where ωId + ωLb
+ ωDm

= 1 providing two degrees
of freedom to choose between different repartitioning goals.
Besides, Id, Lb, and Dm are further normalised by 0-1 nor-
malisation for unification purpose. Given the application and
system requirements, system administrators can set specific
goal towards achieving certain quality objectives – minimise
Id, Lb, or Dm for the incremental repartitioning process. Based
on different weight distributions, it is thus possible to find
a repartitioning sweet spot preferring particular choices of
workload network representation and cluster-to-partition map-
ping strategy. Thus, by fine tuning the combinations in weight
distribution one can instantly tackle unpredictable situations by
tweaking the direction of incremental repartitioning process to

maintain acceptable level of transactional services. We define
the Cm according to the following equation:

Cm = ωIdId + ωLb
Lb + ωDm

Dm (6)

V. EXPERIMENTAL RESULTS

To understand the effectiveness of the proposed ideas,
we built a workload-driven simulation framework for the
distributed database system presented in Figure 1. We evaluate
our proposed methods against a static partitioning framework
implementing the three workload network representations–
graph, hypergraph, and compressed hypergraph using random
cluster-to-partition mapping strategy. A workload-aware static
configuration redistribute workload tuple only once and does
not consider subsequent changes in transactional profile. This
exhibits the worst-case scenario for an incremental reparti-
tioning framework, and we consider it as the baseline of
comparison. Tuple-level replication is not use in these settings
as discussed in Section I and IV.

12 independent databases are compared using 3 work-
load network representations in combination of 3 cluster-to-
partition mapping strategies. More specifically, we compare
the databases GR-R, GR-MC, GR-MSM, HGR-R, HGR-MC,
HGR-MSM, CHG-R, CHG-MC, and CHG-MSM as described
through Section IV-B and IV-E against the static partitioning
framework for all of the three individual quality measures.
Our goal is to evaluate the effectiveness of the proposed
techniques with respect to–Id, Lb, and Dm (as detailed in
Section IV-H) for incremental repartitioning cycles. Hence, we
do not compare the results against the performance measures
like transactional throughput and latency.

A. Experimental Setup

We use a realistic experimental setup of a distributed
database as depicted in Figure 1, and use the popular TPC-
C transactional workloads developed in our workload-driven
simulator. A typical TPC-C database contains 9 tables, 5 trans-
actions and simulates an order processing transactional system
within geo-distributed districts and associated warehouses.
Among these ‘Stock’ and ‘Order-Line’ tables are exceptionally
fat in volume, and thus all the logical database partitions are
not homogeneous in size. New tuples are inserted into ‘Order’
and ‘Order-Line’ tables using the ‘New-Order Transaction’
which usually occupies nearly 44.5% of the workload.

Fixed number of transactions are generated under 5 trans-
action types in each workload batch having a fixed birth and
death rate. We further hash partition these 9 database tables
by their primary ids, and place them into 10 data node servers
having a total of 90 logical partitions. Note that, it is possible
to hash partition TPC-C tables by ‘Warehouse’ id to balance
the workload distribution, however we intentionally avoid this
to exhibit the worst case scenario of DTs in a popular OLTP
benchmark. The five types of transactions are weighted from
heavy to light in terms of transactional processing, and they
occur in high to low frequencies. The synthetic data generation
process follows Zipf’s distribution for generating ‘Warehouse’
and ‘Item’ tables, and use the database relationship constraints
to generate others. We use Metis [18] and hMetis [19] k-
way min-cut clustering libraries with their default settings.
The entire simulation process runs for 10 times having 100
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Fig. 4. Individual effects of Id, Lb, Dm in incremental repartitioning comparing with the static partitioning scheme under different workload representations.

incremental repartitioning cycles in each run for all the 12
representative database configurations, and then averaged.

B. Result Analysis

1) Independent Measure of Id, Lb, and Dm: Figure 4
presents the comparative results of the independent repartition-
ing quality measures for the 12 database configurations under
test. Results are shown using box plots with small ‘red circles’
denoting mean values. Individual quality measures for different
settings are grouped together into separate boxes. Within each
box, 4 different strategies–1) Static Partitioning, followed by 3
Incremental Repartitioning approaches using 2) Random (R),
3) Max-Column (MC), and 4) Max-Sub-Matrix (MSM) cluster-
to-partition mapping strategies (explained in Section IV-E) are
compared. We expect the Static Partitioning scheme to exhibit
the worst-case scenarios for all the individual metrics as it
perform the workload-aware data redistribution only once, and
do not run for the rest of the remaining 99 cycles. As shown
in Figure 4, the values of Id are too high for all the workload
representations, load balance varies within a wide range of Lb,
and mean data migrations are almost zero.

In evaluating Id using (3), databases with MC based
mapping strategies outperform all others due to aggressive
data migrations and many-to-one cluster-to-partition mapping.
For the very reason, data volume distributions of GR-MC,
HGR-MC, and CHG-MC lead to complete imbalance over
the 100 repartitioning cycles in each run. MSM databases
performs somehow similar comparing to the Random strategy
implementations. Although graph and compressed hypergraph
based GR-MSM and CHG-R perform better, but in overall both
HGR-R and HGR-MSM show good results without leaving
few or any outliers at all. While comparing the results of
Lb (4), both Random and MSM based databases perform
well. Although, HGR-MSM shows much stable results in
comparison to others, GR-MSM wins over all of them. This
supports our intuition that randomness and one-to-one cluster-
to-partition mapping can naturally balance data distributions
across the database cluster. Inter-server data migrations (Dm

using (5)) are specifically low with the MC databases, however,

GR-MSM and HGR-MSM both performs reliably in terms of
Id, Lb, and Dm over successive repartitioning cycles showing
the effectiveness of our proposed techniques. In CHG based
configuration, CHG-MC performs better than HGR-MC for all
the quality measures, however, HGR-MSM outperforms CHG-
MSM in all aspects. While ranking the measures of these
three individual metrics accordingly, GR-MSM wins over all
other following by CHG-MC and GR-MC, while HGR-MSM
achieves fourth place. Both of our proposed cluster-to-partition
mapping strategies performs significantly better than the Ran-
dom configuration in terms of minimising inter-server data
migrations and load imbalance. In overall, the baseline–Static
Partitioning scheme is found ineffective in handling dynamic
OLTP workloads, and justifies our comprehensive studies with
Incremental Repartitioning having different combinations of
workload representations and mapping strategies.

2) Combined Effect Using Composite Metric, Cm: To
understand the combined effect of Id, Lb, and Dm through the
composite metric Cm using (6), we use different combinations
of the respected weight factors providing that ωId + ωLb

+
ωDm = 1. Figure 5 shows the resulting measure of Cm in
a 2-d perspective plot using coloured scale where Lb and Id
are plotted in the X-axis and Y-axis respectively. The locations
presenting the values of Dm can be determined by calculating
1− (ωId +ωLb

) in the individual subplots. We can set specific
preferences to prioritise one particular repartition quality mea-
sure over other. Individual extremes of Id, Lb, and Dm can
be found at (1, 0), (0, 1), and (0, 0) locations. By following
the colour codes from the legend, one can easily identify how
individual repartitioning objectives would be met. From the
plots, as anticipated in Section IV, MC based databases do
not favour Lb while dramatically reducing Id in contrary. We
can also identify the repartitioning choices for general-purpose
OLTP application as GR-MSM and GR-R followed by CHG-
MSM and CHG-R, while all of the HGR based settings are
highly tunable depending on the repartitioning objectives in
response to different administrative situations. A key observa-
tion here is that, the choices of workload representation and
mapping strategy are not bounded to any specific combination.
To confirm this, we also conduct two-way ANOVA test and
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Fig. 5. Combined effect of Id, Lb, and Dm through composite metric Cm.
Note that, lower values of Cm indicate better solutions.

analyse the interaction plots. However, we did not find any true
evidence of interactions between the choices of representation
and mapping strategy. Results from ANOVA table also support
this finding. These series of observations strongly support our
arguments presented in Section III and IV, and justifies the
goal of sensitivity analysis within a broad design space, which,
to best of our knowledge was not done before.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we present a workload-aware incremental
repartitioning framework for OLTP databases which minimises
– 1) the impact of DTs using the k-way balanced min-cut clus-
tering; 2) the overall load imbalance through the randomness
of the one-to-one cluster-to-partition mapping strategies; and
3) the physical data migrations by applying heuristics. Our
innovative transaction classification technique ensures global
minimisation in overall load imbalance and data migrations
comparing to the worst-case scenario of a Static Partitioning
framework implementing random cluster-to-partition mapping
for different workload representations. The elaborate mod-
elling approach clearly identifies the inter-related goals within
the repartitioning process, and provides effective heuristics to
achieve them based on operational requirements. By adopt-
ing the concept of roaming, the proposed distributed data
lookup technique transparently decentralise lookup operations
from the distributed transaction coordinator guaranteeing high-
scalability. Our philosophical arguments broaden the decision
space with comprehensive sensitivity analysis by combining
different workload representations and mapping strategies. The
proposed set of quality metrics presents a sophisticated way
to measure the quality of successive repartitioning, and our
simulation results outperform the Static Partitioning strategies
in achieving individual repartitioning objectives. The use of
composite metric shows an effective way of operational intelli-
gence for Cloud applications suffering from dynamic workload

behaviours. At present, we are investigating the followings
as our future direction – incremental repartitioning enabling
replication in a single step, enforce different balance criteria
in the cluster-to-partition mapping heuristics, and include the
cost of data migrations in modelling the quality measures.
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