
A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3046, pp. 147–157, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Market-Based Scheduler for JXTA-Based Peer-to-Peer
Computing System

Tan Tien Ping1, Gian Chand Sodhy1, Chan Huah Yong1, Fazilah Haron1 and
Rajkumar Buyya2

1School of Computer Science
Universiti Sains Malaysia
11800 Penang, Malaysia

{tienping, sodhy, hychan, fazilah} @cs.usm.my
2Grid Computing and Distributed Systems Laboratory

Department of Computer Science & Software Engineering
University of Melbourne, Australia

raj@cs.mu.oz.au

Abstract. Peer-to-Peer (P2P) computing is said to be the next wave of
computing after client-server and web-based computing. It provides an
opportunity to harness a lot of idle peer-resources such as desktop computers
across the Internet, for solving large-scale computing applications. Each peer is
autonomous and it needs incentive for sustained contribution of its resources to
P2P applications. In addition, a flexible and efficient job scheduling is needed
to harvest the idle computing power as cheaply and economically as possible.
This paper introduces an economic based job scheduler for mapping jobs to
resources in P2P computing environment. The scheduler has been implemented
with the Compute Power Market (CPM) system developed using Sun JXTA
P2P technology. Our scheduler can be configured depending on users’ quality
of service requirements such as the deadline and budget constraints. Our
scheduler follows a hierarchy scheme. The design allows multiple consumers
and multiple providers to schedule and run jobs. To allow wider support for a
wide variety of applications, the system is designed to allow easy ‘plug in’ of
user applications.

1 Introduction

P2P computing has been touted as the next wave of computing after client-server and
web-based computing [1][22]. The P2P computing paradigm harnesses resources such
as storage, computing cycles, contents and human presence that are available at the
edge of the Internet. An advantage of P2P computing model is that everyone can
contribute their resources while being autonomous. Another advantage of P2P is that
a lot of otherwise unused resources can be harvested for the development of science,
engineering, and business. Different types of P2P systems have been developed to
support file sharing, distributed computing, collaboration, searching, instant
messaging and mobile devices. Example systems and applications [22] include
Napster, ICQ, Jabber, Gnutella, FreeNet and SETI@Home [14].

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 1800 dpi Downsampling für Bilder über: 2700 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages false /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Average /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Average /DetectBlends true /GrayImageDownsampleType /Average /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 1800 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

148 T.T. Ping et al.

P2P computing systems aim to exploit the synergies that result from co-operation of
autonomous peers. For this cooperation to be sustainable, peers (resource
contributors) need an incentive [8][12][15]. Efforts such as SETI@Home [6] are
successful in attracting a large number of contributors due to (a) their exciting
application theme—search for an extraterrestrial intelligence— and (b) their objective
of sharing results with the public. There is a huge potential in creating and
transforming P2P networks into a computing marketplace that brings together
providers and consumers. In such marketplace, peers (providers) gain economic
incentive by providing access to their resources; and they also get encouraged to offer
value-added services. The consumers benefit by gaining access to large-scale
resources on demand and having an ability to select resources by based on their
quality of service requirements.

In [18], we proposed a market-based resource management and job scheduling
system, called Compute Power Market (CPM), for P2P computing on Internet-wide
computational resources as market-based systems offer economic incentive for
resource providers and also support the regulation of supply-and-demand for
resources [8][11][15]. The CPM primarily comprises of markets, resource consumers,
resource providers and their interactions. Over the last three years [19], our team has
carried out an implementation of CPM using Sun’s JXTA [16] P2P computing
framework. It supports various economic models for resource trading and matching
service consumers and providers. The CPM components that represent markets,
consumers and providers are Market Server, Market Resource Agent, and Market
Resource Broker (MRB).

This paper focuses on a market-based scheduler implemented as a component of
CPM’s MRB. The broker is responsible for providing master-worker style application
scheduling services by discovering and selecting suitable resources that match user
requirements. The CPM scheduler adopts scheduling algorithms, originally developed
for Grid environments [13], and incorporates them within P2P computing-based CPM
system.

2 Related Work

Although job scheduling on parallel and distributed systems has been investigated
extensively in the past, they are limited to cooperative and dedicated environments or
system-centric in nature. Moreover, scheduling in different environments such as P2P
often involves different challenges and policies, for instance variation of resource
availability with time and the presence of large-scale heterogeneity. A number of
projects have investigated scheduling of computations on Internet-based distributed
systems. They include AMWAT [4], Condor [20], XtremWeb [23], Entropia [24],
AppLes[5], Nimrod-G[11], Javelin++ [10], and Java Market [8].

A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System 149

3 CPM and JXTA P2P Framework

JXTA is a open source project initiated by Sun Microsystems. One of its main
objectives is to develop a standard protocol that all P2P applications can utilize, since
there are a lot of P2P applications which cannot operate, interact and utilize each
other's service. Worldwide developers have contributed to new services, for example
file sharing chatting and others.

Fig. 1. CPM/P2P Framework.

Compute Power Market (CPM) is a market-based resource management service
developed under JXTA. Through CPM, consumer and resource owner can trade
computational resources over a P2P network. Figure 1 shows the components of CPM
organized into layers. Layer 1 connects geographically distributed compute devices
through JXTA network across the Internet. Layer 2 is the middleware comprising
JXTA protocols and security. The Core Engine layer contains the main CPM
modules, while the application layer contains programs that utilize the functionality of
CPM modules.

The scheduler interacts with other modules in CPM to achieve the overall objective.
A global scheduler of CPM Market Resource Broker (MRB) interacts with the CPM
Market Agent to retrieve available resources in the market. With this information, the
global scheduler can then schedule tasks to selected resources. Local scheduler will
then schedule the execution of the tasks. Global scheduler and local scheduler will
provide an accounting module and billing information, which will be used to bill the
customer accordingly.

150 T.T. Ping et al.

4 Scheduler Architecture

The scheduler is one of the main components in CPM. It is responsible for assigning
tasks from customer to resource providers. The scheduler will be operating in a
market environment, where it schedules tasks based on deadline and budget. The type
of jobs which can take advantage of our scheduler are those that can be partitioned
into smaller tasks and executed in an independent manner such as Monte Carlo
simulation, image processing applications, molecular docking and others.

In general, schedulers can be categorized according to their scope. They are the
global scheduler and the local scheduler. The global scheduler is also known as
macro-scheduler, while local scheduler is also called a micro-scheduler [3]. The
global scheduler decides the resource to which the user job is to be allocated based on
a certain global scheduling policy, but local scheduler chooses the job to be run on the
local system based on the local system policy.

Schedulers can be categorized according to their architectural model. The three
commonly used models for organisation and structuring of schedulers are centralized,
hierarchical, and distributed models [2][21]. The CPM scheduler follows a
hierarchical model. The main components of a CPM scheduler are global scheduler,
job monitoring, resource discovery and local scheduler.

Fig. 2. CPM scheduler architecture.

4.1 Scheduler Components

Global scheduler is responsible for the scheduling of a customer’s job. The
components of a global scheduler are:
• Scheduling Advisor – Schedule tasks to local scheduler based on a specific

scheduling algorithm.
• Scheduling Algorithm – Two types of heuristics scheduling algorithms are

supported. They are Cost Optimized and Time Optimized scheduling algorithms
[13]. Cost Optimized algorithm schedules tasks for customer where their main
concern is cost, while making sure that deadline is reached. Time Optimized

A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System 151

scheduling tries to complete the tasks as soon as possible and within the specified
cost.

• Trader Manager – Negotiate price with Trader Server at local scheduler for an
agreeable price.

Job Monitoring module monitors the status of tasks and triggers the global
scheduler to reschedule if failure occurs. This includes tasks which do not execute or
complete within expected period of time or tasks which have failed. The discovery
component is used for searching available resource providers over the network.

The CPM local scheduler can accept tasks from more than one global scheduler but
only one task is executed at a time. The components of a local scheduler are:
• Scheduling Advisor – It accepts or rejects a given task based on resource

provider’s specified scheduling policies. It schedules the execution of tasks based
on local scheduling algorithm.

• Scheduling algorithm – Support scheduling based on first-in-first-out (FIFO)
method.

• Trader Server – Negotiate price with Trader Manager.
• Policy – User can specify the scheduling policy which decides what tasks get

accepted and what task does not. Three types of policies are supported: minimum
price of the total given tasks, total maximum time length acceptable by resource
provider and availability.

• Dispatcher – Dispatches customer’s application for execution. Two types of
application are supported currently. They are java applications and Windows
executable programs.

4.2 Scheduling Activities

Scheduling can be divided into 5 steps. The steps involved are:
i) Resource discovery, where resources are searched for and found.
ii) Resource trading, which involves retrieving the necessary information for

selecting and scheduling tasks at the next stage.
iii) Scheduling, where tasks are matched to resources, using a scheduling algorithm.
iv) Execute and monitor the task on resources used.
v) Rescheduling: It handles reassignment of failed tasks or schedule variation to due

to the change in the availability of resources.

4.2.1 Resource Discovery
Before a customer can schedule tasks to peers, resources need to be discovered. In
JXTA, resources, services and others are represented as advertisements. The CPM
resource advertisements contain information such as price, speed of computation and
others, which are published by resource providers. There are 3 ways to discover
advertisements, either through local cache, direct discovery or indirectly through a
rendezvous peer [16]. A Rendezvous peer is a special peer, which provides the service
of discovering other peers or resources.

152 T.T. Ping et al.

4.2.2 Resource Trading
The trading module in the global scheduler and the local scheduler is used for
negotiating agreeable price. In the current implementation, there is not much
interaction involved. We use a flat-price market model whereby providers advertise
their resources using resource advertisements. Global scheduler that discovers the
resource advertisements will then decide which peer to hire depending on a few
criteria, such as cost, speed and completion time. The information of cost and speed
can be retrieved from the resource advertisement. However for the completion time,
the global scheduler needs to query the local schedulers. Communication between
global scheduler and local scheduler is done via JXTA pipe service. The benefit of
using pipes for communication is that it hides the need to know each other's IP
address and port number, using only peer IDs. Besides that, the communication can
cross firewalls. These are important aspects, especially in P2P environment.

An "order ID" is also being returned when a global scheduler queries for the
completion time at a local scheduler. The order ID is used to resolve contention when
two or more global schedulers are interested in a peer at the same time. When a global
scheduler wants to make a purchase, it needs to supply the order ID, which will
change when an order is successfully made.

4.2.3 Scheduling
The global scheduler allocates tasks to a local scheduler through a contract. A contract
is an agreement between the global scheduler and the local scheduler on the award of
one or more tasks to it. Each task can be different in terms of functionality, runtime,
input files, etc. However, they must not have any dependencies among them. A
contract received by a local scheduler is put into a queue, and processed in FIFO
order. A task from the contract will be processed. The required files, such as
application and data files, will be fetched when the task is about to run.

A resource is selected based on the resource’s price versus customer’s budget and
resource’s completion time (next available time) versus customer’s deadline. We
provide two scheduling algorithms for a user to choose, depending on their priority in
cost and speed [12]. In cost optimization scheduling, the scheduler will try to schedule
as many tasks as possible to the cheapest provider as long as deadlines are not
exceeded. As for time optimization, the scheduler will schedule to make sure tasks are
completed as soon as possible, taking care that budget is not exceeded.

4.2.4 Execution and Monitoring
When a task is ready for execution, the local scheduler will request the necessary data
or files from the global scheduler. After the required data is available, the task can be
executed. The module that is responsible for the execution of customer applications is
the Dispatcher. The dispatcher learns of the type of application and then executes the
right command to run the application. The current implementation supports 2 types of
applications, Java programs and Windows executable programs.

Job monitoring module is responsible for monitoring the status of the tasks. When a
task fails to execute or complete within expected period, job monitoring module will
abort the task and reschedule it to another peer. To avoid the possibility of a failed

A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System 153

task being moved from one peer to another, user can set the maximum number of
times a task can be rescheduled.

4.2.5 Rescheduling
Scheduler will reschedule a task when it is triggered by the job monitoring module.
Rescheduling a task is just like scheduling, where it is reassigned to a new provider.
When the scheduler cannot find a suitable resource, customers may update their QoS
parameters such as budget and/or deadline constraints, so that resources that meet the
new criteria can be found.

5 Scheduling Experiments and Results

We have developed a simple image processing application as a simulation. The
application is used for segmenting an object from an image using adaptive
thresholding method [17].

The objective of the experiments are to see how the scheduler schedules a task
under different budget and deadline constraints. We conducted our test in a local area
network (LAN) with bandwidth of 100Mbps. Table 1 shows the hardware used We
have configured a job consisting of 40 tasks on a Window machine to be scheduled to
4 provider machines (labeled as Win2000, XP1, XP2 and Linux), the specifications of
which are shown in Table 1. Each task uses an input image involving an estimated
28141 million operations, which will be processed by an image processing application
as shown in Figure 3. All machines are benchmarked using a standard application
where the number of floating point operations they can perform in a second is known.
The price is set as tokens per hour and the value of tokens can be mapped to a real
currency. Each task consists of an image with the same dimension and parameters.
We then schedule the tasks out to resources where objects in the image are segmented
and returned to the customer.

Fig. 3. Processed images with different mask size which have been resized.

In the first experiment, we have allocated 500 tokens with the deadline of 1 hour to
perform the job, which consists of 40 tasks. We select Time Optimization as the
scheduling algorithm to schedule the jobs. Figure 4 shows the task completion time
by the machines. From the graph we can see that all tasks completed before the
deadline (i.e. 3600 seconds). Machines XP1 and XP2 have been scheduled the most

154 T.T. Ping et al.

Table 1. CPM testbed and hardware configuration

Fig. 4. Graph showing Time Optimization scheduling of 40 tasks. Budget allocated is 500
tokens with time deadline of 1 hour.

tasks (13 tasks), since both have the highest processing speed and the budget allocated
is sufficient. Therefore, in cases where budget is more than required, cost becomes a
less important constraint, and the dominant factor which determines the completion
time is the number of resource providers and their respective processing speeds.

Fig. 5. Graph showing Time Optimization scheduling of 40 tasks. Budget allocated is 350
tokens with time deadline of 1 hour.

In the second experiment, we still use Time Optimization algorithm to schedule the
same jobs, but now the budget has been reduced from the previous 500 tokens to 350
tokens. From Figure 5, we can see that reducing the budget will reduce the number of
tasks allocated to more expensive machines. In this case the number of tasks allocated
to machine XP2 has been reduced to 5. Cheaper but slower machines like Win2000,
for instance, get more tasks.

A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System 155

Fig. 6. Graph showing Cost Optimization scheduling of 40 tasks. Budget allocated is 300
tokens with time deadline of 1.5 hour.

For the final experiment, we use the same job again for our test. However, we change
our scheduling strategy to Cost Optimization, allocating only 300 tokens, with the
duration of 1.5 hours. From Figure 6, we can see that the scheduler utilizes the
cheapest resources by allocating as many tasks as possible to them, for instance
machines Win2000 and Linux. The most expensive resource, machine XP2, does not
get any task at all. Notice that all 40 tasks are completed well before the deadline (of
5400 seconds).

From this experiment, we can deduce that if task execution time can be reasonably
estimated, then the Cost Optimization scheduling algorithm provides better results in
terms of budget used and completion time (within the deadline given).

6 Conclusion

We discussed a market-based scheduler for JXTA-based P2P computing system. It
followed hierarchical model for system architecture. It consists of global scheduler,
which is implemented as part of the CPM market-resource broker and local scheduler,
which implemented as part of the CPM market resource agent. We discussed in depth
the implementation of two market-based global scheduling algorithms within CPM
global scheduler along with experimental and performance results.

Acknowledgements. A financial assistance from the Ministry of Science, Technology
and Environment of Malaysia (MOSTE) is gratefully acknowledged. We thank Rob
Gray (Monash University) and Srikumar Venugopal (University of Melbourne) for
their valuable comments on the paper.

156 T.T. Ping et al.

References

[1] Clay Shikey, "What is P2P… And What Isn’t",
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html, O’Reilly Net-
work. Nov 2000.

[2] Vijay Subramani, Rajkumar Kettimuthu Srividya, Srinivasan P. Sadayappan,
"Distributed Job Scheduling on Computational Grids using Multiple Simultaneous
Requests", Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC'02), Scotland, 2002.

[3] Steve J. Chapin and Eugene H. Spafford, "Support for Implementing Scheduling
Algorithms Using MESSIAHS", Scientific Programming, 1994.

[4] Garry Shao, "Adaptive Scheduling of Master/Worker Applications on Distributed
Computational Resources", Ph.D. Thesis, University of California, San Diego. May
2001.

[5] Francine Berman et. al. "Adaptive Computing on the Grid Using AppLeS", IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, No. 4 IEEE Press, USA, Apr
2003.

[6] David Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, Dan Werthimer,
"SETI@home: An Experiment in Public-Resource Computing", Communications of the
ACM, Vol. 45 No. 11, ACM Press, USA, November 2002.

[7] Henri Casanova, Arnaud Legrand, "Heuristics for Scheduling Parameter Sweep
Applications in Grid Environment", Proceedings of the 9th Heterogeneous Computing
Workshop (HCW'2000). Cancun, Mexico, May 2000.

[8] Yair Amir, Baruch Awerbuch, and Ryan S. Borgstrom, "The Java Market: Transforming
the Internet into a Metacomputer". Technical Report CNDS-98-1, Johns Hopkins
University, 1998.

[9] Peter Cappello, Bernd Christiansen, Mihai F. Ionescu, Michael O. Neary, Klaus E.
Schauser, and Daniel Wu, "Javelin: Internet-Based Parallel Computing Using Java",
Proceedings of the 1997 ACM Workshop on Java for Science and Engineering
Computation, June 1997

[10] Michael O. Neary, Sean P. Brydon, Paul Kmiec, Sami Rollins, Peter Capello, "Javelin++:
Scalability Issues in Global Computing", Future Generation Computing Systems Journal,
Vol.15(5-6):659-674, Elsevier, Netherlands, 1999.

[11] Rajkumar Buyya, David Abramson, Jonathan Giddy, "Nimrod/G: An Architecture for a
Resource Management and Scheduling System in a Global Computational Grid",
Proceedings of 4th International Conference on High Performance Computing in Asia-
Pacific Region (HPC Asia 2000), Beijing, China, 2000.

[12] Rajkumar Buyya, "Economic-based Distributed Resource Management and Scheduling
for Grid Computing", Ph.D. Thesis, Monash University Australia, April 2002.

[13] Rajkumar Buyya, Jonathan Giddy, and David Abramson, "An Evaluation of Economy-
based Resource Trading and Scheduling on Computational Power Grids for Parameter
Sweep Applications", Proceedings of the 2nd Workshop on Active Middleware Services
(AMS 2000), Kluwer Academic Press, Pittsburgh, USA, August 1, 2000.

[14] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, D. Anderson, "A new
major SETI project based on Project Serendip data and 100,000 personal computers",
Proceedings of the 5th International Conference on Bioastronomy, 1997.

[15] Carl A. Waldspurger, Tad Hogg, Bernado A. Huberman, Jeffrey O. Kephart and Scott
Stornetta, "Spawn: A Distributed Computational Economy", IEEE Transactions on
Software Engineering, IEEE Press, USA, February 1992.

[16] Brendon J. Wilson, JXTA, New Riders Publishing, Indiana, June 2002.

A Market-Based Scheduler for JXTA-Based Peer-to-Peer Computing System 157

[17] Anatol Piotrowski and Sivarama P. Dandamudi, "Performance Sensitivity of Variable
Granularity Proceedings of International Conference on Massively Parallel Computer
Systems, Colorado Springs, April 1998

[18] Rajkumar Buyya and Sudharshan Vazhkudai, "Compute Power Market: Towards a
Market-Oriented Grid", Proceedings of the First IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid 2001), Brisbane, Australia, May 15-18, 2001.

[19] Rajkumar Buyya Fazilah Haron Chan Huah Yong, "CPM on Jxta",
http://compute-power-market.jxta.org/

[20] Matt Mutka and Miron Livny, "Scheduling Remote Processing Capacity In A
Workstation-Processing Bank Computing System", Proceedings of the 7th International
Conference of Distributed Computing Systems, September 1987.

[21] Rajkumar Buyya, David Abramson, and Jonathan Giddy, “An Economy Driven Resource
Management Architecture for Global Computational Power Grids”, Proceedings of the
2000 International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Las Vegas, USA, June 26-29, 2000.

[22] Andy Oram (ed), Peer-to-Peer Harnessing the Power of Disruptive Technologies,
O’Reilly Press, USA, 2001.

[23] Cecile Germain, Vincent Neri, Gille Fedak and Franck Cappello, “XtremWeb: building
an experimental platform for Global Computing”, Proceedings of the 1st IEEE/ACM
International Workshop on Grid Computing (Grid 2000), Bangalore, India, Dec. 2000.

[24] Andrew Chien, Brad Calder, Stephen Elbert, and Karan Bhatia, “Entropia: architecture
and performance of an enterprise desktop grid system”, Journal of Parallel and
Distributed Computing, Volume 63, Issue 5, Academic Press, USA, May 2003.

	1 Introduction
	2 Related Work
	3 CPM and JXTA P2P Framework
	4 Scheduler Architecture
	4.1 Scheduler Components
	4.2 Scheduling Activities
	4.2.1 Resource Discovery
	4.2.2 Resource Trading
	4.2.3 Scheduling
	4.2.4 Execution and Monitoring
	4.2.5 Rescheduling

	5 Scheduling Experiments and Results
	6 Conclusion

