
An Effective Architecture for Automated Appliance Management System
Applying Ontology-Based Cloud Discovery

Amir Vahid Dastjerdi1, Sayed Gholam Hassan Tabatabaei2, and Rajkumar Buyya1
1Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

Department of Computer Science and Software Engineering, The University of Melbourne, VIC 3010, Australia,
2Department of Software Engineering, Faculty of Computer Science and Information Systems,

Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia,
amirv@student.unimelb.edu.au, gtsayed2@siswa.utm.my, raj@csse. unimelb.edu.au

Abstract— Cloud computing is a computing paradigm which
allows access of computing elements and storages on-demand
over the Internet. Virtual Appliances, pre-configured, ready-
to-run applications are emerging as a breakthrough technology
to solve the complexities of service deployment on Cloud
infrastructure. However, an automated approach to deploy
required appliances on the most suitable Cloud infrastructure
is neglected by previous works which is the focus of this work.
In this paper, we propose an effective architecture using
ontology-based discovery to provide QoS aware deployment of
appliances on Cloud service providers. In addition, we test our
approach on a case study and the result shows the efficiency
and effectiveness of the proposed work.

Keywords- Cloud Computing; Virtual Appliances; Semantic
Web Service; Web Service Modeling Ontology (WSMO); Service-
Level Agreements (SLA); Open Virtualization Format (OVF).

I. INTRODUCTION
Cloud Computing is becoming one of the next emerging

IT industry technologies. There are already more than twenty
definitions for Cloud computing [1]. Among them, Ian
Foster and colleague’s definition of Cloud highlighted main
aspects of Cloud namely as dynamic scalability, deliverable
in economy of scales and on demand capability of scaling.
According to their definition Cloud is [2]: “A large-scale
distributed computing paradigm that is driven by economies
of scale, in which a pool of abstracted virtualized,
dynamically-scalable, managed computing power, storage,
platforms, and services are delivered on demand to external
customers over the Internet.”

On the other hand, as mentioned by Ian Foster et al. [2],
clusters, supercomputers and partially grid relied on non
Service Oriented Architecture (SOA) application, while
Cloud focuses on Web 2.0 and SOA technology. Although
Clouds adopted some common communication protocols
such as HTTP and SOAP, the integration and interoperability
of all services and finally service deployment remain biggest
challenges. Service deployment, the process of making a
service ready for use, often includes deploying multiple,
interrelated software components into heterogeneous
environments. Different technologies and tools try to satisfy
user requirements in terms of software and hardware and to
address these complexities by describing the environments,

abstracting the dependencies, and automating the process [3]
[4]. Among them, virtual appliances have been increasingly
adopted by industry.

Virtual appliances, a set of virtual machines including
optimized operating systems, pre-built, pre-configured,
ready-to-run applications and embedded appliance specific
components, are emerging as a breakthrough technology to
solve the complexities of service deployment. Virtual
appliances are proved to provide a better service deployment
mechanism [5]. Therefore, they are going to be adopted as a
major Cloud component working in application layer of
Cloud [2].

Nevertheless, most of related works focused on satisfying
user requirements using SOA architecture and virtualization,
neglecting the proper consideration of Cloud computing
environment as a service deployment resource provider. In a
heterogeneous environment such as Cloud, it is difficult to
enforce syntax and semantics of virtual machine description
and user requirements. Therefore, applying symmetric
attribute–based matching between requirements and request
is impossible. In order to tackle those problems, we propose
a flexible approach for performing Ontology-based
discovery of Cloud virtual units. Followings are main
contributions offered by this work:

1) Offering an approach which gives enough flexibility
to end users to discover their needed appliance from range of
providers and dynamically deploy it on different IaaS
providers. 2) Proposing an advertisement approach for IaaS
providers based on modeling virtual units into one of the
most prominent initiatives in Semantic Web services, i.e.,
Web Service Modeling Ontology (WSMO) [25]. 3) Using
ontology-based discovery for QoS-aware deployment of
appliances on IaaS providers. This helps users to deploy their
appliances on the most proper IaaS providers based on their
QoS preferences when both sides (the providers and users)
are not using the same notation to describe their services and
requirements.

The remainder of this paper is organized as follows. We
first give some background of related ideas in Section II. The
whole architecture and its components are explained in
Section III following by a case study in Section IV. Section
V focuses on implementation. We review some of related
works in Section VI and finally conclude the work in Section
VII.

2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

978-0-7695-4039-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CCGRID.2010.87

104

II. PRELIMINARIES
In this section, concepts which are related to our

approach, i.e. Web Service Modeling Ontology (WSMO),
Ontology-based resource matching, Virtual appliance, and
Open Virtualization Format (OVF) are described.

A. Web Service Modeling Ontology (WSMO)
WSMO [25] defines a model to describe Semantic WSs,

based on the conceptual design set up in the Web Service
Modeling Framework WSMF [26]. WSMO identifies four
top-level elements as the main concepts [27]:
• Ontologies, provide the (domain specific) terminologies

used and is the key element for the success of Semantic
Web services. Furthermore, they use formal semantics
to connect machine and human terminologies.

• Web services, are computational entities that provide
some value in a certain domain. The WSMO Web
service element is defined as follows:
o Capability: This element describes the functionality

offered by a given service.
o Interface: This element describes how the capability

of a service can be satisfied. The Web service
interface principally describes the behavior of Web
Services.

• Goals, describe aspects related to user desires with
respect to the requested functionality, i.e. they specify
the objectives of a client when consulting a WS. Thus
they are an individual top-level entity in WSMO.

• Mediators, describe elements that handle
interoperability problems between different elements,
for example two different ontologies or services.
Mediators can be used to resolve incompatibilities
appearing between different terminologies (data level),
to communicate between services (protocol level), and
to combine Web services and goals (process level).

Besides these main elements, Non-Functional properties

such as cost, deployment time, performance, scalability, and
reliability are used in the definition of WSMO elements that
can be used by all its modeling elements. Furthermore, there
is a formal language to describe ontologies and Semantic
Web services called WSML (Web Service Modeling
Language) which contain all aspects of Web service
descriptions identified by WSMO. In addition, WSMX (Web
Service Modeling eXecution environment) is the reference
implementation of WSMO, which is an execution
environment for business application integration. [28].

B. Ontology-Based Resource Matching
There are works [6, 7, 8, 39] focusing on resource

matching issues in the Grid using Semantic Web
technologies. They have designed and prototyped an
ontology-based resource selector that exploits ontologies,
background knowledge, and rules for solving resource
matching in the Grid. Resource matching is the process of
selecting resources based on application requirements.
Traditional resource matching, as exemplified by the Condor
Matchmaker [9] or Portable Batch System [10] are

considered as inflexible and difficult to extend to new
characteristics or concepts. In their works unlike the
traditional Grid resource selectors that describe
resource/request properties based on symmetric flat
attributes, separate ontologies are created to declaratively
describe resources and job requests using an expressive
ontology language. Instead of exact syntax matching, the
ontology-based matchmaker performs Semantic matching
using terms defined in those ontologies.

C. Virtual Appliance
In recent designs and implementations of virtualization

systems, virtual appliances get the most attention. The idea
has been initially presented [11] to address the complexity of
system administration by making the labor of applying
software updates independent of number of computers on
which the software is run. Overall, the work develops the
concept of virtual networks of virtual appliances as a means
to reduce the cost of deploying and maintaining software.
VMware [12] introduces new generation of virtual
appliances which are pre-installed, pre-configured, and ready
to run. However, in practical scenarios, pre-configured
solutions can not satisfy varying requirements of users. In
addition, those preconfigured virtual appliances occupy huge
storages, if the system supports variety of operating system
and software combinations. And it is not feasible for all
range of users to have huge storage devices to store all those
appliances shaped based on their configuration.

D. Open Virtualization Format (OVF)
The Open Virtualization Format (OVF) [13] is a

hypervisor-neutral (the OVF doesn’t rely on the use of
specific hypervisor or virtualization platform), and open
specification for the packaging and distribution of virtual
appliances composed of one or more VMs. It aims to
facilitate the automated, secure management of not only
virtual machines but the appliance as a functional unit. OVF
is virtualization platform neutral, while also enabling
platform-specific enhancements to be captured. This makes
it a proper format for Cloud computing where we have to
deal with diversity of virtualization platforms.

III. PROPOSED ARCHITECTURE
In this work a unified architecture which can be seen in

Fig. 1 is presented which utilizes appliance and Cloud
computing to satisfy user requirements. It is useful to allow
Cloud’s users to deploy specific appliances which are not
directly provided and supported by a Cloud IaaS provider.
Therefore, the architecture helps clients to discover suitable
appliances form different providers and then deploy it on
IaaS providers.

A. Architecture Components
The Architecture main components are explained below:

1) Web portal: All services provided by the system are
presented via the Web portal to service requesters. In
addition, this component provides proper graphical interfaces
to capture user’s requirements such as software, hardware,

105

Figure 1. Phase of appliance deployment in Cloud based environment

and QoS requirements and contains account manager which
is responsible for user management. It provides authorization
and authentication for users and keeps the history of all users
activities in the system.

2) Appliance Administration Service: This component
provides desirable execution environment based on user
requirements and providing necessary disk images and
required information for running the application on the IaaS
service provider side. After deployment phase, the
component helps end users to manage their appliances (for
example start or stop them).

3) OVF Packaging: After acquiring required disk
images or their external URL addresses, we need to pack
them along with other user requirements such as operating
systems and hardware requirements into a standard format.
The OVF standard is chosen for this purpose which has
been largely adopted by the industry (VMware, Citrix and
rPath) [14]. The OVF structure can be used to describe
which software and from which appliance provider can be
used. The possibility of using external references helps us to
add disk images from different appliance providers and
enhance flexibility of our approach.

4) Appliance Deployment Service: Since WSMO is used
for discovery, user requirements are translated by the
mediator into WSML format. Next, the Deployer Service

which is in the platform layer of Cloud [2], maps appliance
requirement to resources using the ontology-based
discovery technique. It acts in user’s interest to satisfy her
quality of service (QoS) requirements by selecting the most
desirable IaaS provider. Translation OVF metadata format
to WSML notation is done by the mediator in this
component.

5) Web Service Registry: It allows IaaS providers to
advertise their virtual units. The advertisement of virtual
unit contains descriptions of their features, costs, and the
validity time of the advertisement. From standardization
perspective, a common metamodel that describes IaaS
providers’ services has to be created. However, due to the
lack of the standard, we have developed our own metamodel
based on previous works and standards in this area using
WSMO which explained in Section II.A.

6) SLA Manager: As Buyya et al. [29] mentioned to
reach profit-making mainstream, it is essential to strengthen
the role of Service-Level Agreements (SLAs) between the
IaaS providers and the service requestor. Consequently, for
taking care of quality of service requirement and Service
level agreement, a framework for QoS-based Web service
contraction is adopted for the architecture [24]. The service
advertisement published by the IaaS providers in the
registry can be considered as open SLA. This open SLA is

106

used by SLA manager to achieve an enforceable SLA by
negotiating on QoS dimensions. The SLA is then signed by
service provider and requestor and sent to a third party SLA
manager to be kept and used for monitoring purpose.

7) Third party SLA Manager: A monitoring system is
provided by this component for fairly determining to which
extent an SLA is achieved as well as facilitating a procedure
taken by a user to receive compensation when the SLA is
violated. The monitoring is based on the copy of signed
SLA which is kept in SLA repository. Third party
monitoring results can be similar to what the CloudStatus
[15] service reports. Hyperic's CloudStatus BETA is the
first service to provide an independent view into the health
and performance of the most popular Cloud services,
including Amazon Web services and Google App Engine.
CloudStatus gives users real-time reports and weekly trends
on infrastructure metrics including service availability,
response time, latency, and throughput which affect the
availability and performance of Cloud-hosted applications.

8) IaaS Providers: They are in both fabric and unified
resource level [2] and contain resources that have been
virtualized as virtual units. Therefore, they expose their
services as virtual units which can be a virtual computer,
database system, or even a virtual cluster. IaaS providers
advertise their virtual units as Web services in the Web
service registry according to WSML notation. Among IaaS
providers, Amazon Elastic Compute Cloud (Amazon EC2)
has attracted considerable attention. Amazon EC2 [16]
provides the flexibility to choose from a number of different
instance types to meet various computing needs. Each
instance provides a predictable amount of dedicated
compute capacity and is charged per instance-hour
consumed. Fig. 2 shows how an instance type of Amazon
EC2 is modeled as a Web service.

B. Matchmaker Architecture
The matchmaker consists of two components:

1) Ontologies, provide the domain model and vocabulary for
expressing virtual unit advertisements and service requestors
requirements. 2) Matchmaking algorithm, determines when
an advertised virtual unit matches a requester requirement
description.

1) Ontologies. In this work two ontologies have been
developed using WSML. We use WSMO studio [30] to
create our ontologies. WSMO Studio is an open source
Semantic Web service and Semantic Business Process
modeling environment for the Web Service Modeling
Ontology. WSMO Studio is available as a set of Eclipse
plug-ins. The most useful WSMO Studio features include:
Ontology editor with integrated WSML Reasoner (for
consistency checks and querying of ontologies Editor for
WSMO elements (Web services to advertise virtual units,
goals to define user requirements, mediators). Each of
ontology domains described by WSMO studio defines

functional and non-functional properties and their elements.
These two ontologies are:

a) Requirements ontology. The ontology as depicted in
Fig. 2 captures a requester virtual unit requirements which
are defined as functional properties (e.g., number of CPU,
memory size) and non-functional properties (e.g., budget,
location) which represent QoS requirements. The greater
parts of our notation are taken from Common Information
Model (CIM) [31] and in particular OVF for describing
resource management which is impartial to IaaS providers
and implementation.

b) Virtual unit ontology. The virtual unit ontology
provides an abstract model for describing virtual units and
their capabilities to let IaaS providers advertise their
services. Our initial model concentrates on modeling of
computational virtual unit services as depicted in Fig. 3.

2) Matchmaking algorithm: In order to consider
whether a goal G which represents user requirements and a
Web service W that represents advertised virtual units
match on a semantic level, the sets G and W describing

Figure 2. Requirements Ontology

107

Figure 3. Virtual units Ontology

these elements have to be interrelated somehow; precisely
speaking, we expect that some relationship between G and
W has to be exist. The service matching in the proposed
architecture is based on Description Logics (DLs) [38] which
are a family of knowledge representation formalisms that are
able to represent the structural knowledge of an application
domain through a knowledge base including a terminology
and a world description. The basic formalism of a DL system
comprises three components: 1) Constructors which
represent concept and rule, 2) Knowledge base (KB) which
consists of the TBox(terminology) and the ABox(world
description). The TBox presents the vocabulary of an
application domain, while the ABox includes assertions
about named individuals in terms of this vocabulary, 3)
Inferences which are reasoning mechanisms of Tbox and
Abox.

Before we proceed to define discovery, we need to
introduce the goal and five matching operations described
below:

Definition 1 (Goal) Let T be an acyclic Tbox. A Goal G for T is
defined in the form of G=(C

G
, I

G
 ,N

G
), where:

• C
G
 is the set of capabilities of Web services including
goal constraints, which the user would like to have.ψ

• I
G
 is the set of interfaces of Web service, which the user
would like to have and interact with.ψ

• N
G
 is the set of Nonfunctional properties, which is
similar to that attached to Web services.ψ

Definition 2 (Exact matching) Suppose that a requested
capability of a Goal C

G1 ∈ G1
 is given. Let a capability of a Web

service C
W1 ∈ W1ψ

and Nonfunctional properties of a Web service
N

W1 ∈ W1
. If (N

G1
≡N

W1
) � (C

G1
≡C

W1
) then G

1
 can “exactly” match

W
1 ,i.e. G

1
≡W

1
 .

Definition 3 (PlugIn matching) Suppose that a requested
capability and Nonfunctional properties of a Goal C

G1 ∈ G1ψψψ
, N

G1

∈ G1ψ
are given. Let a capability of a Web service C

W1 ∈ W1
 and

Nonfunctional properties of a Web service N
W1 ∈ W

1
. If

(C
G1
�C

W1
)�(N

G1
�N

W1
) then G

1
�W

1
 . This match is called

“PlugIn”.

Definition 4 (Subsumption matching) Suppose that a requested
capability and Nonfunctional properties of a Goal C

G1 ∈ G1↪
,N

G1 ∈

G
1
 are given. Let a capability of a Web service C

W1 ∈ W1
 and

Nonfunctional properties of a Web service N
W1 ∈ W

1
. If

(C
W1

�C
G1

)�(N
W1

�N
G1

) then W
1
�G

1
 . This match is called

“Subsumption”.

Definition 5 (Intersection matching) Suppose that a requested
capability and Nonfunctional properties of a Goal C

G1 ∈ G1ψψψ
, N

G1

∈ G1ψ
are given. Let a capability of a Web service C

W1 ∈ W1
 and

Nonfunctional properties of a Web service N
W1 ∈ W

1
. If

¬(C
G1
�C

W1
�⊥)�¬(N

G1
�N

W1
�⊥) then ¬(G

1
�W

1
�⊥) . This match

is called “Intersection”.

Definition 6 (Non-matching) Suppose that a requested capability
and Nonfunctional properties of a Goal C

G1 ∈ G1ψψψ
, N

G1 ∈ G1ψ
are

given. Let a capability of a Web service C
W1 ∈ W

1
 and

Nonfunctional properties of a Web service N
W1 ∈ W

1
. If

(C
G1
�C

W1
�⊥)� (N

G1
�N

W1
�⊥) then G

1
�W

1
�⊥ . This relationship

is called “Non match”.

Based on the above definitions, we propose the Web
service discovery algorithm which can be seen in Fig. 4 and
also define it as follows:

Definition 7 (Discovery) Suppose that a requested capability and
Nonfunctional properties of a Goal C

G1 ∈ G1ψ ψψ
, N

G1 ∈ G1ψ
are

given. Let a capability of a Web service C
W1 ∈ W

1
 and

Nonfunctional properties of a Web service N
W1 ∈ W1

. Discovery is
defined as to find a set of Web services W

i
 such that:

((CG1≡CW1)← � (NG1≡NW1)) � ((CG1�CW1)← �

(NG1�NW1))� ((CW1�CG1)← � (NW1�NG1)) � (

(¬(CG1�CW1�⊥))←� (¬(NG1�NW1�⊥))).

108

Figure 4. Web service discovery algorithm

The architecture operations are described in following
sections. First initial steps are presented, and then details of
execution phases which are desired for satisfying user
requests are explained. To enable execution phases, the first
step is to build a proper environment which is constructed
during initial pashas.

C. Initial phases
In this section, phases which have to be done prior to the
execution phases are discussed.
o First, each service requestor has to have an account in

the system. The account is used for user’s authentication
and authorization; besides, it stores all user information
regarding their previous requests. This information can
help the systems to offer better quality of service to the
user. For example assume that requestor face the failure
in deploying his appliances on specific Cloud in
previous interaction with system, this information will
pass to the deployment service to avoid similar situation
in later requests.

o It is necessary to have Web Services Registry which
contains semantic description of Web services, such as
their capabilities (pre-conditions, post-conditions,
assumptions and effects), interfaces (choreography) and
non-functional properties. This is the place for all IaaS
providers to advertise their virtual units as a service. A
sample of advertisements in the Web service registry is
shown in Fig. 3.

o Ontology repository is built up to contain ontologies for
describing semantics of particular domains. Any
components might wish to consult ontology, but in most
of the cases ontologies will be used by the mediator
related components to overcome data and process
heterogeneity problems. In our case, semantic has to be
described for operating systems, virtual hardwares, and
other QoS domains.

o A Trusted Third Party for keeping SLA contracts and
their monitoring has to be in place. The idea was
proposed by [17] and adopted by our architecture. That’s
because we are going to provide a SLA monitoring
system, which is capable of fairly determining to which
extent a SLA is achieved and facilitating a procedure
taken by the user to receive compensation when the SLA
is violated.

D. Execution phases
The following detailed execution phases are done during

appliance deployment in Cloud-based environment.
o In 1 Service requestor specifies certain requirements

such as hardware requirements like CPU, storage, and
memory. A client request may just describe some of
needed resources for example only CPU and storage. In
this situation, default values for other requirements are
assigned by the portal. These default values are
presented by the portal and could be assigned according
to the software requirements and previous requested
virtual units of users.

o In phase Software requirements used as an input for
searching the best suited appliances among various
repositories of virtual appliance providers [19] which
named as virtual market place [18] by VMware.
VMware offers the industry’s largest virtual appliance
marketplace, gives users the quickest way to browse and
try applications designed to run best in a virtual machine
[18]. 3Tera [20] and rPath [21] are other appliance
providers to be considered.

o Phase is dealing with building OVF package and its
metadata based on discovered virtual appliances from
external appliance providers.

o Since our discovery is working based on ontology,
therefore during phase the mediator translates OVF
metadata (only metadata portions which is required for
discovery) to WSML notation. Therefore service
requestor hardware, operating system, and QoS
requirements are modeled as a goal as illustrated in Fig.
2. Then discovery service uses ontology-based
matchmaker to select best available virtual unit
represented by a Web service in the registry.

o Finally in phase enforceable SLA achieved by
negotiation on QoS dimensions between the SLA
manager and IaaS providers. Enforceable SLA will be
signed by both parties and the obtained Web service
contract is kept and continuously monitored by the third
party.

109

IV. CASE STUDY
In this section our approach is validated on a case study

to show the effectiveness of the proposed work. To show its
applicability, it has been tested in Web Service Modeling
Toolkit (WMST) [25].

The Audio Video Devices (AVD) online store has a
powerful Website for selling digital gadgets. Their business
is initially based on Europe and they have just expanded it to
US. They have leased a dedicated server from a data center
in US. Nevertheless, due to a business plan for
announcement of twenty percent discount in some category
of items, an exceptional load is predicted to build up on the
server. As they have doubted about the ROI they are not
going to lease another server. Recently, they have been
informed about Cloud computing and its pay-as-you-go [31]
manner and found it very useful for their case. That is
because they can lease a virtual server even for an hour and
terminate it when the load back to the normal level.
However, they are seeking for a solution to deploy their
application automatically on the most suitable IaaS provider.

We show how our work can help them to achieve their
goal. Their virtual unit requirements are depicted in Table I
and virtual units’ specification which have been advertised
by providers are shown in Table II. Operating systems
supported by each IaaS providers are depicted in Table III.

First the AVD IT officer connects to the portal and
expresses her software, hardware, and other requirements.
She needs an Apache server to be installed on a virtual unit
with specification illustrated in Table I. Consequently,
Appliance Administration Service discovers a suitable
Apache appliance which will be packed according to OVF
standard. Next, the matchmaker as explained in Section III.B
checks the capabilities of both virtual units Web services
against the resource requirements. Since the knowledge base
(KB) specifies that both “Linux family” and “OpenSolaris”
are types of “Unix”, therefore not only A but also C IaaS
provider, pass the operating system requirement criteria.

Both Providers A and C services (which is located in US)
pass functional requirements criteria based on Definition 3.
As it shows in Fig. 5, providers C in EU and A match type
with user requirements is Subsumption as they cannot satisfy
location and deployment time criteria correspondingly.
However, the provider C in US is the most preferable as it
can satisfy all requirements and its match type is PlugIn.
Next, as described in phase 5 in Section III.D the signed
SLA will be sent to the third party for monitoring. In this
case, the third party realized that deployment time was 80
seconds which is 3.5 seconds more that what both parties
have been agreed on. Therefore, the third party informs
them, and AVD is found eligible for receiving compensation
as the SLA was violated.

Figure 5. Case study validation in WSMT environment

TABLE I. REQUEST

Requestor CPU(core
MHz) Memory Storage Platform Budget Location D-time

(Sec) OS

AVD 800 1.5 GB 140 GB 32-bit 0.15 $ US 79 Unix
compatible

TABLE II. VIRTUAL UNITS

Providers CPU(core
MHz)

Memory
(GB) Storage(GB) Platform Price per

hour Location D-time
(Sec)

A 1000 1.7 160 32-bit 0.12$ US 79.5

B 1000 2 120 64-bit 0.38$ US 80

C 1000-1200 1.7 170 32-bit 0.10$ US 76.5

C 1000-1200 1.7 170 32-bit 0.11$ EU 76.5

A 4000 7.5 850 64-bit 0.138$ US 78

110

TABLE III. SUPPORTED OPERATING SYSTEM

Providers Operating Systems

A UNIX, Debian 5.0, 4.0 ; Ubuntu 9.04, 8.10 ; Windows Web Server 2008

B Windows Server 2008 ; Windows Server 2003

C OpenSolaris ; OpenSUSE Linux ; Ubuntu Linux ; Windows Server 2003

V. IMPLEMENTATION
After doing implementation feasibility study, tools

demonstrated in Table IV show capabilities to represents
components in the architecture. However, with the best of
our knowledge, none of the current tools in the market
support automated Cloud discovery.

In this section, we just focus on two of mentioned tools
in Table IV which are used in Appliance administration and
OVF components in the proposed architecture.

TABLE IV. ARCHITECTURE IMPLEMENTATION

Component Tools

Appliance Administration Service v kernel [33], rBuilder [21]

OVF Packaging Kensho [14], VMware OVF
Tool [34]

Third Party Monitoring Service CloudStatus [15], Monitis [35],
Nimsoft [36]

Appliance Deployment service VMware Studio [37]

Web Portal Life ray Enterprise Open
Source Portal [32]

First is the rPath Appliance Platform Agent (rAPA)

which is an extensible application framework that provides
Web-based remote administration for appliances [21]. It can
be applied to view a description of the appliance as well as
some basic appliance status information and logs.
Furthermore, it is capable of configuring the HTTP and
HTTPS proxies used by the appliance. The second tool is the
Project Kensho OVF Tool which uses the OVF standard for
export and import of virtual appliances and also Common
Information Model (CIM) industry standards developed by
the Distributed Management Task Force (DMTF).

VI. RELATED WORK
Recently, many works have targeted satisfying end user

requirements using virtualization approach [4, 3, 22]. In this
section, two of most recognized works are reviewed.

Keahey et al. [22] presented the idea of virtual workspace
(VW) which allows users to define an environment in terms
of their requirements (such as resource requirements or
software configuration), manage and then deploy it in the
Grid and Cloud. They have their own Cloud for deployment
of VW which named Nimbus Cloud. It provides
virtualization in the form of Xen virtual machine and can be
used to make a request to deploy a workspace based on a
specified VM image. Finally, it has to be mentioned that they

have not considered the user QoS requirements and in
general SLA. In addition, Cloud discovery and selection is
missing from the work.

A phenomenal related work has been done in North
Carolina State University. The project name is Virtual
Computing laboratory (VCL) [23] which was originally
described in February 2004. VCL claims that it is an ideal
product to support all kind of Cloud solution. VCL services
vary from virtual computer laboratory seats or desktops, to
single applications on demand, to high-performance
computing services and clusters. VCL is now one of the most
well-known virtualization management systems in the world,
particularly in academia. However, VCL support for images
is limited to few types of software and it cannot adequately
capture users’ varying requirements.

VII. CONCLUSION
In this paper, an effective architecture for appliance

deployment is presented. The presented approach includes
three main improvements: converting user requirements to
OVF to be a standard package format for Cloud deployment,
proposing an advertisement approach for IaaS providers, and
applying ontology-based discovery to find the best suited
providers. One of desired attributes of our architecture is to
allow users to present their requirements in terms of high-
level and general software and hardware characteristics,
which will be mapped to appliances and virtual units. In
addition, we plan to investigate integration of SLA-based
appliance discovery to our system to further enhance QoS for
end users.

REFERENCES

[1] L. Vaquero, L. Rodero-Merino, J. Cáceres, and M. Lindner, “A Break
in the Clouds: Towards a Cloud Definition”, SIGCOMM Comput.
Commun. Rev., Vol. 39, No. 1, 2009, pp. 50-55.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared”, IEEE Grid Computing
Environments Workshop, 2008, pp. 1-10.

[3] Z. Cheng, Z. Du, Y. Chen, and X. Wang, “SOAVM: A Service-
Oriented Virtualization Management System with Automated
Configuration”, IEEE Int’l Workshop on Service-Oriented System
Engineering, 2008, pp. 251-256.

[4] P. Anedda, M. Gaggero, and S. Manca, “A general service oriented
approach for managing virtual machines allocation”, ACM
Symposium on Applied Computing, ACM, 2009, pp. 2154-2161.

[5] C. Sun, L. He, Q. Wang, and R. Willenborg, “Simplifying Service
Deployment with Virtual Appliances”, IEEE Int’l Conf on Services
Computing, 2008, pp. 265-272.

[6] H. Tangmunarunkit, S. Decker, and C. Kesselman, “Ontology-Based
Resource Matching in the Grid – The Grid Meets the Semantic Web”,
Int’l Semantic Web Conf, Springer-LNCS, 2003, pp. 706-721.

111

[7] S. Pahlevi, A. Matono, and I. Kojima, “SPARQL-Based Set-
Matching for Semantic Grid Resource Selection”, Business Process
Management Workshops, 2007, pp. 461-472.

[8] S. Pahlevi and I. Kojima, “Ontology-Based Grid Index Service for
Advanced Resource Discovery and Monitoring”, European Grid
Conf, 2005, pp. 144-153.

[9] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed
Resource Management for High Throughput Computing”, The 7th
IEEE Int’l Symp on High Performance Distributed Computing, 1998,
pp. 140-147.

[10] The Portable Batch System. [Online]. Available: http://pbs.mrj.com
[11] C. Sapuntzakis, et al., “Virtual Appliances for Deploying and

Maintaining Software”, The 17th USENIX Conf on System
Administration, 2003, pp. 181-194.

[12] J. Staten, E. Brown, F. Gillett, and W. Saleh, “The Case For Virtual
Appliances How Hypervisors Can Simplify Software Distribution”,
Forrester Research, 2007. [Online]. Available:
www.vmware.com/go/vam_va_fd_forresterreport

[13] Open Virtualization Format White Paper, June 2009. [Online].
Available:
www.dmtf.org/standards/published_documents/DSP2017_1.0.0.pdf

[14] Project Kensho v1.1 Technology Preview. [Online]. Available:
http://community.citrix.com/display/xs/Kensho

[15] Enterprise Monitoring and Management for Cloud Services. [Online].
Available: http://www.hyperic.com/products/Cloud-monitoring.html

[16] Amazon Elastic Compute Cloud (Amazon EC2), [Online]. Available:
http://aws.amazon.com/ec2/

[17] H. Akio. Monitoring of service level agreement by third party. US
Patent 7007082, February 28, 2006.

[18] Virtual Appliance Marketplace. [Online]. Available:
http://www.vmware.com/appliances/learn/overview.html

[19] M. Wilson, “Constructing and Managing Appliances for Cloud
Deployments from Repositories of Reusable Components”,
Workshop on Hot Topics in Cloud Computing, 2009.

[20] 3Tera AppStore. [Online]. Available:
http://www.3tera.com/AppStore/

[21] rBuilder Online. [Online]. Available: https://www.rpath.org/ui/
[22] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Achieving Quality

of Service and Quality of Life in the Grid”, Scientific Programming
Journal, Vol. 13, No. 4, 2005, pp. 265-276.

[23] M. Vouk, et al. “Powered by VCL - Using Virtual Computing
Laboratory (VCL)”, The 2nd Int’l Conf on Virtual Computing, 2008,
pp. 1-10.

[24] M. Comuzzi and B. Pernici, “A framework for QoS-based Web
service contracting”, ACM Trans. On the Web, Vol. 3, No. 3, 2009,
pp. 1-52.

[25] WSMO Working Group. [Online]. Available: http://www.wsmo.org
[26] D. Fensel and C. Bussler, “The Web Service Modeling Framework

WSMF”, Electronic Commerce: Research and Applications, Vol. 1,
No. 2, 2002, pp. 113-137.

[27] Fensel D., et al., Enabling Semantic Web Services: Web Service
Modeling Ontology, Springer, 2006.

[28] WSMX Working Group. [Online]. Available: http://www.wsmx.org
[29] R. Buyya, C. Shin-Yeo, S. Venugopal, J. Broberg, and I. Brandic,

“Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the 5th Utility”, Future
Generation Computer Systems, Elsevier Science, Vol. 25, No. 6,
2009, pp. 599-616.

[30] Common Information Model (CIM) Standards. [Online]. Available:
http://www.dmtf.org

[31] M. Armbrust, et al., “Above the clouds: A Berkeley view of cloud
computing”, Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, 2009.

[32] Life ray Enterprise Open Source Portal. [Online]. Available:
http://www.liferay.com/web/guest/home

[33] Virtual Appliance Management Suit. [Online]. Available:
http://www.vkernel.com

[34] VMware OVF Tool. [Online]. Available:
http://communities.vmware.com/community/developer/ovf

[35] Monitis Cloud Performance Monitoring Service. [Online]. Available:
http://monitorCloud.com/monitorCloud

[36] Nimsoft Cloud Monitoring. [Online]. Available:
http://www.nimsoft.com/solutions/Cloud-monitoring/index.php

[37] VMware Studio. [Online]. Available:
http://www.vmware.com/appliances/learn/vmware_studio.html

[38] Baader, F., D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-
Schneider (Eds.), The Description Logic Handbook: Theory,
Implementation, and Applications, Cambridge University Press,
2003.

[39] S. Grimm, “Intersection-Based Matchmaking for Semantic Web
Service Discovery”, The 2nd Int’l Conf on Internet and Web
Applications and Services, 2007, pp. 14-14.

112

