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Abstract—A Content Delivery Network (CDN) is expected to 

provide high performance content delivery, which requires 
scalable infrastructure to achieve global coverage. The provision 
of such infrastructure may form a substantial entry barrier for 
new CDN providers, as well as affecting commercial viability of 
the existing ones. Peering of CDNs can be a way to allow dynamic 
infrastructural cooperation between CDNs in a scalable manner, 
in order to mitigate the impact of flash crowds and to achieve 
better overall service times. In this paper, we present a Quality of 
Service (QoS)-driven model to evaluate the user perceived 
performance of CDN peering relationships. In this model, an 
overloaded CDN redirects a fraction of its incoming requests to 
peered CDNs and thereby can avoid the impact of flash crowds. 
The model-based approach also assists in making concrete QoS 
guarantee for a given CDN. Our approach endeavors to achieve 
scalability for a CDN in a user transparent manner. 

I. INTRODUCTION 
Content Delivery Networks (CDNs) [14] offer fast and 

reliable Web access services by distributing content to edge 
servers located close to end-users. Running a global CDN is 
challenging in financial, technical and administrative terms. 
Moreover, providing Quality of Service (QoS) under 
unexpected resource shortfalls, such as during flash crowds 
[1], might be an obstacle for new CDN providers and may also 
harm the commercial viability of the existing ones. The 
objective of providing high quality service can be achieved by 
permitting CDNs to cooperate and thereby providing a means 
for CDNs to redistribute content delivery between themselves 
[9][12]. Peering between CDNs virtualizes multiple providers 
and allows flexible resource sharing and dynamic 
collaboration between autonomous individual CDNs. In such a 
system, a CDN serves user requests as long as the load can be 
handled by itself. If the load exceeds its capacity, the 
overloaded CDN offloads excess requests to the Web servers 
of its peers. This approach also provides a means to avoid 
long-term (i.e. periodic traffic pattern during a particular Web 
event) or short-term (i.e. flash-crowds) bottlenecks [12]. 

Such peering arrangements are appealing, since it allows 
individual providers to achieve greater scale and network reach 
cooperatively than they could otherwise attain individually. 
However, developing a model capturing the characteristics of 
end-user requests redirection in peering CDNs is challenging 
for a number of reasons, which include virtualization of 
multiple providers and offloading end-user requests from the 
primary CDN provider to peers based on cost, performance 
and load. In such a cooperative multi-provider environment, 
users are redirected across distributed set of Web servers 
deployed by partnering CDNs as opposed to individual servers 
belonging to a single CDN. Moreover, limited information 
about response time or service cost is typically available from 

individual CDNs, and load balancing control is retained by an 
individual provider within its own Web servers. Therefore, 
request-redirections must occur over distributed sets of Web 
servers belonging to multiple CDN providers, without the 
benefit of the full information available, as in the single 
provider case. 

The main contributions of this paper are twofold: (1) we 
introduce analytical models to demonstrate the effects of 
peering and to predict user perceived performance, and (2) 
perform sensitivity analysis to study the impact of key 
performance parameters such as load and measurement errors 
that can be expected from a real system. The rest of the paper 
is structured as follows. Section 2 highlights the related work. 
Section 3 provides a high level description of peering between 
CDNs. Section 4 presents the analytical performance models. 
Results are demonstrated in Section 5, which is followed by a 
decisive evaluation of our approach in Section 6. Finally, 
Section 7 concludes the paper with a summary of contributions 
and future work. 

II. RELATED WORK 

Analyses of previous research reveal a deficient progress to 
define the frameworks and policies for CDN peering. The 
reasons for this lack of progress are mainly due to the 
complexity of the technological problems, legal and 
commercial operational issues that need to be solved in 
practice. 

An initiative from IETF was the first to propose a Content 
Distribution Internetworking (CDI) Model [9]. It recommends 
providing QoS either through using a supervision function or 
an independent third party to supervise and manage all the 
CDN peers. However, the CDI model does not define or 
characterize this supervision. Moreover, it also does not 
examine the implications of using an independent third party 
for ensuring QoS guarantees. In the architecture for CDI 
protocol [15], performance data is interchanged between 
CDNs before forwarding a request. This has the effect of 
introducing an overhead to each service response time which is 
unfortunately not quantified in the paper. 

CDN brokering [3] allows a CDN to intelligently redirect 
end-users dynamically to other CDNs in a domain. Though it 
provides benefits of increased CDN capacity, reduced cost and 
better fault tolerance, it does not consider the end-user 
perceived performance to satisfy QoS while serving requests. 
Moreover, it demonstrates the usefulness of brokering without 
evaluating a given CDN’s performance. 

While the above mentioned research efforts do not 
explicitly virtualize multiple CDN providers, a peering system 
in a federated, multi-provider infrastructure has been presented 
in [2]. The core component of the system is a peering 
algorithm that directs end-user requests to partner providers to 



minimize cost and improve performance. However, peering 
strategy, resource provisioning and QoS guarantees between 
partnering providers are not explored in this work. 

Cooperative Networking [11] enables cooperation between 
end-hosts to improve network performance. The main problem 
with this mechanism is that it is not transparent to users. 
Hence, it does not permit automated cooperation between 
CDNs to dynamically share their infrastructure resources. 

From the above discussion, it is clear that none of the 
existing research focuses on providing mechanism to evaluate 
the QoS performance of a certain provider. Moreover, some of 
these systems make strong assumptions on the characteristics 
of applications and do not virtualize multiple providers for 
cooperative management and delivery of content in a peering 
environment. Therefore, we develop performance models for 
peering CDNs, which virtualizes multiple CDN providers, and 
assists to offload end-user requests from the primary CDN to 
peers based on load and user perceived QoS performance. 
Other issues such as cost of migrating content, cache 
consistency after replication, and added storage requirements 
fall out of the scope for this paper. 

III. PEERING BETWEEN CDNS 
In the peering CDNs architecture [12], a CDN serves user 

requests as long as the load can be handled (meet QoS) 
internally. If the load exceeds its capacity, the excess requests 
are offloaded to the surrogate Web servers of peers. The 
initiator of each peering negotiation is called a primary CDN; 
while other CDNs who agree to provide their resources are 
called peering CDNs. These roles are fluid and at any time a 
given CDN may be acting in either primary or peering roles. In 
some cases, such as when locality is needed to meet service 
QoS times, it may be operating in both roles. 

Figure 1: An abstraction of CDN peering. 
The result of a peering negotiation between two CDNs is a 

contract, e.g. Service Level Agreement (SLA) [4], which 
specifies the peer resources (Web servers, bandwidth etc.) that 
will be allocated to serve content on behalf of a given primary 
CDN. The primary CDN directly manages the resources it has 
acquired, insofar that it determines what content is served and 
what proportion of the incoming traffic (user requests) is 
redirected. In Figure 1, we provide an overview of the peering 
CDNs architecture. End-user requests for content are made to 
the Request Routing System of the primary CDN. These 
requests are then forwarded either directly to its Web server(s), 
or to a peering CDN. In the figure, we observe that some user 
requests of CDN 2 are served by its local servers or the origin 

server (on cache miss), whereas others are being served by the 
external Web servers of a peer, CDN 1. It is important to note 
that depending on the load any CDN can act as a primary CDN 
in a peering relationship. For instance, CDN 2 acts as a 
primary when its users are served by the peers’ Web servers. 
Again, in the same peering relationship, CDN 1 plays the role 
of a primary CDN when its users are served by external Web 
servers from CDN N. 
A. QoS and SLAs in Peering CDNs 

QoS performance can be measured based on users’ 
experience of a service to compare the ‘promise’ against the 
‘delivery’. Here, we define quality as: 

Let A be a CDN and S = {S1, S2, …, Sm} be the set of 
services provided by it. Assume that for each service Si, Si

p 

is the quality that A promised to offer to the users and Si
d is 

the actual delivered quality. The QoS for CDN A is QoSA = 
f(Si

p, Si
d), where f is  a function to measure the 

conformance between Si
p and Si

d. 
Ensuring QoS guarantees requires a means of establishing a 

set of common quality parameters and establishing which 
attributes are needed by a particular customer to describe its 
QoS requirements. These factors are combined in an SLA that 
both a customer and a provider agree to and that the provider 
refers to when monitoring its QoS performance. Two examples 
of QoS parameters that an SLA may specify are: (1) 95% of 
requests should be served in less than T time units, and (2) a 
service should be available for at least 99.9% of the time. In 
this paper, we measure QoS in terms of the expected waiting 
time for a request to be served. 

IV. PERFORMANCE MODELS 

In the single CDN model, Web user arrivals follow a 
memoryless process with a constant arrival rate over a 
significant period of time [16]. Internet access workloads are 
self-similar and heavy-tailed in nature [7][8]. Based on these 
observations, we model a CDN as an M/G/1 queue (Figure 2) 
assuming the total processing of the Web servers of a CDN 
being accumulated through the server and abstracting the 
request streams coming to the Web servers of a CDN as a 
single request stream. An M/G/1 queuing system allows to 
define the service times independent of interarrival times and 
of one another, and to have a general P.D.F. The mean arrival 
rate is λ following a Poisson process and the mean service rate 
is µ following a general distribution. Poisson modeling of user 
arrivals provides us a good basis for theoretical constructs and 
mathematical tractability. Moreover, it allows considering the 
complex network traffic dynamics as a “black box” and helps 
to estimate parameters (inputs) that are difficult to specify, 
collect or measure in practice. 
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Figure 2: A CDN modeled as an M/G/1 queue. 

We use the term ‘task’ to denote a request arrival and ‘task 
size’ to denote its processing requirements. The task size on a 
CDN’s service capacity follows a Bounded Pareto distribution, 
with the following probability density function (P.D.F), to 
capture the heavy-tailed nature of Internet access workloads: 
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The variable α represents the task size variation, k is the 
smallest possible task size, and p is the largest possible task. 
By varying the value of α, we can observe moderate (α ≈ 2) to 
high (α ≈ 1) variability in distributions. Let E[X] be the mean 
service time and E[Xj] be the j-th moment of the service 
distribution of tasks. We have, 
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Using P-K formula, the expected waiting time is E[W] = 
λE[X2]/2(1-ρ), which can be used to measure the waiting time 
with respect to varying load and task sizes. 

Hyper-Exponential Approximation 
The Bounded Pareto distribution has all moments finite; 

however advanced analysis on it is complex due to the 
difficulties in manipulating the Laplace transforms of the 
queuing metrics (e.g. waiting time, busy period). Therefore the 
‘heavy-tailed’ Bounded Pareto distribution is approximated 
with a series of exponential distributions known as Hyper-
exponential distributions. Hyper-exponentials preserve the 
main characteristics of the original distribution, such as heavy 
tail, first and second moments [5]. We use an n part Hyper-
exponential distribution which has the following P.D.F: 
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We numerically invert the Laplace transform of the waiting 
time LW(s) to obtain the P.D.F of the waiting time distribution, 
w(t) and this is used to obtain the cumulative distribution 
function (C.D.F) W(t) [13]. 

A. CDN Peering Model 
A conceptual view of the peering CDNs is provided in 

Figure 3, in which each CDN is modeled as an M/G/1 queue. It 
is abstracted such that N independent streams of end-user 
requests arrive at a conceptual entity, the dispatcher, following 
a Poisson process with arrival rate λi, i∈ {1,2,…,N}. The 
dispatcher acts as a centralized scheduler in a particular 
peering relationship with independent mechanism to distribute 
content requests among partnering CDNs and assists to assign 
a fraction of requests of one CDN to its peer(s) in a user  
transparent manner. 
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Figure 3: Conceptual view of the peering CDNs. 

The request stream is defined as λj,i = request to CDN j for 
CDN i’s content. For ∀ j ≠ i, λj,i denotes redirected user 
requests, where CDN i is the primary and CDN j is a peer. On 
the other hand, for ∀ j = i, λj,i denotes the user requests to a 
given primary CDN i. For example, request to CDN B for 
CDN A’s content can be denoted as λB,A. 

Inside each request stream, there is FCFS service. Each 
request stream is assigned a priority. Here, p = 1,2,…,P 
priority classes of user-requests are assumed. A peer always 
prioritizes requests from a given primary CDN over its own 

user requests. However, if a redirected request (higher priority) 
arrives to a peer when its own user request (lower priority) is 
being served, it never interrupts the current service. Thus, this 
priority discipline is non-preemptive during service quantum 
of user requests. In addition, no redirection is assumed until 
primary CDN’s load reaches a threshold load (ρ = 0.5). The 
redirection policies used are: uniform (ULB), minimum 
waiting time (MLB), probabilistic (PLB) and weighted 
(WLB). 

Waiting Time 
The classical result [6] for non-preemptive head-of-the-line 

(HOL) priority queue can be used to find the waiting time for 
the p-th (p = 1,2,…,P) priority user request: 

)1)(1( 1

0

+−−
=

pp
p

WW
σσ

,   where ∑
=

=
P

pi
ip ρσ  (1)

W0 is the average delay to a particular priority user request 
due to other requests found in service. It can be expressed as: 
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where E[Xi
2] is the second moment of service time for a 

customer from class i [10]. 
Let us assume that the user requests for the primary CDN 

belongs to the p-th priority class. The Laplace transform of the 
waiting time for the primary CDN is denoted as W*

p(s). Using 
the known solution from [6] for the distribution of waiting 
time for each priority group in a priority queue, it can be 
expressed as, 
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Similarly, for any peer with the priority in the range 
1,2 ...,(p-1) the Laplace transform of waiting time is found by, 
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Here, G*
p(s) is the transform for the M/G/1 busy period 

distribution for a p-priority class, which is expressed as, 
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QoS Performance 
The P.D.F of the waiting time distribution, through 

numerical inversion, is used to observe the expected waiting 
time. As a primary CDN’s request has priority over any peer’s 
own user requests, we use equation (2) for a primary CDN, 
and ideally use equation (3) for any peering CDN. Though 
these equations are useful for computation, the iterative 
expression for G*

i(s) in (4) is impossible to invert numerically. 
Therefore, the waiting time experienced by a primary CDN’s 
user requests is found using (2), while (1) is used to find the 
average expected waiting time for a peer’s user requests. 

V. RESULTS 

For our experiments, we consider a system consisting of 
three peering CDNs, as shown in Figure 4. We assume that all 
peers hold the content required to serve redirected requests 
from a given CDN acting as a primary. In this figure, CDN 1 is 
shown as a primary, while CDN 2 and CDN 3 are acting as 



peers. However, these roles may change over time, as the roles 
are dynamic and interchangeable depending on load. 
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Figure 4: A reference peering scenario. 

Each CDN is modeled as an M/G/1 queue with highly 
variable Hyper-exponential distribution that approximates a 
heavy-tailed Bounded Pareto service distribution (α, k, p) with 
variable task sizes. CDNs are arranged according to a non-
preemptive HOL priority queuing system. We assume that 
priority is known upon request arrival at a CDN and that 
requests are discriminated on the basis of known priority. 
Thus, an incoming request (with priority p) joins the queue 
behind all other requests with priorities less than or equal to p 
and in front of all the user requests with priority greater than p. 

Table 1. Workload model. 

Category Service 
Distribution 

P.D.F  Range Parameters

Primary 
CDN, 
0.1≤ρ≤0.9 

Hyper-
exponential 

hn(t) 
approximating 
f(x)  

 x ≥ k α = 1.5 
k = 1010.15
p = 1010 

Peer 1,  
ρ = 0.5 

Hyper-
exponential 

hn(t) 
approximating 
f(x) 

 x ≥ k α = 1.5 
k = 1010.15
p = 1010 

Peer 2,  
ρ = 0.4 

Hyper-
exponential 

hn(t) 
approximating 
f(x) 

 x ≥ k α = 2 
k = 1500.23
p = 1010 

The workload model reflects the highly variable and self-
similar nature of Web access. Peer 1 and peer 2 are set to ρ = 
0.5 and ρ = 0.4 respectively. These light loads on the peers 
help to emphasize the performance of a given primary CDN in 
a peering relationship by tuning its load (0.1 ≤ ρ ≤ 0.9). Table 
1 shows the distributions, probability density functions and 
parameter ranges for the workload model. For our 
experiments, we consider the expected waiting time as an 
important parameter to evaluate the performance of a given 
primary CDN. We also assume an SLA of serving all user 
requests by the primary CDN in less than 20000 time units. 
A. QoS Performance of the Primary CDN 

The C.D.F of the waiting time distribution of the primary 
CDN can be used as a QoS performance metric due to the 
highly variable nature of the request workload. The waiting 
time corresponds to the time elapsed by a user request before 
being served by the CDN. Figure 5 shows the C.D.F of waiting 
time of the primary CDN (CDN 1 in this case) at different 
loads, with and without peering. From the figure we see that 
for a load ρ = 0.6, in the non-peering case, there is about 55% 
probability that users will have a waiting time less than the 
threshold of 20000 time units, whereas peering ensures 80% 
probability. Therefore, the primary CDN achieves a QoS 
performance improvement of about 31% through peering. 
Again, for a moderate load ρ = 0.7, there is about 50% 
probability and about 81% probability that users will have 

waiting time below the threshold, in non-peering and peering 
respectively. Thus, it leads to a performance improvement of 
about 38%. Similarly, for a heavy load ρ = 0.9, the probability 
in non-peering is about 24%, which is increased to 70% in the 
peering case, providing a performance improvement of about 
65%. Moreover, for loads ρ > 0.9, still higher improvement 
can be predicted using the model. Based on these observations, 
we posit that peering between CDNs, irrespective of any 
particular request-redirection policy, achieves substantial QoS 
performance improvement over the non-peering case. 
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Figure 5: CDF of waiting time of the primary CDN. 

B. Impact of Request-Redirection 
Without request-redirection, when a given primary CDN’s 

load approaches to 1.0, the user perceived performance on a 
given primary CDN tends to infinity. With redirection, the 
waiting time of the primary CDN decreases as excess requests 
are offloaded to the peers. However, request-redirection may 
lead to temporary overload on certain peer(s). 
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Figure 6: Impact of request-redirection on waiting time. 

Figure 6 shows the performance improvement (in terms of 
waiting time) the primary CDN gains for different request-
redirection policies. Here, we compare the waiting time as a 



function of system load. It can be noted that a weighted 
average value of waiting time is presented to capture the effect 
of request-redirection. For all the four policies mentioned 
earlier, we observe that substantial performance improvement 
is achieved in the waiting time when compared to the non-
peering case. ULB, PLB and WLB request-redirection policies 
distribute redirected requests among peers according to certain 
percentages. Therefore, to some extent they exhibit similar 
characteristics. In our experiments, ULB uses 50%-50% 
distribution of redirected requests to peer 1 and peer 2. The use 
of MLB by the dispatcher assigns all the redirected requests to 
peer 2, which has the minimum expected waiting time. Hence, 
no redirected request is assigned to peer 1. When the 
dispatcher uses PLB, it leads to a distribution of 40%-60% to 
peer 1 and peer 2 respectively. A dispatcher following the 
WLB policy assigns 80% of redirected requests to peer 2 (with 
minimum expected waiting time) and 20% to peer 1.  

Table 2: Reduction on waiting time under different redirection policies. 

Load on primary CDN Reduction in waiting time % 
 ULB MLB PLB WLB 

Fair load, ρ = 0.6 43.20% 44.41% 43.66% 44.24%
Moderate load, ρ = 0.7 66.31% 69.31% 67.50% 68.91%
Heavy load, ρ = 0.9 90.52% 93.70% 91.94% 93.39%

Table 2 summarizes the reduction of waiting time for the 
primary CDN in peering for different request-redirection 
policies. Interestingly, results for MLB follow more or less 
similar trend as other three policies and show good enough 
performance due to light loads on peers. However, in MLB, 
there is the risk that the peer with minimum expected waiting 
time could become overloaded with the redirected requests 
(herd effect). From the results, it is clear that all the request-
redirection policies produce a maximum waiting time less than 

20000 time units. This confirms that redirecting only a certain 
fraction of requests reduces instability and overload in the 
system because the peers are not overwhelmed by bursts of 
additional requests. 
C. Measurement Errors 

The dispatcher makes its redirection decision based on the 
measured value of a given primary CDN’s load. So far we 
have assumed that perfect information is available for this 
decision. However, the dispatcher can have inaccurate load 
information due to delays in receiving the measurements. 
Therefore, in this section we study the impact of measurement 
errors on the effectiveness of the redirection policies. Let us 
denote the measured load of the primary CDN as ρ̃= λ̃E[X], 
where λ̃= λ(1±ε) and ε is the percentage of the correct load ρ. 

Figure 7 shows the impact of load measurement error on the 
waiting time for different request-redirection policies. Each 
curve in the figure denotes an average waiting time over all the 
requests for different primary CDN load ρ, and the x-axis 
denotes the measurement error ε, in percent of ρ. In all the four 
cases, for measurement error ε > 0, the dispatcher assumes the 
primary CDN’s load to be higher than what it is and hence it 
redirects more requests than the actual load. These extra 
redirections introduce additional waiting time for the user 
requests and causes the waiting time to increase linearly from ε 
= 0. For negative ε, the dispatcher assumes the primary CDN’s 
load to be less than the actual and hence redirects 
pessimistically. As a result, requests on the primary CDN 
experience greater expected waiting time for being processed. 
However, the average of waiting time normalizes it to keep the 
performance at an acceptable level. It is also observed that in 
the same scenario, users experience is poorer under positive 
values of ε when compared to negative ε. We thus conclude 
that greater accuracy is needed in load measurement of the 
primary CDN.

10000

14000

18000

22000

26000

-10 -5 0 5 10

Measurement error ε [%]

W
ai

tin
g 

Ti
m

e 
(T

im
e 

U
ni

ts
)

ρ = 0.6
ρ = 0.7
ρ = 0.9

            

10000

14000

18000

22000

26000

-10 -5 0 5 10

Measurement error ε [%]

W
ai

tin
g 

Ti
m

e 
(T

im
e 

Un
its

)

ρ = 0.6
ρ = 0.7
ρ = 0.9

 
            (a) ULB                                (b) MLB 

10000

14000

18000

22000

26000

-10 -5 0 5 10

Measurement error ε [%]

W
ai

tin
g 

Ti
m

e 
(T

im
e 

Un
its

)

ρ = 0.6
ρ = 0.7
ρ = 0.9

             

10000

14000

18000

22000

26000

-10 -5 0 5 10

Measurement error ε [%]

W
ai

tin
g 

Ti
m

e 
(T

im
e 

Un
its

)

ρ = 0.6
ρ = 0.7
ρ = 0.9

 
                     (c) PLB                                       (d) WLB 

Figure 7: Waiting time for load measurement errors ε for different redirection policies. 



VI. CRITICAL EVALUATION 

Although our approach can be assistive for peering between 
CDNs, there are a number of challenges, both technical and 
non-technical (i.e. commercial and legal), that could hinder its 
rapid growth. These challenges must be dealt to promote CDN 
peering. For CDNs to peer, they need a common protocol to 
define the technical details of their interaction as well as the 
duration and QoS expected during the peering period. The 
proprietary nature of a CDN to gain competitive advantage in 
the market may block off the nascence of peering CDNs in 
commercial domain. Furthermore, there can often be complex 
legal issues involved (e.g. embargoed or copyrighted content) 
that could prevent CDNs from arbitrarily cooperating with 
each other. Finally, there may simply be no compelling 
commercial reason for a large CDN provider such as Akamai 
to participate in CDN peering, given the competitive 
advantage that its network has the most pervasive geographical 
coverage of any commercial CDN provider. However, it is 
expected that our approach can be beneficial and applicable in 
research-based academic CDN domain where the main focus is 
not on whether such peering will emerge in reality, which 
mostly depends on the key players in commercial CDNs 
domain that we cannot divine, but rather on whether such 
peering could emerge. 

Although the performance models in this context are 
simplified in order to accommodate the system complexities, 
we believe that our models provide a foundation for 
performing effective peering between CDNs though achieving 
target QoS in service delivery to end-users. Since the peering 
CDNs retain load-balancing control within their own Web 
server sets, using our approach a primary CDN can realize the 
QoS performance it can provide to the end-users, without 
requiring individual partners to provide expected service 
performance from it. Our model-based approach is important, 
since having each CDN provider communicate how it would 
service millions of potential end-users, would introduce 
significant scalability issues, and requesting this information 
from each partnering provider at the user requests time would 
introduce substantial delays. Thus, we believe that our 
approach seeks to achieve scalability for a CDN in a user 
transparent manner. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented an innovative analytical 
model for peering CDNs. In this model, an overloaded CDN is 
stabilized by offloading a fraction of the incoming content 
requests to the peers. Through the presented performance 
models we have demonstrated the effects of peering and 
predicted end-user perceived performance from a given CDN. 
We have also showed that it is easier to meet QoS goals using 
peering between CDNs, and that any resulting system is more 
resilient to flash or periodic crowds. Our model-based 
approach can be used within a live system so that load 
distribution decisions can be evaluated in the model prior to 
deployment, improving scalability and reducing reliance on 
outdated load information. Our approach seeks to achieve 
scalability for a CDN in a user transparent manner. 

Our future work1 includes performing an advanced system 
analysis to study the impact of other performance parameters 
such as network latency and cost of peering. In this regard, we 
would like to perform realistic experiments in the real-world 
settings, such as PlanetLab, to validate the methodology 

                                                           
1 For more information on our efforts on peering CDNs, please visit 

the project Web site at: http://www.gridbus.org/cdn  

presented in this paper. Our future work also includes 
developing a proof-of-the-concept implementation for 
demonstrating the real-time application of our approach for 
peering between CDNs.  

We expect that our methodology for modeling peering 
CDNs and predicting performance of a given CDN provider in 
a peering arrangement will be a timely contribution to the 
current content networking trend.  
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