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Budget-Driven Scheduling of Scientific Workflows in IaaS Clouds
with Fine-Grained Billing Periods

MARIA A. RODRIGUEZ and RAJKUMAR BUYYA, The University of Melbourne

With the advent of cloud computing and the availability of data collected from increasingly powerful scien-
tific instruments, workflows have become a prevailing mean to achieve significant scientific advances at an
increased pace. Scheduling algorithms are crucial in enabling the efficient automation of these large-scale
workflows, and considerable effort has been made to develop novel heuristics tailored for the cloud resource
model. The majority of these algorithms focus on coarse-grained billing periods that are much larger than
the average execution time of individual tasks. Instead, our work focuses on emerging finer-grained pricing
schemes (e.g., per-minute billing) that provide users with more flexibility and the ability to reduce the in-
herent wastage that results from coarser-grained ones. We propose a scheduling algorithm whose objective
is to optimize a workflow’s execution time under a budget constraint; quality of service requirement that
has been overlooked in favor of optimizing cost under a deadline constraint. Our proposal addresses funda-
mental challenges of clouds such as resource elasticity, abundance, and heterogeneity, as well as resource
performance variation and virtual machine provisioning delays. The simulation results demonstrate our
algorithm’s responsiveness to environmental uncertainties and its ability to generate high-quality schedules
that comply with the budget constraint while achieving faster execution times when compared to state-of-
the-art algorithms.
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1. INTRODUCTION

Scientific workflows describe a series of computations that enable the analysis of data
in a structured and distributed manner. They have been successfully used to make
significant scientific advances in various fields such as biology, physics, medicine, and
astronomy [Gil et al. 2007]. Their importance is exacerbated in today’s big data era, as
they become a compelling mean to process and extract knowledge from the ever-growing
data produced by increasingly powerful tools such as telescopes, particle accelerators,
and gravitational wave detectors. Due to their large-scale, data, and compute-intensive
nature, scheduling algorithms are key to efficiently automating their execution in
distributed environments and, as a result, to facilitating and accelerating the pace of
scientific progress.
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The emergence of cloud computing has brought with it several advantages for the de-
ployment of large-scale scientific workflows. In particular, Infrastructure as a Service
(IaaS) clouds allow workflow management systems to access a virtually infinite pool
of resources that can be acquired, configured, and used as needed and are charged on
a pay-per-use basis. IaaS providers offer virtualized compute resources called Virtual
Machines (VMs) for lease. They have a predefined CPU, memory, storage, and band-
width capacity, and different resource bundles (i.e., VM types) are available at varying
prices. They can be elastically acquired and released and are generally charged per
time frame or billing period. While VMs deliver the compute power, IaaS clouds also
offer storage and networking services, providing the necessary infrastructure for the
execution of workflow applications.

The adoption of cloud computing for scientific workflow deployment has led to exten-
sive research on designing efficient scheduling algorithms capable of elastically utiliz-
ing VMs. This ability to modify the underlying execution environment is a powerful tool
that allows algorithms to scale the number of resources to achieve both performance
and cost efficiency. However, this flexibility is limited when coarse-grained billing pe-
riods such as hourly billing are enforced by providers. As the average execution time
of workflow tasks is considerably smaller than a billing cycle, algorithms are obliged
to focus on maximizing the usage of time slots in leased VMs as a cost-controlling
mechanism. This not only restricts the degree of scalability in terms of resources but
also leads to inevitable wastage as idle time slots will naturally occur due to perfor-
mance restrictions and dependencies between tasks. This coarse-grained billing period
is assumed by the majority of existing algorithms dealing with resource provisioning
and scheduling in clouds. Instead, our work targets emerging pricing models that are
designed to give users more flexibility and reduce wastage by offering fine-grained
charging periods such as per-minute billing. Under this model, algorithms can more
freely take advantage of the cloud’s resource abundance, and, as a result, more aggres-
sive dynamic scaling policies are needed. The potential of using a different VM for each
workflow task emphasizes the importance of making accurate resource provisioning
decisions that are not only guided by the scheduling objectives but also by character-
istics inherent to clouds such as resource performance variation and a non-negligible
VM provisioning delay.

The utility-based pricing model offered by cloud providers means that finding a trade-
off between cost and performance is a common denominator for scheduling algorithms.
This is done mostly by trying to minimize the total infrastructure cost while meeting
a time constraint or deadline. Only a small fraction of techniques focus on scheduling
under budget constraints. Most of them are based on computationally intensive meta-
heuristic techniques that do not scale well with the number of tasks in the workflow
and that produce a static schedule unable to adapt to the inherent dynamicity of cloud
environments. Others include a deadline constraint that guides the optimization pro-
cess, and the budget is only taken into consideration when deciding the feasibility of
a potential schedule. Contrary to this, we propose a budget-driven algorithm whose
objective is to optimize the way in which the budget is spent so that the makespan (i.e.,
total execution time) of the application is minimized. It includes a budget distribution
strategy that guides the individual expenditure on tasks and makes dynamic resource
provisioning and scheduling decisions to adapt to changes in the environment. Also,
to improve the quality of the optimization decisions made, two different mathematical
models are proposed to estimate the optimal resource capacity for parallel tasks de-
rived from data distribution structures. Our simulation results demonstrate that our
algorithm is scalable, adaptable, and capable of generating efficient schedules with
high quality in terms of meeting the budget constraint with lower makespans when
compared to state-of-the-art algorithms.
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The rest of this article is organized as follows. Section 2 presents the related work
followed by the application and resource models in Section 3. Section 4 explains the
proposed resource provisioning and scheduling algorithm. Section 5 presents the ex-
perimental setup and the evaluation of our solution. Finally, conclusions and future
work are outlined in Section 6.

2. RELATED WORK

Our work is related to algorithms for workflow scheduling in IaaS clouds capable
of elastically scaling resources. The Partitioned Balanced Time Scheduling (PBTS)
algorithm [Byun et al. 2011] divides the execution of the workflow into time partitions
the size of the billing period. Then, it optimizes the schedule of the tasks in each
partition by estimating the minimum number of homogeneous VMs required to finish
them on time. It differs from our solution in that we do not assume tasks can finish
within one billing period, and we consider VM types with different characteristics and
prices. SCS [Mao and Humphrey 2011] and Dyna [Zhou et al. 2016] are other algorithms
with an auto-scaling mechanism to dynamically allocate and deallocate VMs based on
the current status of tasks. They differ from our proposal as they consider dynamic and
unpredictable workloads of workflows and assume an hourly billing period. Designed to
schedule a single workflow while dynamically making resource provisioning decisions
are the heuristics proposed by Poola et al. [2014] and Wang et al. [2014]; however,
they also assume a pricing model based on an hourly rate. Furthermore, all of the
mentioned algorithms have different objectives to our solution, as they aim to minimize
the execution cost while meeting a deadline constraint.

The Dynamic Provisioning Dynamic Scheduling (DPDS) algorithm [Malawski et al.
2012] is another strategy that dynamically scales the VM pool and was designed to
schedule a group of interrelated workflows (i.e., ensembles) under budget and deadline
constraints. It does so by creating an initial pool of homogeneous VMs with as many
resources as allowed by the budget and updating it at runtime based on a utilization
measure estimated using the number of busy and idle VMs. DPDS differs from our work
in several aspects; mainly, its provisioning strategy is suited for coarse-grained periods
and we focus on scheduling a single workflow without considering a deadline constraint.

Only a few algorithms targeting IaaS clouds consider a budget constraint as part of
their objectives. The Static Provisioning Static Scheduling (SPSS) algorithm [Malawski
et al. 2012] considers the scheduling of workflow ensembles under deadline and bud-
get constraints. The deadline guides the scheduling process of individual workflows by
assigning sub-deadlines to tasks. These are then assigned to VMs that can complete
their execution on time with minimum cost. This process is repeated until all the work-
flows have been scheduled or the budget has been reached. Pietri et al. [2013] proposed
SPSS-EB, an algorithm based on SPSS and concerned with meeting energy and budget
constraints. The execution of the workflow is planned by scheduling each task so the
total energy consumed is minimum, a plan is then accepted an executed only if the
energy and budget constraints are met. Our work is different from these approaches
in two aspects. First, they consider a second constraint as part of the scheduling ob-
jectives. Moreover, they make static provisioning and scheduling decisions and do not
account for VM provisioning and deprovisioning delays or performance degradation.

A dynamic budget-aware algorithm capable of making auto-scaling and scheduling
decisions to minimize the application’s makespan is presented by Mao and Humphrey
[2013]. However, they consider an hourly budget instead of a budget constraint for the
entire workflow execution and aim to optimize the execution of a continuous workload
of workflows. Similarly to our work, the Critical-Greedy [Wu et al. 2015] algorithm
considers a financial constraint while minimizing the end-to-end delay of the workflow
execution. However, it does not include billing periods on its cost estimates and hence
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considers VMs priced per unit of time. Also, the output of the algorithm is a task to VM
type mapping and the authors do not propose a strategy to assign the tasks to actual
VMs while considering their startup time and performance degradation.

The Revised Discrete Particle Swarm Optimization (RDPSO) algorithm [Wu et al.
2010] uses a technique based on particle swarm optimization to produce a near-optimal
schedule that minimizes either cost or time and meets constraints such as deadline
and budget. In contrast to our approach, the algorithm is based on a computation-
ally intensive meta-heuristic technique that produces a globally optimized schedule.
ScaleStar [Zeng et al. 2012] is another algorithm that considers a budget constraint.
Similarly to our approach, it aims to minimize the makespan of the workflow. However,
although it explicitly considers billing periods of one hour, their total execution cost
calculation does not consider the fact that partial utilization of VMs is charged as full
time utilization. These algorithms also differ from our solution in that they produce
static schedules and assume a finite set of VMs is available as input.

Malawski et al. [2015] present a mathematical model that optimizes the cost of
scheduling workflows under a deadline constraint. As opposed to our algorithm, it
considers a multi-cloud environment where each provider offers a limited number of
VMs billed per hour. They group tasks on each level based on their computational cost
and input/output data and schedule these groups instead of single tasks. They achieve
this by modeling the problem as a mixed integer program, which differs from ours as it
generates a static schedule for the entire workflow as opposed to a resource provisioning
plan for a subset of the workflow tasks. Genez et al. [2012] also formulate the problem
of scheduling a workflow on a set of subscription-based and on-demand instances as
an integer program. However, the output of their model is a static schedule indicating
the mapping of tasks to VMs as well as the time when they are meant to start their
execution. This limits the scalability of the algorithm, as the number of variables and
constraints in the formulation increases rapidly with the number of cloud providers,
maximum number of VMs that can be leased from each provider, and the number of
tasks in the workflow.

3. APPLICATION AND RESOURCE MODELS

This work is designed to schedule scientific workflows composed of tasks that are
computationally and data intensive. Specifically, we consider workflows modeled as
Directed Acyclic Graphs (DAGs); that is, graphs with directed edges and no cycles
or conditional dependencies. Formally, a workflow W is composed of a set of tasks
T = {t1, t2, . . . , tn} and a set of edges E. An edge eij = (ti, tj) exists if there is a data
dependency between ti and tj , case in which ti is said to be the parent task of tj and tj
the child task of ti. Based on this, a child task cannot run until all of its parent tasks
have completed their execution and its input data are available in the corresponding
compute resource. The amount of input data required by task t is defined as din

t , and
the amount of output data it produces as dout

t .
We define the sharing of data between tasks to take place via a global storage system

such as Amazon S3 [Google 2015a]. In this way, tasks store their output in the global
storage and retrieve their inputs from the same. This model has two main advantages.
First, the data are persisted and, hence, can be used for recovery in case of failures.
Moreover, unlike a peer-to-peer model where VMs need to remain active until all
of the child tasks have received the corresponding data, a shared storage enables
asynchronous computation as the VM running the parent task can be released as soon
as the data are persisted in the storage system.

We assume a pay-as-you go model where VMs are leased on-demand and are
charged per billing period τ . We acknowledge that any partial utilization results in
the VM usage being rounded up to the nearest billing period. Nonetheless, we focus on
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fine-grained billing periods such as one minute, as offered by providers such as Google
Compute Engine Google [2015c] and Microsoft Azure Microsoft [2015]. We consider a
single cloud provider and a single data center or availability zone. In this way, network
delays are reduced and intermediate data transfer fees eliminated. Finally, we impose
no limit on the number of VMs that can be leased from the provider.

We acknowledge that characteristics such as multi-tenancy, virtualization, and the
heterogeneity of non-virtualized hardware in clouds result in variability in the perfor-
mance of resources [Schad et al. 2010; Ostermann et al. 2010; Gupta and Milojicic 2011;
Iosup et al. 2011; Jackson et al. 2010]. In particular, we assume a variation in the per-
formance of network resources and VM CPUs with their maximum achievable perfor-
mance being based on the bandwidth and CPU capacity advertised by the provider. Ul-
timately, this results in a degradation of data transfer times and task execution times.

The IaaS provider offers a range of VM types VMT = {vmt1, vmt2, . . . , vmtn} with
different prices and configurations. The execution time, Evmt

t , of each task on every VM
type is available to the scheduler. Different performance estimation methods can be
used to obtain this value. The simplest approach is to calculate it based on an estimate
of the size of the task and the CPU capacity of the VM type. Another valid method could
be based on the results obtained after profiling the tasks on a baseline machine. This
topic is out of the scope of this article; however, notice that our solution acknowledges
that this value is simply an estimate and does not rely on it being 100% accurate to
achieve its objectives.

VM types are also defined in terms of their cost per billing period cvmt and bandwidth
capacity bvmt. An average measure of their provisioning provvmt delay is also included as
part of their definition. We assume a global storage system with an unlimited storage
capacity. The rates at which it is capable of reading and writing are GSr and GSw,
respectively. The time it takes to transfer and write d output data from a VM of type
vmt into the storage is defined as

Nout
d,vmt = (d/bvmt) + (d/GSw). (1)

Similarly, the time it takes to transfer and read a task’s output data from the storage
to a VM of type vmt is defined as

Nin
d,vmt = (d/bvmt) + (d/GSr). (2)

As depicted in Equation (3), the total processing time PT vmt
t of task t on a VM of type

vmt is calculated as the sum of the task’s execution time and the time it takes to read
the required nin input files from the storage and write nout output files to it. Notice that
there is no need to read an input file whenever it is already available in the VM were the
task will execute. This occurs when parent and child tasks run on the same machine,

Pvmt
t = Evmt

t +
(

nin∑
i=1

Nin
di ,vmt

)
+

(
nout∑
i=1

Nout
di ,vmt

)
. (3)

The cost of using a resource rvmt of type vmt for leaser time units is defined as

Crvmt = �(provvmt + leaser)/τ� ∗ cvmt. (4)

Finally, we assume data transfers in and out of the global storage system are free of
charge, as is the case for products like Amazon S3 [Google 2015a], Google Cloud Stor-
age [Google 2015b], and Rackspace Block Storage [Rackspace 2015]. As for the actual
data storage, most cloud providers charge based on the amount of data being stored.
We do not include this cost in the total cost calculation of neither our implementation
nor the implementation of the algorithms used for comparison in the experiments. The
reason for this is to be able to compare our approach with others designed to transfer
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files in a peer-to-peer fashion. Furthermore, regardless of the algorithm, the amount
of stored data for a given workflow is most likely the same in every case or it is similar
enough that it does not result in a difference in cost.

The scheduling problem addressed in this article can then be defined as dynamically
scaling a set of resources R and allocating each task to a given resource so the total cost,

Ctotal =
|R|∑
i=1

Crvmt
i

, (5)

is less than or equal to the workflow’s budget β while minimizing the makespan of the
application.

4. PROPOSED APPROACH

We propose a budget-driven algorithm called BAGS in which different resource pro-
visioning and scheduling strategies are used for different topological structures. This
is done by partitioning the DAG into bags of tasks (BoTs) containing a group of par-
allel homogeneous tasks, parallel heterogeneous tasks, or a single task. This strategy
derives from the observation that large groups of parallel tasks is a common occur-
rence in scientific workflows, and, as a result, we aim to optimize their execution as an
attempt to generate higher-quality schedules while maintaining the dynamicity and
adaptability of the algorithm to the underlying cloud environment.

More specifically, our strategy identifies sets of tasks that are at the same level in the
DAG and are guaranteed to be ready for execution at the same time. This may happen
when they are at the entry level of the workflow and have no parent tasks dictating the
time of their execution or when they share a single parent task that distributes data to
them. Figure 1 shows examples of these BoTs in five well-known scientific workflows.
Any task that does not meet any of the above requirements is categorized as a single
task, or, as we will refer to from now on, a bag with a single task. Each BoT is then
scheduled using different strategies tailored for its particular characteristics.

Our algorithm consists of four main stages. The first one is an offline strategy that
partitions the DAG into BoTs prior to its execution. The second one is an online budget
distribution phase repeated throughout the execution of the workflow. It assigns a
portion of the remaining budget to the tasks that have not been scheduled yet. The
third stage is responsible for creating a resource provisioning plan for BoTs as their
tasks become available for execution. Finally, ready tasks are scheduled and executed
based on their corresponding provisioning plan. Each of these phases is explained in
detail in the following sections.

4.1. DAG Preprocessing

This stage is responsible for identifying and partitioning the DAG into BoTs. Tasks are
grouped together if they belong to the same data distribution structure and share the
same single parent or if they are entry tasks and have no parent tasks associated with
them. If a task does not meet any of these requirements, then it is placed on its own,
single-task bag. BoTs with multiple tasks are further categorized into two different
classes. The first category is groups of parallel homogeneous tasks, that is, all tasks in
the bag are of the same type in terms of the computations they perform. The second
one is composed of groups of heterogeneous tasks.

Hence, the preprocessing stage leads to the identification of the following sets:

—BoThom = {bot1, bot2, . . . , botn}: Set of bags of homogeneous tasks,
—BoThet = {bot1, bot2, . . . , botm}: Set of bags of heterogeneous tasks,
—BoTsin = {bot1, bot2, . . . , bots}: Set of bags containing a single task.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 5, Publication date: May 2017.



Budget-Driven Scheduling of Scientific Workflows in IaaS Clouds 5:7

Fig. 1. Examples of BoTs in five well-known scientific workflows. Tasks not belonging to a homoge-
neous or heterogeneous BoT are classified as a single-task BoT: (a) Ligo, (b) CyberShake, (c) Epigenomics,
(d) Montage, and (e) SIPHT.

4.2. Budget Distribution

The budget distribution phase assigns each individual task a portion of the budget
and ultimately determines how fast a task can be processed. Although we propose a
strategy here, it is worthwhile mentioning that this method can be easily interchanged
without altering the methodology of the algorithm. During this stage, the cost of a task
on a given VM type is estimated using the following equation:

Cvmt
t = �Pvmt

t /τ� ∗ cvmt. (6)

This definition relies on our assumption of fine-grained billing periods as a task’s
execution time is likely to be close to a multiple of the billing period, and if there is spare
time, the additional cost incurred in paying for it is not significant. We do not include
the VM provisioning delay here, as the number of VMs that can be afforded to launch
will be determined by the amount of spare, or leftover, budget after this distribution.

Relying on the assumption that the more expensive the VM type the faster it is
capable of processing tasks, the first step consists in finding the most expensive (or
fastest) VM type (vmtex) where, if assigned to all tasks, their combined cost would be
equal to or less than the budget. If no such type exist, then vmtex is defined to be the
cheapest (or slowest) available VM type. If this is the case, although the estimated cost
of running the workflow tasks on the cheapest VM type is higher than the budget, then
we do not conclude the budget is insufficient to run the workflow, as at this stage we
are overestimating the cost by assuming that VMs are not reused. This does, however,
mean that there will be no spare budget to lease VMs, and the algorithm will be forced
to re-use existing ones. Additionally, before accepting a budget plan that is higher than
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ALGORITHM 1: Budget Distribution
1: procedure DISTRIBUTEBUDGET(β,T )
2: levels = DAG levels
3: Find fastest VM type vmtex such that IC = ∑|T |

i=1 Cvmtex
ti ≤ β

4: if No suitable IC ≤ β is found then
5: vmtex = vmtcheapest
6: end if
7: For every l ∈ levels do l.vmtype = vmtex
8: For every t ∈ T do t.budget = Cvmtex

t
9: if IC < β then
10: spare = β − IC
11: while spare > 0 and at least one level can be upgraded do
12: for each level l ∈ levels with Tl ⊂ T tasks do
13: vmtup = next fastest vm than l.vmtype
14: Previous level cost PLC = ∑|Tl |

i=1 C
vmtl.vmtype
ti

15: New level cost NLC = ∑|Tl |
i=1 C

vmtup
ti

16: if NLC − PLC ≤ spare then
17: l.vmtype = vmtup

18: For every t ∈ Tl do t.budget = C
vmtup
t

19: Update remaining spare budget
20: end if
21: end for
22: end while
23: if spare > 0 then
24: for each level l ∈ levels do
25: βl = (|Tl|/|T |) ∗ spare
26: l.provisioningBudget = βl
27: end for
28: end if
29: end if
30: end procedure

the actual budget, the algorithm checks that the available money is at least enough
to run all of the remaining tasks in a single VM of the cheapest type, denoted as the
minimum cost plan. Further details of this heuristic are explained in Section 4.4.

After determining vmtex, each task is assigned an initial budget corresponding to
Cvmtex

t . BAGS then proceeds to distribute any spare or leftover budget by upgrading all
tasks in a level using the following top-down strategy. Iteratively and starting at the top
level of the DAG, all of the level’s tasks are assigned additional budget corresponding
to their execution on the next fastest VM type to vmtex if the total additional cost
of running all the level’s tasks on such VM type does not exceed the spare budget.
This process is repeated until no more levels can be upgraded or the spare budget is
exhausted.

Finally, any spare money left is distributed to each level for provisioning purposes.
When a task is being scheduled, this provisioning budget will determine if a new VM
can be launched or if an existing one has to be reused. The distribution is proportional
to the number of tasks in the level. Algorithm 1 depicts an overview of the budget
assignment process.

4.3. Resource Provisioning

This section explains the strategies used to create the resource provisioning plans
for each of the BoT categories. A high-level overview of the process is depicted in
Algorithm 2.
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ALGORITHM 2: Resource Provisioning
1: procedure CREATERESOURCEPROVISIONINGPLAN(bot)
2: if bot ∈ BoThom then
3: solve MILP for homogeneous bot
4: for each vmt that had at least one task assigned do
5: numTasks = number of tasks assigned to a VM of type vmt
6: numVMs = number of VMs of type vmt used
7: RPvmt = (numTasks, numVMs)
8: RPbot ∪ RPvmt
9: end for
10: else if bot ∈ BoThet then
11: solve MILP for heterogeneous bot
12: for each vm that had at least one task assigned do
13: tasks = tasks assigned to vm
14: RPvm = (tasks, vm)
15: RPbot ∪ RPvm
16: end for
17: else if bot ∈ BoTsin then
18: t = bot.task
19: vmtf ast = find fastest VM that can finish task t within bot.budget
20: if vmtf ast does not exist then
21: vmtf ast = vmtcheapest
22: end if
23: RPbot = (vmtf ast)
24: end if
25: return RPbot
26: end procedure

4.3.1. Bags of Homogenous Tasks. The resource capacity for bags of homogenous tasks
is estimated using mixed integer linear programming (MILP). The MILP model was
designed to provide an estimate of the number and types of VMs that can be afforded
with the given budget so the tasks are processed with minimum makespan. The sim-
plicity of the model was a main design goal, as a solution for large bags needs to be
provided in a reasonable amount of time.

We recognize that although tasks are homogenous, their computation time may differ
as the size of their input and output data may vary. For this reason, and to keep the
MILP model simple, we assume all tasks in the bag take as long to process as the most
data intensive task. That is, the task that uses and produces the most amount of data
out of all the ones in the bag.

The following notation is used to represent some basic parameters used in the model:

—n: number of tasks in the bag,
—β: available budget to spend on the bag. The budget for a multi-task BoT is defined

as the sum of the budgets of the individual tasks contained in the bag. If there is
any spare budget assigned to the DAG level to which the tasks belong to, then this
is added to the BoT budget as well,

—IntTol: refers to the MILP solver integrality tolerance. It specifies the amount by
which an integer variable in the MILP can differ from an integer and still be consid-
ered feasible.

The following data sets representing the cloud resources are used as an input to the
program:

—VMT: set of available VM types,
—VMvmt: set of possible VM indexes for type vmt. Represents the number of VMs of the

given type that can be potentially leased from the provider and ranges from 1 to n.
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Each VM type is defined by the following characteristics:

—cvmt: cost per billing period of VM type vmt ∈ VMT,
—provvmt: provisioning delay of a VM of type vmt ∈ VMT,
—pvmt

tdi
: processing time as calculated in Equation (3) of the most data intensive task

tdi ∈ BoT in VM type vmt ∈ VMT.

The following variables are used to solve the problem:

—M: makespan,
—Nvmt,k: integer variable representing the number of tasks assigned to the kth VM

(k ∈ VMvmt) of type vmt,
—Lvmt,k: binary variable taking the value of 1 if and only if the kth VM (k ∈ VMvmt) of

type vmt is to be leased, 0 otherwise,
—Pvmt,k: integer variable indicating the number of billing periods the kth VM (k ∈ VMvmt)

of type vmt is used for.

The total number of time units the kth VM (k ∈ VMvmt) of type vmt is used for is
defined as

U hom
vmt,k = (pvmt

tdi
∗ Nvmt,k) + (provvmt ∗ Lvmt,k) (7)

and the total execution cost as

Cbotl =
∑

j∈VMT

∑
k∈VMj

Pvmt,k ∗ cvmt. (8)

The MILP is formulated as follows:

Minimize M Subject to:

M − Uvmt,k ≥ 0
∀ vmt ∈ VMT, ∀ k ∈ VMvmt,

(C1)

∑
j∈VMT

∑
k∈VMTj

Nvmt,k = n, (C2)

Nvmt,k ≥ Lvmt,k

∀ vmt ∈ VMT, ∀ k ∈ VMvmt,
(C3)

Nvmt,k ≤ n ∗ Lvmt,k

∀ vmt ∈ VMT, ∀ k ∈ VMvmt,
(C4)

Uvmt,k/τ ≤ Pvmt,k

∀ vmt ∈ VMT, ∀ k ∈ VMvmt,
(C5)

(Uvmt,k/τ ) + (1 − IntTol) ≥ Pvmt,k

∀ vmt ∈ VMT, ∀ k ∈ VMvmt,
(C6)

Cbot ≤ β. (C7)

Constraint (C1) defines the BoT makespan as the longest time any of the leased VMs
is used for. Constraint (C2) ensures all the tasks are processed. Constraints (C3) and
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(C4) defines if a VM is leased based on the number of tasks assigned to it. Constraints
(C5) and (C6) define the number of billing periods a VM is charged for by rounding up
to the nearest integer the amount of time units the VM is used for. Finally, Constraint
(C7) ensures the total cost does not exceed the budget.

After solving the problem, the variable Nvmt,k is transformed into a resource provi-
sioning plan of the form RPhom

vmt = (NumVms, NumTasks) for each VM type that has
at least one task assigned to it. NumVms indicates the number of VMs of type vmt to
lease and NumTasks the number of tasks that need to be processed by these VMs.

4.3.2. Bags of Heterogenous Tasks. The strategy used to plan the resource provisioning
of heterogeneous tasks bags is also based on MILP. The model is similar to that of
homogenous tasks. An additional set Tbot = {t1, t2, . . . , tn} representing the tasks in
the bag is included. The processing time of each task t ∈ bot on each VM type vmt
is represented by the parameter pvmt

t . The binary variable At,vmt,k is used to solve the
problem in addition to M, Lvmt,k, and Pvmt,k. At,vmt,k takes the value of 1 if and only if
task t is allocated to the kth VM of type vmt.

The total number of time units the kth VM (k ∈ VMvmt) of type VMT is used for is
defined as

U het
vmt,k =

∑
tinTbot

(pvmt
t ∗ At,vmt,k) + (provvmt ∗ Lvmt,k), (9)

and the total execution cost is defined by Equation (8).
The MILP is formulated in the same way as in Section 4.3.1 with the following

differences:

—Constraint (C2) is reformulated to ensure that all the tasks are processed and that
each task is assigned to a VM only once,∑

j∈VMT

∑
k∈VMTj

At,vmt,k = 1

∀ t ∈ Tbot.

(C2)

—Constraints (C3) and (C4) are reformulated in terms of the variable At,vmt,k,∑
t∈Tbot

At,vmt,k ≥ Lvmt,k

∀ vmt ∈ VMT, ∀ k ∈ VMvmt,

(C3)

∑
t∈Tbot

At,vmt,k ≤ n ∗ Lvmt,k

∀ vmt ∈ VMT, ∀ k ∈ VMvmt.

(C4)

After solving the problem, the variable At,vmt,k is transformed into a resource pro-
visioning and scheduling plan of the form RPhet

vm = (vm, Tvm ⊂ Tbot) for each VM that
had at least one task assigned to it. Notice that this provisioning plan determines the
actual machines to use and the tasks that they are required to run, as opposed to just
indicating the number and type of VMs to use. Due to the complexity of the MILP,
heterogenous BoTs are limited in size to a constant Nhet

bot . This constant is provided as
a parameter to the algorithm and ensures the proposed MILP is solved in a reasonable
amount of time. Bags larger than this parameter are split so they contain at most Nhet

bot
tasks.
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4.3.3. Bags with a Single Task. This heuristic finds the fastest VM type that can be
afforded with the budget assigned to the task. This is done by estimating the runtime
of the task and its associated cost using Equation (6) on each available VM type. The
one that can finish the task with minimum time and within the budget is selected and
a resource provisioning plan of the form RPsin = (vmtfastest) is assigned to the task.

4.4. Scheduling

The scheduling is done by processing tasks that are in the scheduling queue and ready
for execution. Each time the queue is processed, a max-min strategy is used, and tasks
are sorted in ascending order based on their predicted runtime on the slowest VM type.
In this way, we ensure that larger tasks from multi-task bags are scheduled first.

For each ready task, the first step is to identify the bag bot to which it belongs to.
Afterwards, the algorithm determines if the bag bot has an active resource provisioning
plan associated to it. If such plan has not been created yet, then the budget distribution
is updated based on the remaining tasks and budget. A provisioning plan is then
created considering the type of the bag, its budget, and the spare budget assigned
to the corresponding DAG level. The latter value will determine the number of VMs
that can be launched to process the bag. Once this plan is created, all the other tasks
belonging to the bag (i.e., ∀ ti ∈ bot) will be scheduled based on it. In this way, the
mathematical models only need to be solved once for each bag, when the first task of
the bag is found in the scheduling queue.

Each active provisioning plan has a set of VMs, VMbot, that were leased to serve the
corresponding bot. This set is composed of busy VMs (VMbusy

bot ) that are running tasks
and idle VMs (VMidle

bot ) that can, and should, be reused by tasks in the bag. Once a VM
is not required to process more tasks in the bag, it is removed from VMbot and placed
in a general-purpose VM set. This set, VMidle

gp , contains idle VMs that can be reused by
any task from any bag. VMs in this set that are approaching their next billing cycle
are shut down to avoid incurring in additional billing periods.

Once bot has an associated resource provisioning plan RPbot, then the task t ∈ bot
being processed can be scheduled. For bags with a single task, the algorithm first tries
to reuse an existing VM from VMidle

gp . The purpose is to avoid the cost and time overhead
of provisioning delays, to reduce cost by using idle time slots, and to reduce the number
of data transfers to the storage by assigning tasks to VMs that contain all or some of
their input data. An idle VM is chosen if it can finish the task at least as fast as it
was expected by its provisioning plan and with a cost less than or equal to its budget.
If multiple free VMs fulfill these conditions, then the one that can finish the task the
fastest is selected. In this way, tasks are encouraged to run on the same resources as
their parent tasks, as they are expected to have smaller runtimes in VMs where their
input data are readily available. If no idle VM is found, then a new one of the type
specified by the plan is leased if the level’s spare budget allows for it. If not, then the
task is put back in the queue to be scheduled later on an existing VM that becomes
available.

Tasks belonging to bags of homogenous tasks are processed in a similar way. The
first step is to try to map the task to a free VM in VMidle

bot . VMs in this set are sorted
in ascending CPU capacity order; in this way, the most powerful VM is always reused
first. This in conjunction with the max-min strategy used to sort tasks ensures that
the largest tasks get assigned to the fastest VMs when possible. If there are no VMs
in VMidle

bot , then the algorithm tries to schedule the task on a free VM from VMidle
gp

that can finish the task for the same or a cheaper price than the most expensive VM
type in the provisioning plan. If no suitable idle VM is found, then the provisioning
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ALGORITHM 3: Scheduling
1: procedure SCHEDULEQUEUE(Q)
2: while Q is not empty do
3: t = Q.poll()
4: bot = getBoT (t)
5: if no provisioning plan RP exists for bot then
6: βr = remaining budget
7: Tr = remaining tasks
8: distributeBudget(βr, Tr)
9: update bot budget
10: update t.level spare budget
11: RPbot = createResourceProvisioningPlan(bot)
12: end if
13: if there is an idle VM vmidle

bot ∈ VMidle
bot then

14: schedule(t, vmfree
bot )

15: else if there is a suitable general purpose idle VM vmidle
gp ∈ VMidle

gp then
16: schedule(t, vmidle

gp )
17: else
18: if bot ∈ BoThom and bot.hasRemainingVMQuota() then
19: vmType = RPbot.nextVMTypeToLease()
20: vmnew = provisionVM(vmType)
21: schedule(t, vmnew)
22: else if bot ∈ BoThet then
23: vm = RPbot.getVmForTask(t)
24: if vm is not leased then
25: vm = provisionVM(vm.vmType)
26: end if
27: schedule(t, vm)
28: else if bot ∈ BoTsin and t.level spare budget is enough to lease RPbot.VMType then
29: vmnew = provisionVM(RPbot.VMType)
30: schedule(t, vmnew)
31: else
32: place t back in queue
33: end if
34: end if
35: end while
36: end procedure

plan is executed in the following way. If the number of VMs currently leased for the
provisioning plan is less than the specified one, then a new VM can be leased to run
the task. The fastest VM type of those still available is chosen. If the VM quota has
been reached and all the necessary VMs have been leased, then the task is put back in
the queue so it can be mapped to an existing VM assigned to the bot provisioning plan
during the next scheduling cycle.

Tasks from heterogeneous bags are simply scheduled onto the VM specified by their
provisioning plan. If the VM has already been leased, then the task is added to the
queue of jobs waiting to be processed by the VM. If it has not been leased, then it is
provisioned and the task assigned to it.

Finally, we define the minimum cost required to run a set of tasks T as the cost of
running all the tasks sequentially on a single VM of the cheapest type,

Cmin
T =

⎡
⎢⎢⎢

⎛
⎝ |T |∑

i=1

Pvmtcheapest
ti

⎞
⎠ /

τ

⎤
⎥⎥⎥ ∗ cvmtcheapest . (10)

Whenever Cmin
T > β or there is no feasible solution to a MILP problem, then the

minimum cost plan is put in place. This plan consists on assigning every task to a
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Table I. VM Types Based on Google Compute Engine Offerings

Name Memory Google Compute Engine Units Price per Minute
n1-standard-1 3.75GB 2.75 $0.00105
n1-standard-2 7.5GB 5.50 $0.0021
n1-standard-4 15GB 11 $0.0042
n1-standard-8 30GB 22 $0.0084

single VM of the cheapest available type. This is done with the aim of reducing cost as
much as possible until the algorithm recovers or to finish the execution of the workflow
with a cost as close to the budget as possible.

5. PERFORMANCE EVALUATION AND RESULTS

The performance of BAGS was evaluated using five well-known workflows from dif-
ferent scientific areas, each with approximately 1,000 tasks. The Montage application
from the astronomy field is used to generate custom mosaics of the sky based on a
set of input images. Most of its tasks are characterized by being I/O intensive while
not requiring much CPU processing capacity. The Ligo workflow from the astrophysics
domain is used to detect gravitational waves. It is composed mostly of CPU intensive
tasks with high memory requirements. SIPHT is used in bioinformatics to automate
search for sRNA encoding-genes. Most of the tasks in this workflow have high CPU and
low I/O utilization. Also in the bioinformatics domain, the Epigenomics workflow is a
CPU intensive application that automates the execution of various genome-sequencing
operations. Finally, CyberShake is used to characterize earthquake hazards by gener-
ating synthetic seismograms and can be classified as a data-intensive workflow with
large memory and CPU requirements. The workflows are depicted in Figure 1, and
their full description and characterization is presented by Juve et al. [2013].

An IaaS provider offering a single data center and four types of VMs was modeled
using CloudSim [Calheiros et al. 2011]. The VM configurations are based on those
offered by Google Compute Engine and are shown in Table I. A VM billing period of 60s
was used. For all VM types, the provisioning delay was set to 60s. CPU performance
variation was modeled after the findings by Schad et al. [2010]. The performance of a
VM was degraded by at most 24% based on a normal distribution with a 12% mean and
a 10% standard deviation. Based on the same study, the bandwidth available for each
data transfer within the data center was subject to a degradation of at most 19% based
on a normal distribution with a mean of 9.5% and a standard deviation of 5%. The
described CPU degradation configuration was used in all of the experiments except
those in Section 5.3 while the specified data transfer degradation was used throughout
all of the experiment sets. A global shared storage with a maximum reading and
writing speeds was also modeled. The reading speed achievable by a given transfer is
determined by the number of processes currently reading from the storage, and the
same rule applies for the writing speed. In this way, we simulate congestion when
trying to access the storage system.

The experiments were conducted using five different budgets, with βW1 being the
strictest one and βW5 being the most relaxed one. For each workflow, βW1 is equal to
the cost of running all the tasks in a single VM of the cheapest type. βW5 is the cost of
running each workflow task on a different VM of the most expensive type available. An
interval size of βint = βW5 − βW1/4 is then defined and used to estimate the remaining
budgets: βW2 = βW1 + βint, βW3 = βW2 + βint, and βW4 = βW3 + βint.

Two algorithms were used when evaluating the performance of BAGS. The first
one is called GreedyTime-CD [Yu et al. 2009] (GT-CD) and was developed for utility
grids. It distributes the budget to tasks based on their average execution times. At
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Fig. 2. Makespan and cost experiment results for the Ligo workflow.

runtime, VMs that can finish the tasks with minimum time within their budget are
selected. We adapted GT-CD to dynamically lease VMs based on a task’s assigned
budget. This auto-scaling mechanism was designed so leased VMs are reused when
possible without impacting the original schedule produced by the algorithm. The second
one is the Critical-Greedy [Wu et al. 2015] (CG) budget-constrained algorithm. It was
developed for IaaS cloud environments and makes an initial estimate of cost boundaries
for each task based on the available budget and VM types. Any additional budget is
distributed to each task based on a time and cost difference ratio. CG ignores billing
periods when calculating the cost of using a VM type, and it does not specify how to
allocate tasks to actual VMs. We adapted the algorithm to consider billing periods
when estimating the task’s cost boundaries and introduced the same VM auto-scaling
mechanism implemented for GT-CD.

5.1. Algorithm Performance

The goal of these experiments is to evaluate the performance of the algorithms in terms
of cost and makespan. The cost performance is determined by an algorithm’s ability to
meet the specified budget constraint, this is evaluated by using the workflow’s cost to
budget ratio. In this way, ratio values greater than one indicate a cost larger than the
budget, values equal to one a cost equal to the budget, and values smaller than one a
cost smaller than the budget. The experiments for each budget interval, workflow, and
algorithm were repeated 20 times. The box plots displaying the cost to budget ratios
summarize these data while the bar charts depicting the workflow’s makespan show
the mean value obtained from the data and the 95% confidence interval for the mean.
The dashed bars in the makespan bar charts indicate that the mean cost obtained by
the algorithm exceeded the corresponding budget.

The results obtained for the Ligo workflow are shown in Figure 2. BAGS is the
only algorithm capable of achieving a ratio smaller than one for all of the five budget
intervals. The mean ratio obtained by GT-CD is below one from the second to the
fifth budget intervals, while CG fails to meet the budget in all of the five cases. In
every scenario in which BAGS and GT-CD meet the budget, BAGS achieves a lower
makespan, demonstrating its ability to generate high-quality schedules.

Figure 3 depicts the results obtained for the Epigenomics application. Both BAGS and
GT-CD are successful in meeting the five budget constraints, while CG meets the last
three. BAGS always achieves the lowest makespan of those algorithms that complete
the execution within budget. These results demonstrate once again the efficiency of the
makespan-minimizing heuristics used in BAGS.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 5, Publication date: May 2017.



5:16 M. A. Rodriguez and R. Buyya

Fig. 3. Makespan and cost experiment results for the Epigenomics workflow.

Fig. 4. Makespan and cost experiment results for the Montage workflow.

The results for the Montage application are shown in Figure 4. The first budget con-
straint proves too tight for any of the algorithms to meet it. However, the ratio obtained
by BAGS is considerably smaller than the ratio obtained by the other algorithms. For
the second and third budget intervals, BAGS outperforms those algorithms capable of
meeting the budget by obtaining lower makespans. The fourth budget interval sees
GT-CD and BAGS obtain very similar average makespans, and in this case, GT-CD
obtains a lower ratio when compared to BAGS. All of the algorithms are successful in
meeting the final budget interval, with BAGS and GT-CD obtaining once again very
similar makespans that are considerably smaller than the ones obtained by CG.

The CyberShake workflow results are shown in Figure 5. The first budget constraint
is too strict for either GT-CD or CG to meet it. BAGS demonstrates its ability to deal
with unexpected delays by being the only algorithm capable of staying within this
budget. For the rest of the budget intervals, BAGS outperforms in every case the other
algorithms in terms of makespan. In the cases of βw3 and βw4 BAGS not only achieves
the fastest time but also the cheapest cost.

Figure 6 shows the results obtained for the SIPHT workflow. BAGS succeeds in
meeting the budget in every case, GT-CD meets the four most relaxed constraints, and
CG meets only the last budget interval. In all of the five scenarios, BAGS outperforms
the other algorithms by generating lower makespan schedules.
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Fig. 5. Makespan and cost experiment results for the CyberShake workflow.

Fig. 6. Makespan and cost experiment results for the SIPHT workflow.

Overall, BAGS is the most successful algorithm in meeting the budget constraints
by achieving its goal in all of the scenarios except one, the first budget interval of the
Montage workflow. Even in this case, it performs better than the other algorithms by
having a ratio value approximately 6 times smaller than that of GT-CD and CG. This
demonstrates the importance of tailoring an algorithm to consider the underlying cloud
characteristics to take advantages of the features offered by the platform and meet the
Quality of Service (QoS) requirements. The experiments also demonstrate the efficiency
of BAGS in generating higher-quality schedules by achieving a lower makespan values
in every case except one (Montage workflow, βW4). These results highlight the efficiency
of the time optimization strategies used by BAGS. Another desirable characteristic of
BAGS that can be observed from the results is its ability to consistently decrease the
time it takes to run the workflow as the budget increases. The importance of this relies
in the fact that many users are willing to trade off execution time for lower costs while
others are willing to pay higher costs for faster executions. The algorithm needs to
behave within this logic in order for the budget value given by users to be meaningful.

5.2. Provisioning Delay Sensitivity

Fine-grained billing periods encourage frequent VM provisioning operations and there-
fore, it is important to evaluate the ability of BAGS to finish the workflow execution
with a cost no greater than the given budget under different VM provisioning delays.
The delays were varied from zero to nine billing periods (540s). Figure 7 shows the
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Fig. 7. Cost to budget ratios obtained for each of the workflows with varying VM provisioning delays.

ratios of cost to budget obtained for the each of the workflow applications across all five
budgets. Identical outlier data points are displayed as a single symbol.

For the Ligo application, the mean and median ratio values remained under one
for all of the provisioning delays. However, for the last two values, 420s and 540s, the
maximum ratio value obtained is slightly higher than one. This is due to the algorithm
being unable to meet the first budget interval, as it becomes too strict for it to be
achievable with such high provisioning delays. The results for the Montage workflow
display maximum or outlier values greater than one in every case, this is inline with
what was found when analyzing the performance of the algorithms, the first budget
is too strict for BAGS to finish on time regardless of the provisioning delay. The mean
and median values, however, remain well below one in every case. For the CyberShake
application, outliers greater than one start to appear from a provisioning delay value
of 120s onwards. Once again, these ratios correspond to the strictest budget and they
increase in value as the delay increases. In the Epigenomics and SIPHT cases, all of
the ratio data points are below one, demonstrating the ability of BAGS to adapt to
increasing provisioning delays as long as the budget allows for it.

5.3. Performance Degradation Sensitivity

Recognising performance variability is important for schedulers so they can recover
from unexpected delays and fulfill the QoS requirements. The sensitivity of the algo-
rithm to VM CPU performance variation was studied by analyzing the cost to budget
ratio under different degradation values. It was modeled using a normal distribution
with a variance of 1% and different average and maximum values. The average values
were defined as half of the maximum CPU performance degradation which range from
0% to 80%.

The results obtained are depicted in Figure 8, identical outlier data points are dis-
played as a single symbol. The mean and median ratio values are under one for all of
the degradation values for the Ligo application. With an 80% maximum degradation,
however, the maximum ratio obtained is just over one and corresponds to the strictest
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Fig. 8. Cost to budget ratios obtained for each of the workflows with different CPU performance variation
values.

budget value. The results are similar for the Epigenomics application, but in this case,
a greater sensitivity to the unexpected delays is seen in the case of 80% maximum
degradation, with the median being slightly higher than one. The outliers displayed
in the Montage box plot correspond once again to the first budget, which is too strict
to be met regardless of the provisioning delay or performance variation. All the other
ratios obtained remained under one for this application. The CyberShake workflow is
more sensitive to degradation with the maximum ratio values exceeding one from 50%
onwards. These belong to the strictest budget as the mean and median values are well
below one in all of the cases. Finally, the results obtained for SIPHT demonstrate the
algorithm is capable of finishing within budget in most of the cases, except for some
outlier data points for the three greater performance variation values.

Another potential cause for exceeding the budget constraint is the fact that BAGS
creates a static provisioning plan for BoTs with multiple tasks. Although this enables
the algorithm to make better optimization decisions to minimize the makespan of
workflows, it also affects its responsiveness to changes in the environment. These
results demonstrate, however, that despite this, BAGS is still successful in achieving
its budget goal in the vast majority of cases. As a future work, a rescheduling strategy
for multi-task BoTs will be explored with the aim of further reducing the impact of
unexpected delays.

5.4. Mathematical Models Solve Time

The time taken to solve the MILP models for homogeneous and heterogeneous bags
was also studied. The number of tasks used as input to the homogeneous BoT model
was varied from 10 to 1,000 while the number of tasks for the heterogeneous BoT model
was varied from 10 to 100. For each of these values, experiments using 10 different
budget values ranging from stricter to more relaxed ones were performed. Figures 9
and 10 summarize the results obtained. Both models were formulated in AMPL and
solved using the default configuration of CPLEX.
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Fig. 9. Solve time for the homogeneous BoT MILP model. The results display the time for solving the MILP
with four different VM types and across 10 different budgets, ranging from stricter to more relaxed ones.

Fig. 10. Solve time for the heterogeneous BoT MILP model. The results display the time for solving the
MILP with four different VM types and across 10 different budgets, ranging from stricter to more relaxed
ones.

The results obtained for the homogeneous BoT case demonstrate the scalability of
the proposed model with the maximum time taken to solve the problem being approx-
imately 4.5min for 800 tasks and the largest median value being 40s for 1,000 tasks.
The performance of the heterogeneous BoT model, however, is greatly affected by the
number of tasks being scheduled. For 100 tasks, the maximum solve time obtained
is in the order of 14min, this value is too high and unpractical for our scheduling
scenario. Based on these results, the maximum number of tasks, Nhet

bot , allowed in an
heterogeneous bag was defined as 50, for which we obtained a maximum solve time of
approximately 4.5min.

6. CONCLUSIONS

BAGS, an adaptive resource provisioning and scheduling algorithm for scientific work-
flows in clouds capable of generating high-quality schedules, was presented in this
article. It has as objective minimizing the overall workflow makespan while meeting
a user-defined budget constraint. The algorithm is dynamic to respond to unexpected
delays and environmental dynamics common in cloud computing. It also has a static
component to schedule groups of tasks that allows it to find the optimal schedule for a
set of workflow tasks improving the quality of the schedules it generates.

The simulation experiments show that our solution has an overall better perfor-
mance than other state-of-the-art algorithms. It is successful in meeting the strictest
budgets under unpredictable situations involving CPU and network performance
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variation as well as VM provisioning delays. As a future work, a rescheduling strategy
for multi-task BoTs will be explored with the aim of further reducing the impact of
performance degradation. Different budget distribution strategies as well as a more
scalable heuristic to schedule heterogeneous BoTs will also be studied.
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