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Abstract—Function-as-a-Service (FaaS) introduces a
lightweight, function-based cloud execution model that finds
its relevance in a range of applications like IoT-edge data
processing and anomaly detection. While cloud service providers
(CSPs) offer a near-infinite function elasticity, these applications
often experience fluctuating workloads and stricter performance
constraints. A typical CSP strategy is to empirically determine
and adjust desired function instances or resources, known as
autoscaling, based on monitoring-based thresholds such as CPU or
memory, to cope with demand and performance. However,
threshold configuration either requires expert knowledge,
historical data or a complete view of the environment, making
autoscaling a performance bottleneck that lacks an adaptable
solution. Reinforcement learning (RL) algorithms are proven to
be beneficial in analysing complex cloud environments and result
in an adaptable policy that maximizes the expected objectives.
Most realistic cloud environments usually involve operational
interference and have limited visibility, making them partially
observable. A general solution to tackle observability in highly
dynamic settings is to integrate Recurrent units with model-free
RL algorithms and model a decision process as a Partially
Observable Markov Decision Process (POMDP). Therefore, in
this article, we investigate model-free Recurrent RL agents for
function autoscaling and compare them against the model-free
Proximal Policy Optimisation (PPO) algorithm. We explore the
integration of a Long-Short Term Memory (LSTM) network with the
state-of-the-art PPO algorithm to find that under our experimental
and evaluation settings, recurrent policies were able to capture the
environment parameters and show promising results for function
autoscaling. We further compare a PPO-based autoscaling agent
with commercially used threshold-based function autoscaling and
posit that a LSTM-based autoscaling agent is able to improve
throughput by 18%, function execution by 13% and account for
8.4% more function instances.

Index Terms—Serverless computing, function-as-a-service,
AutoScaling, reinforcement learning, constraint-awareness.

I. INTRODUCTION

THE growing popularity of event-driven application archi-
tectures fuel the increased adoption of serverless com-

puting platforms. Serverless computing introduces a cloud-
native execution model that offloads server governance tasks
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to the cloud service provider (CSP) and aims to reduce oper-
ational costs. Serverless features a variety of attributes like a
microservices-inspired architecture, high elasticity, usage-based
resource billing, and zero idle costs. Function-as-a-Service
(FaaS) is a function-based abstraction of serverless computing
that decouples an application into functions, small pieces of
business logic, that execute on a lightweight virtual machine
(VM) or container. These functions generally serve a single
purpose, run for a very short duration, and do not maintain a state
to enable faster scaling [1]. Functions can be associated with
multiple event sources such as HTTP events, database or storage
events, and IoT notifications that execute function handlers or
business logic and respond to incoming workloads.

Serverless, often used interchangeably with FaaS, has at-
tracted a wide range of application domains such as IoT services,
REST APIs, stream processing, and prediction services. These
applications may have strict availability and QoS requirements,
i.e., throughput and response time while having fluctuating re-
source requirements that uniquely affect function performance.
To address performance constraints and handle complex work-
loads, FaaS platforms heuristically spin up a new function
instance, i.e., function autoscaling, for each incoming request
and shut down the instance after service [2] to free up resources.
However, FaaS offerings such as AWS Lambda, Azure Func-
tions, Google Cloud Functions, OpenFaaS [3] and Kubeless [4]
may choose to re-use a function instance or keep the instance
running for a limited time to serve subsequent requests [5]. A
recent study [6] asserts that appropriate resource allocation, i.e.,
CPU and memory, is needed to guarantee QoS fulfillment and
improve business value in serverless computing. Autoscaling is
the process of adding or removing function(s) from a platform,
as per the demand, and has a direct correlation with platform
performance. CSPs usually employ general-purpose rule-based
or threshold-based horizontal scaling mechanisms or utilize a
pool of minimum running function(s) [7], [8] to handle function
start-up delays while serving workload.

Autoscaling provides an opportunity for CSPs to optimally
utilize their resources [9] and share unused resources in a
multi-tenant environment. However, configuring thresholds in-
volves manual tuning, expert domain knowledge, and applica-
tion context that reduces development flexibility and increases
management overhead. Since cloud workloads are highly dy-
namic and complex, threshold-based autoscaling solutions lead
to challenges like function cold starts and hysteresis [10], failing
to offer performance guarantees. A cold start is a non-negligible
function instantiation delay that is introduced before processing
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the request, while hysteresis highlights the temporal dependency
of environment states on the past. Therefore, providing an
adaptive, flexible, and online function autoscaling solution is
an opportunity to ensure efficient resource management with
performance trade-offs in serverless computing. Furthermore,
autoscaling approaches employed by existing FaaS frameworks
are excessively dependent on monitoring solutions. Although
researchers in [11] identify metric collection for thresholds as a
bottleneck for autoscaling due to significant collection delay or
unreliability, a self-corrective model is demanded to account for
underlying variations.

Autoscaling has been actively investigated in the cloud com-
puting domain [1], [10], [12], [13], [14], particularly for VMs,
and has periodically highlighted the need for appropriate re-
source scaling to minimize operational costs and improve per-
formance. Resource scaling is an NP-hard problem [9], [14] and
necessitates the realization of complex environmental factors
while balancing the system performance between QoS and
SLAs. In the past, Reinforcement Learning (RL) algorithms
have been applied in the context of VM autoscaling [9], [10],
[11], [15] and have demonstrated adaptable performance over
traditional methods in capturing the workload uncertainty and
environment complexity. But the application of RL for function
autoscaling is yet underexplored [15]. RL-based solutions are
known to interact with an environment, perform an action, learn
periodically through feedback, and account for the dynamics of
the cloud environment.

In this work, we investigate the application of Recurrent
Neural Networks (RNN), specifically Long-Short Term Memory
(LSTM) in a model-free Partially Observable Markov Deci-
sion Process (POMDP) setting for function autoscaling. Earlier
works [10], [16], [17], [18] employing RL-based autoscaling
generally model decision making as Markov Decision Process
(MDP) and fall short to discuss partial observability in realistic
environments [19], [20]. Furthermore, various existing studies
discussed in [10], [16] experiment with RL-based solutions in a
simulated FaaS environment, with the research in [11] criticizing
this methodology. Simulated FaaS frameworks generally sample
factors such as cold start and execution time from profiled
data and are insufficient to capture the variability in real en-
vironments. Therefore, we examine the integration of LSTM
with Proximal Policy Optimization (PPO), a state-of-the-art
RL algorithm, to analyze partial observability and sequential
dependence of autoscaling actions and find a balance between
conflicting CSP and user objectives. We perform experiments
with matrix multiplication function and compare LSTM-PPO
against Deep Recurrent Q-Network (DRQN) and PPO (clipped
objective) to infer that in our experimental settings, recurrent
policies capture the environment uncertainty better and show-
case promising performance in comparison to PPO and com-
mercially adopted threshold-based approaches. We make use of
OpenAI Stable Baseline’s [21] standard implementation of the
LSTM-PPO and PPO algorithms, and implement our compatible
OpenFaaS serverless environment following Gymnasium [22]
guidelines.

In summary, the key contributions of our work are:
1) We analyze the characteristics of FaaS environments to

identify and model autoscaling decisions as a POMDP.

We further hypothesise that scaling decisions have a se-
quential dependence on interaction history. We propose
a POMDP model that captures function metrics such as
CPU and memory utilization, function replicas, average
execution time and throughput ratio, as partial observa-
tions and formulate the scaling problem.

2) We investigate how function autoscaling works, highlight
the differences between contrasting approaches and in-
vestigate a Deep Recurrent RL (LSTM-PPO) autoscaling
solution to capture the temporal dependency of scaling
actions and workload complexity. We deploy the proposed
agent to the OpenFaaS framework and utilise open-source
function invocation traces [23] from a production environ-
ment to perform experiments with a matrix multiplication
function.

3) We implement a Gymnasium [22] compatible OpenFaaS
serverless environment to be integrated directly with the
proposed RL agent.

4) We perform our experiments on Melbourne Research
Cloud (MRC) and evaluate the proposed LSTM-PPO
approach against the state-of-the-art PPO algorithm,
commercially offered threshold-based horizontal scaling,
OpenFaaS’ request-per-second scaling policy, and a Deep
Recurrent Q-Network i.e., DRQN, to demonstrate LSTM-
PPO’s ability to capture environment uncertainty for effi-
cient scaling of serverless functions.

The rest of the paper is organised as follows. Section II
highlights related research studies. In Section III, we present
the system architecture and formulate the problem statement.
Section IV outlines the proposed agent’s workflow and describes
the implementation hypothesis and assumptions. In Section V,
we evaluate our technique with the baseline approaches and
highlight training results and discuss performance. Section VI
concludes the paper and highlights future research directions.

II. RELATED WORK

In this section, we summarise (see Table I) existing work on
serverless computing, autoscaling in FaaS, and the application
of RL in FaaS. We compare existing work based on their key fea-
tures and provide a detailed background on the Deep Recurrent
RL (RPPO) algorithm used in designing our autoscaling policy.

A. Serverless Computing and Function-as-a-Service

Serverless computing puts forward a cloud service model
wherein the server management or resource management re-
sponsibility lies with the CSP. In [2], the authors discuss the
potential of this new, less complex computing model introduced
by Amazon in 2014. The study briefly explains a function-
based, serverless commercial offering of AWS Lambda, i.e.,
the Function-as-a-Service platform. It highlights three primary
differences between traditional cloud computing and serverless
computing – decoupled computation and storage, code execution
without resource management, and paying in proportion to the
resources used. The research posits that the serverless or FaaS
model promotes business growth, making the use of the cloud
easier.
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TABLE I
A SUMMARY OF RELATED WORKS AND THEIR COMPARISON WITH OUR PROPOSED METHOD. H: HORIZONTAL SCALING, V: VERTICAL SCALING

Baldini et al. [27] introduce the emerging paradigm of FaaS
as an application development architecture that allows the ex-
ecution of a piece of code in the cloud without control over
underlying resources. The research identifies containers and the
emergence of microservices architecture as the promoter of the
FaaS model in serverless. The study uses FaaS and serverless
interchangeably and defines it as a ‘stripped down’ programming
model that executes stateless functions as its deployment unit.

Since the inception of serverless computing, there have been
many commercial and open-source offerings such as AWS
Lambda, Microsoft Azure Functions, Google Cloud Functions,
Fission, and OpenWhisk. These platforms represent FaaS as an
emerging technology, but Hellerstein et al. [28] put together
gaps that furnish serverless as a bad fit for cloud innovations.
The authors criticize the current developments of cloud com-
puting and state that the potential of cloud resources is yet to
be harnessed. On the contrary, the researchers in [29] argue
that the serverless offerings are economical and affordable as
they remove the responsibility of resource management and
complexity of deployments from consumers. They discuss the
opportunities offered by multiple FaaS offerings and give an
overview of other existing challenges, and indicate potential
approaches for future work.

In an article by Microsoft [30], Rosenbaum estimates that
there will be nearly 500 million new applications in the sub-
sequent five years, and it would be difficult for the current
development models to support such large expansions. FaaS
is designed to increase development agility, reduce the cost of
ownership, and decrease overheads related to servers and other
cloud resources. The term ’serverless’ has been in the industry
since the introduction of Backend-as-a-Service (BaaS). Despite
the serverless benefits, FaaS experiences a few challenges, cat-
egorized as system-level, and programming and DevOps chal-
lenges [2], [27], [30]. The former identifies the cost of services,
security, resource limits, and cold start while scaling, and the
latter focuses on tools and IDEs, deployment, statelessness, and
code granularity in the serverless model.

B. AutoScaling in Function-as-a-Service

Resource elasticity, analogously used with autoscaling, is a
vital proposition of cloud computing that enables large-scale ex-
ecution of a variety of applications. A recent survey [9] discusses

the relevance of cloud resource elasticity for the Infrastructure-
as-a-service (IaaS) model to express that autoscaling and pay-
as-you-go billing enables infrastructure adjustments based on
workload variation while complying with SLAs. On this basis,
the study identifies that autoscaling addresses a set of associated
challenges, namely, scaling and scheduling which are generally
NP-hard problems. Additionally, the research explores the pos-
sibility of RL algorithms for autoscaling to approach the com-
plexity and variability of cloud environments and workloads. It
is emphasized that utilization of such RL algorithms for scaling
purposes can help the service providers to come up with a more
transparent, dynamic, and adaptable policy.

Straesser et al. [11] conduct experiments related to cloud
autoscaling and assert autoscaling to be an important aspect of
computing for its effects on operational costs and QoS. The
authors define scaling as a task of dynamically provisioning re-
sources under a varying load and necessitates the automation of
processes for highly complex cloud workloads. They discuss that
commercial solutions usually operate with user-defined rules
and threshold heuristics, and state that an optimal autoscaler is
expected to minimize operational cost and SLA violations.

In addition to workload variability, QoS sensitivity is also
identified as an enabler for increased operational costs and re-
source wastage. A microservices-focused autoscaling scheme is
introduced in [14] where a trade-off between horizontal, vertical,
and a self-adaptable brownout technique is determined based
on the infrastructure and workload conditions. The researchers
exploit Gated-Recurrent Units (GRUs) for workload prediction
and utilize Q-learning for making trade-off updates and scaling
decisions. The study asserts that workload prediction is an
important factor for autoscaling and acknowledges resource
allocation to be an NP-hard problem with multi-dimensional
objectives of QoS and SLAs.

In the context of FaaS autoscaling, work in [18] experiments
with the concurrency-level setting of Knative, a Kubernetes-
based serverless framework, and identify that function concur-
rency settings have varying effects on latency and throughput
of function. Therefore, they utilize the Q-learning algorithm to
configure functions with optimal concurrency levels to further
improve performance. Another work [17] presents preliminary
results of applying Q-learning to FaaS for predicting the optimal
number of function instances to reduce the cold start problem.
They utilize the function resource metrics and performance
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metrics and apply them to discrete state and action spaces for
adding or removing the function replicas, with threshold-based
rewards, to eventually improve function throughput.

Similarly, studies like [16], [24], [25] emphasize addressing
the dynamicity, agility, and performance guarantees of FaaS by
employing RL-based autoscaling solutions. The work in [16]
follows a monitoring-based scaling pattern and explores algo-
rithms like Q-learning, DynaQ+, and Deep QL, partially in
simulation and practical settings, to reasonably utilize resources
and balance between budget and QoS. They aid the agent’s train-
ing process by sampling simulation data based on probability
distribution and running parallel agents to speed up the learning
process. The work in [24], discusses the concurrency level in
the Knative framework and asserts that identifying appropriate
thresholds is challenging, requires expert knowledge, and has
varying effects on performance. Therefore, to efficiently use
the function resources and improve performance, authors profile
different concurrency levels for best performance and propose
an adaptive, Bi-Long Short Term Memory (Bi-LSTM) model
for workload prediction and determine the number of function
replicas using identified concurrency levels. Another study [25]
focuses on function response time and states that threshold-
based scaling cannot devise a balance between resource effi-
ciency and QoS. Therefore, the authors explore Q-learning to
propose adaptive horizontal and vertical scaling techniques by
profiling different resource allocation schemes and their cor-
responding performance. Their proposed state space considers
resource requests and limits, along with the availability of GPU
components, to model rewards as the divergence from agreed
SLO levels. Taking a different approach, the researchers in [15]
utilize Q-learning in the context of Kubernetes-based serverless
frameworks and propose a resource-based scaling mechanism
to adjust function CPU utilization threshold to reduce response
time SLA violations. Taking a different approach, [26] proposes
an online application profiling technique that identifies a knee
point and adjusts resources until the point those changes reflect
in performance gain using the Kneedle algorithm in conjunc-
tion with binary search. Further, a survey [10] summarises
autoscaling techniques for serverless computing under different
categories like rule-based, AI-based, analytical model, control
theory-based, application profiling, and hybrid technique and
envisions new directions like energy-driven and anomaly-aware
serverless autoscaling.

These proposals are complementary yet contrasting to each
other either in optimization objectives, profiled metrics, or
scaling policy. Some fail to address the performance depen-
dency on complex workloads, while few rely on pre-configured
thresholds [7], [8] that require expert knowledge and application
insights. Few studies focusing on workload prediction assume
a fully observable environment and miss out on the tempo-
ral dependency of environment states where scaling decisions
have been taken. Contradictory to these proposals, we examine
a Deep Recurrent RL-based autoscaling solution, particularly
LSTM-PPO, to hypothesize that FaaS environments are highly
dynamic, partially observable with complex workloads, and that
scaling decisions are influenced by environment uncertainty. We
model function autoscaling as a partially observable Markov

decision process (POMDP) and utilize monitoring metrics like
average CPU and memory utilization, function resource re-
quests, average execution time, and throughput ratio to discover
an optimal scaling policy. Our proposed RL-based autoscaling
agent interacts with the FaaS environment, waits for a sampling
period [11] to receive delayed rewards, and feeds the observed
environment state to the recurrent actor-critic model. Although
a few studies [14], [24] have utilized recurrent networks like
LSTM or GRU for workload prediction in serverless context
but do not address the temporal relationship between scaling
actions and their effect on environment state. Further, we take
inspiration from [20], [31], [32] where recurrent models have
been utilized to analyze the inter-dependence of environment
states and retain useful information to learn optimal policies.

III. SYSTEM ARCHITECTURE AND PROBLEM FORMULATION

A. System Architecture

The main components of our autoscaling solution are the
Prometheus monitoring service and the DRL agent, which are
shown in Fig. 1. For the serverless environment, we deploy
OpenFaaS [3], a Kubernetes-based FaaS framework, over a
multi-node MicroK8s [33] cluster, a production Kubernetes
distribution. OpenFaaS includes a Gateway deployment to ex-
pose function performance metrics and Prometheus is config-
ured to periodically scrape function metrics such as execution
time, replica count, and throughput ratio. OpenFaaS also packs
an alertmanager that periodically watches for pre-configured
request-per-second scaling threshold to provide horizontal scal-
ing capabilities. The monitoring service further scrapes resource
metrics from the Kubernetes API Server, Kubelet, and Node
exporters that are utilized by our DRL agent for observation
collection at every sampling window. The DRL agent utilizes
the standard Stable Baseline3 (SB3) [21] implementation of
LSTM-PPO 1 and models the FaaS environment following Gym-
nasium [22] guidelines, for the POMDP model to be directly
used by SB3 algorithms. Additionally, we implement our own
version of DRQN1 using PyTorch [34], [35] for evaluation. We
also deploy an HTTP-request generator tool to simulate online
user behavior to train and evaluate our DRL autoscaling agent.

B. Problem Formulation

Existing FaaS platforms generally exercise threshold-based
scaling when a monitored metric exceeds the configured max-
imum or minimum. Autoscaling of resources is considered a
classic automatic control problem and commonly abstracted
as a MAPE (map-analyse-plan-execute) control loop [1]. At
every sampling interval, the monitoring control loop collects
the relevant metrics and may decide to scale based on the
analyzed observation. Autoscaling is a sequential process with
non-deterministic results in a partially observable environment
that is conditioned on historical interactions, therefore, we de-
sign FaaS autoscaling as a model-free POMDP. POMDPs are
a mathematical model and an extension of Markov Decision

1[Online]. Available: https://github.com/Cloudslab/DRe-SCale
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Fig. 1. System architecture.

Processes (MDP) that account for uncertainty while maximising
a given objective.

1) Model-Free POMDP: In a real-world scenario, it is hard
to perceive the complete state of the surrounding environment
and a MDP rarely holds true [19]. Instead, a POMDP better
encapsulates environmental characteristics from incomplete or
partial information about said environment. Formally, a POMDP
model is defined as a 6-tuple (S,A,O, T, Z,R) where:S denotes
the set of all possible environment states, A denotes the set
of all actions, O denotes the set of all observations that an
agent can perceive, T and Z represent the transition probabil-
ity function and observation probability function, respectively,
and R denotes the reward function. Conceptually, the agent
observes itself in some environment state st, hidden due to
partial observability at each sampling interval t and maintains
a belief bt, an estimate of its current state, to select an action
at and transition to a new state ŝt. The agent perceives the state
information through observation ot and utilises the transition and
observation probability function to update the state estimates.
After transitioning to a new state ŝt, the agent receives reward
rt that helps in maximising the objective.

Since probability functions are difficult to model in complex
FaaS environments and states cannot be perfectly represented to
capture the estimates of belief or hidden states [20], we define
the autoscaling problem as model-free POMDP. Model-free
POMDP attempts to maximise the cumulative reward without
explicitly modelling the transition or observation probabilities.
Further, it needs function approximation techniques like neu-
ral networks, specifically recurrent neural networks (RNN), to
capture the uncertainty and temporal dependency. Therefore,
we define the POMDP observations (see Table II) as a tuple
of (O,A,R) and utilise recurrency to model and infer transition
probabilities, observation probabilities and hidden states to fulfil
the conflicting objectives of resource utilisation, operational cost
and QoS objectives.

2) Deep Recurrent-Reinforcement Learning: A possible so-
lution to learning effective policies in a model-free POMDP is
the application of model-free RL algorithms. Here, the agent
directly interacts with the environment and does not explic-
itly model the transition or observation probabilities. Vanilla
RL algorithms like Q-learning and DQN have no mechanism
to determine underlying state [20] and speculates that fed
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TABLE II
NOTATIONS

observation is a complete representation of the environment.
To capture sequential or temporal dependencies, often recur-
rent units are integrated with vanilla RL approaches, known
as Recurrent Reinforcement Learning (RRL) [36]. Prior stud-
ies [20], [31], [32], [37], [38], have introduced and applied RRL
approaches to a variety of application domains such as T-maze
task, financial trading, network resource allocation and Atari
games, to address sequential nature and partial observability of
environment, i.e., a non-Markovian or POMDP setting. In RRL,
an agent follows the basic principle of performing an action in
the environment, establishing its state and receiving feedback to
improve the policy, but, additionally employs RNN units/cells
to model uncertainty. Theoretically, POMDP has an underlying
dynamics of MDP with an additional constraint of state uncer-
tainty or observability that makes the process non-Markovian.
Therefore, we define the core RL components as observation O,
action A, reward R (guiding signals) and FaaS environment.

We model the observation space as ot =
(τt, φt, qt, nt, ct,mt) ∈ O where τt is average execution
time of nt available function replicas with ct average CPU
and mt average memory utilisation, while successfully serving
φt proportion of qt requests in the sampling window t.
The agent adjusts the number of function instances in the
upcoming sampling window t+ 1 using suitable actions in an
attempt to maximise the reward. Therefore, we define scaling
action at as the number of function instances, k, to add or
remove and represent it as at ∈ A = {−k, · · ·+ k} such that
nmin ≤ (nt−1 + at) ≤ N , where N is function quota. This

estimate helps the agent to control the degree of exploration by
maintaining replication within quota N .

The objective of the DRL agent is to learn an optimal scaling
policy, and therefore, we structure the rewards rt ∈ R over
monitored metrics - ct average CPU utilisation, mt average
memory utilisation, φt successful proportion of total requests
and number of available function replicasnt. Our proposed agent
does not work towards achieving a specific threshold. Instead, it
learns to maximise the returns, i.e., improve resource utilisation,
throughput and economically scaling function replicas. After
performing an action at, the agent receives a delayed reward rt
at every sampling window t and updates its network parameters.

RL application for model-free POMDP does not explicitly
estimate the probabilities, instead, RNNs are incorporated to
analyse environment uncertainties and model time-varying pat-
terns [36], [38]. The structure of RNNs is made-up of highly-
dimensional hidden states that act as network memory and
enables it to remember complex sequential data. These networks
map an input sequence to output and consist of three units - input,
recurrent and output unit, serving towards memory goal.

IV. LSTM-PPO BASED AUTOSCALING APPROACH

As discussed in Section III-B, we introduce recurrency to
handle system dynamics, complex workloads, and hidden cor-
relation of components based on POMDP model in autoscal-
ing tasks. We select Proximal Policy Optimisation (PPO), a
popular state-of-the-art on-policy RL algorithm for autoscal-
ing agents. While model-free off-policy algorithms such as
Deep Q-Network (DQN), Deep Deterministic Policy Gradient
(DDPG) have been studied with recurrent units [20], [32], we
explore a model-free on-policy PPO in our setting due to its
ease of implementation, greater stability during learning, better
performance across different environments [39] and support
for discrete actions while providing better convergence [21].
Although on-policy methods are known to be sample inefficient
and computationally expensive, our agent continuously collects
samples for timely policy updates. Also, off-policy algorithms
tend to be harder to tune than on-policy because of significant
bias from old data and Schulman et al. [40] suggests that PPO
is less sensitive to hyperparameters than other algorithms. PPO
has found its application in domains like robotics, finance and
autonomous vehicles, and takes advantage of the Actor-Critic
method to learn optimal policy estimations. However, for partial
observability or temporal dependence, general RL algorithms
struggle to capture underlying correlations and patterns effec-
tively. Therefore, we utilise RNN units, specifically LSTM, to
address partial observability in the FaaS environment and im-
prove the agent’s decision-making capabilities. This integration
is expected to enhance PPO’s ability to capture historical data
and make informed decisions while improving its policy via new
and previous experiences.

The core component of the proposed autoscaling solution is
the integration of recurrent units with a fully-connected multi-
layer perceptron (MLP) that takes into environment observation
and maintains a hidden internal state to retain relevant informa-
tion. The LSTM layer is incorporated into both actor and critic
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Fig. 2. DRL agent structure for Autoscaling.

networks to retain information i.e., the output of the LSTM
layer is fed into fully-connected MLP layers, where the actor
(policy network) is responsible for learning an action selection
policy and the critic network serves as a guiding measure to
improve actor’s decision. The network parameters are updated
as per PPO clipped surrogate objective function [41] ((1)) which
helps the agent balance its degree of exploration and knowledge
exploitation. It further improves network sample efficiency and
conserves large policy updates.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (r̂t(θ), 1− ε, 1 + ε) Ât

)]

(1)

r̂t(θ) =
πθ(at|ot)
πθold(at|t)

(2)

rt ={
α.φ2

t − β.(nt − nmin)
2 + γ.(ct +mt) ; 1≤at +nt−1<N

rmin ; otherwise
(3)

The proposed autoscaling technique has two phases: an agent
training phase and a testing phase. Fig. 2 demonstrates the agent
training workflow. The environment setup process precedes the
agent training, where the agent interacts with the environment
and obtains information. After initial setup, the agent is trained
for multiple episodes of sampling windows, where it assesses
the function demand qt over individual sampling window t
and ascertains appropriate scaling action. During a sampling
window t, the agent collects the environment observation ot and
samples an actionat according to LSTM-PPO policy. If the agent
performs an invalid action, it is awarded an immediate negative
reward rmin, else the agent obtains a delayed reward rt ( (3)), for
sampling window t, calculated using the relevant monitored met-
rics (Section III-B). This reward helps the agent in action quality
assessment, transition to a new state and has significant effects
on the function’s performance. These rewards are essential for
improving the agent’s decision-making capability. The critic
network estimates the agent state and helps update the network
parameters. The agent continues to analyse the demand over
multiple sampling windows, repeating the interaction process
and accumulating the relevant information in recurrent cells for
learning. Once the agent is trained for sufficient episodes and
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TABLE III
PARAMETERS FOR SYSTEM SETUP

rewards appear to converge, we evaluate the agent in the testing
phase.

In the testing phase, the agent is evaluated for its learnt
policies. It collects current environment observation, samples the
action through actor policy and scales the functions accordingly.
We hypothesised the relationship between QoS and resource
utilisation and deduce that appropriately scaling the functions
improve throughput, resource utilisation and reduce operational
costs (number of function replicas used).

V. PERFORMANCE EVALUATION

In this section, we provide the experimental setup and param-
eters, and perform an analysis of our agent compared to other
complementary solutions.

A. System Setup

We set up our experimental multi-node cluster, as discussed in
Section III, using NeCTAR (Australian National Research Cloud
Infrastructure) services on the Melbourne Research Cloud. It
includes a combination of 2 nodes with 12/48, 1 node with
16/64, 1 node with 8/32 and 1 node with 4/16 vCPU/GB-RAM
configurations. We deploy OpenFaaS along with Prometheus
service on MicroK8s (v1.27.2), however, we used Gateway
v0.26.3 due to scaling limitations in the latest version and remove
its alert manager component to disable rps-based scaling. The
system setup parameters are listed in Table III.

As FaaS is beneficial for short-running, single-purpose
functions that require few resources, we consider ma-
trix multiplication function with three different input sizes
small,medium, large-(10, 100, 1000) and configure it with
150/256 millicore/MB resources approximately as AWS
Lambda offering and a maximum timeout of 10 seconds. Ad-
ditionally, we generate the user workload using the Hey [42]
load generator tool, a lightweight load generator written in
Go language. For the workload we leverage an open-sourced,
14-day function trace [23] by Azure functions, Fig. 3, that
largely represents an invocation behaviour of a production-ready
application function running on a serverless platform. Although
it appears stationary due to its repetitive nature, it is represen-
tative of real cloud invocation patterns with relevant variations
for scaling decisions. Since the Poisson distribution has been
shown to approximately sample online user behaviour, request
inter-arrival times are sampled from it. Prometheus service is
configured with relevant discovery and target points to regularly

Fig. 3. Workload for Matrix Multiplication function.

scrape metrics from OpenFaaS gateway, function instances and
Kubernetes API server.

As discussed in Section IV, the agent assesses the function
demand during a sampling window of 30 seconds for a single
episode of 5 minutes. Based on the deployed infrastructure ca-
pacity, we fix the maximum function instances as 24 in isolation,
to reduce the performance interference. Since frequent scaling
can result in resource thrashing, we explore scaling actions
within a range of 2 instances, i.e., at ∈ {−2,−1, 0, 1, 2}, avoid-
ing resource wastage during acquisition and release of function
instances. Further, the observation space is composed of the
throughput ratio φt ∈ [0, 100]%, number of function instances
nt ∈ [1, 24] and resource utilisation (CPU, ct and memory, mt)
∈ [0, 2] ∗ 100% that contributes towards over-burdened CPU
and out-of-memory scenarios. The LSTM-based PPO agent
takes advantage of a single LSTM layer of 256 units and is
integrated with both Actor and Critic networks with identical
network architectures having 2 fully connected MLP layers of
64 neurons each, i.e., in[64,64] and out[64,64].

B. Experiments

Function autoscaling is a continuous and non-episodic pro-
cess, however, we set an episode based on the default scal-
ing window of 5 minutes by Kubernetes’ horizontal scaling
mechanism. To demonstrate the effectiveness of recurrency in
autoscaling tasks, we chose a workload with varying resource
requirements at different sampling windows. After careful con-
sideration of network parameters and sensitivity analysis, listed
in Table IV, the DRL agent is trained for more than 500
episodes to determine a scaling policy to maximise the through-
put while using minimal resources. The agent is expected to
retain workload information and perform in accordance with
the received feedback. Further, the agent is evaluated against a
state-of-the-art, PPO-based autoscaling agent, with the same the
Actor/Critic network architecture, (Table IV) as the RPPO agent,
i.e., having 2 MLP layers with 64 neurons each. In addition to
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Fig. 4. (a) Mean episodic reward, (b) Throughput, (c) Throughput versus Execution time - PPO, (d) Throughput versus Execution time - RPPO and (e) Throughput
versus Execution time - DRQN.

TABLE IV
RL ENVIRONMENT AND NETWORK PARAMETERS

it, we evaluate a DRQN agent that integrates a LSTM layer (256
cells) with regular off-policy Deep Q-Network (DQN), and has
2 MLP layers with 128 neurons, each for target network and
q-network. Fig. 4 shows the training results of these competing
approaches in terms of mean episodic rewards. The rewards
are given as per (3), and it is evident that the mean episodic
reward for PPO (60190) begins to diminish after 400 episodes as
compared to LSTM-PPO(RPPO) (60540) agent. Additionally, a
similar pattern is visible for the throughput of RPPO and PPO
approaches, Fig. 4(b) where PPO struggles to keep a higher
success rate by provisioning more functions. Also, we observe
that mean episodic reward for the DRQN (59564) approaches
that of RPPO while exploring the search space and gradually
serves more workload successfully, Fig. 4(e), but closely tail-
ing the trend of other approaches, Fig. 4(b). As mentioned in
Section V, matrix multiplication is performed for three input
sizes - small,medium, large and similar input randomness is
followed for competing approaches that are evident in execution
time (3.7 and 4 seconds) of successful requests in Fig. 4(c), (d)
and (e).

We evaluate the agents for 200 sampling windows and present
the results in Fig. 5. Out of the 200 sampling windows, RPPO
based autoscaling agent performed 18% better in terms of
throughput, while having an average of 85% mean success ratio
as compared to 67% of the PPO agent. On the other hand,
the DRQN agent fell short to serve 22% of the workload with
a mean success rate of 66% as compared to RPPO agent. In
serving the evaluated workload, the RPPO agent utilised at least
8.4% more resources than the PPO agent and improved average
execution time (seconds) by 13%, while it utilised at least 8%
more resources than DRQN and slightly improved the average
execution time (seconds) by 2.6%. Although the DRQN agent
tries to capture sequential dependency of the workload, we sus-
pect it fails to explore the search space and only exploits minimal
replica count. Hence, as evident in Fig. 5(d), the DRQN agent
keeps utilising lesser function resources. This agent behaviour
is in-line with training results where it could serve better with
less requests, thus receiving higher reward for that sampling
window and eventually, accumulating higher episodic reward
and throughput percentage.

We also assess the effectiveness of our approach against a de-
fault commercial scaling policy, CPU threshold-based horizon-
tal scaling. Kubernetes-based serverless platforms like Open-
FaaS [3] and Kubeless [4] can leverage underlying resource-
based scaling, known as horizontal pod autoscaling (HPA) im-
plemented as a control loop that checks for target metrics to
adjust the function replicas. HPA has a pre-configured query
period of 15 seconds to control deployment based on target
metrics like average CPU utilization. Therefore, the HPA con-
troller fetches the specific metrics from the underlying API
and empirically calculates the number of desired functions.
However, the controller is unaware of workload demand and
only scales after a 15-second metric collection window. The
expected threshold for function average CPU utilisation is set to
be 75% with maximum scaling up to 24 instances. Therefore,
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Fig. 5. (a) Throughput versus Execution time - PPO, (b) Throughput versus Execution time - RPPO, (c) Throughput versus Execution time - DRQN, (d) Function
Replicas and Execution time, and (e) Throughput Comparison.

Fig. 6. (a) Throughput - HPA versus RPS, (b) Replica use - HPA versus RPS.

whenever the average CPU utilisation of a function exceeds the
fixed threshold, new function instances are provisioned. Also,
HPA has a 5-minute down-scaling window during which re-
sources are bound to function irrespective of incoming demand,
representing potential resource wastage. Similarly, we compare
our scaling methods with another metric-based autoscaling sup-
ported by OpenFaaS based on request-per-second processed. It
is also implemented as a control loop and watches for processed
requests per second (rps) and raises an alert if rps is above 5 for
10 seconds (default). Therefore, it is worthwhile to analyse the
performance of the DRL-based agent against HPA that reserves
enough resources for either idle time or low resource utilisation.

The results for both threshold-based scaling are presented
in Fig. 6, and both approaches struggle to keep up with the
incoming workload. The rps could only manage to serve 50% of
incoming load at any sampling window while only using a single
instance. This happens as a single request takes approximately 4
seconds to process, and rps never goes beyond the set threshold,
failing the majority of requests. On the other hand, HPA could
serve 80% of incoming load on average, but fluctuates due to
its set cooldown period. Although HPA tries to scale its re-
sources to 5 replicas, its performance is degraded by 35% against
RPPO and similarly, rps degrades throughput performance by
58%.
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C. Discussion

Autoscaling is an essential feature of cloud computing and
has been identified as a potential research gap in serverless
computing models. As compared to service-oriented architec-
tures where the services are always running, FaaS functions run
for shorter duration and release resources, if unwanted. Hence,
an adaptive scaling solution is critical in handling complex
workloads for these small and ephemeral functions. Thus, we
investigate a DRL-based autoscaling agent, LSTM-PPO, to work
in complex FaaS settings and utilise relevant environmental in-
formation to learn optimal scaling policies. We train and evaluate
the proposed solution against a state-of-the-art on-policy PPO
approach, alongside commercial default, and infer that LSTM-
PPO is able to capture environment dynamics better and shows
promising results. Although, we argue that real-time systems
are hard to model and transparent to a certain degree and that
RL approaches can analyse these uncertainties better. There are
certain points to remember associated with the appropriateness
and application of RL methods to real systems.

We model function autoscaling in FaaS as a model-free
POMDP and leverage monitoring tools, like Prometheus, to
collect the function-related metrics and apply model-free RL
methods to learn the scaling policy. In general, RL algorithms
are expensive in terms of data, resource and time, where an agent
interacts with the modelled environment and acquire relevant
information over multiple episodes that signify a higher degree
of exploration. Although, as showcased through results, the
proposed RL approach took more than 500 episodes (>6000
sampling windows) to slightly improve the performance over
baselines, RL methods in real-time systems are considerably
expensive following stringent optimization goals.

The current training time has an episode of 5 minutes that
consists of 10 iteration windows or epochs of 30 seconds each,
where a decision to scale is taken by the agent and feedback is
calculated for learning. This duration of an episode is chosen
keeping in mind the minimum resource scaling and cooldown
time of Kubernetes-based serverless platforms and an industry
insight [11] for taking scaling actions in production environ-
ments. In addition to these settings, an agent training could
further be affected by the invocation pattern and set of actions to
be explored. In the current work, the agent explores 5 discrete
actions that follow a conservative approach to avoid resource
thrashing while scaling function instances. In a particular state,
an agent could take all the possible actions from the action space
and would be penalised for an infeasible action. This static
behaviour of action modelling elongates the training process
since the agent explores infeasible actions in a state and only
learns from negative experience. To overcome this, an action
masking technique could be integrated that prevents the agent
to take certain infeasible actions in particular states, based on
defined rules like the total number of function instances to
remain within function limits. Therefore, different functions do
not necessarily show similar behaviour for training and realised
quality of results under similar settings.

The proposed DRL method is a composition of two different
neural network techniques, recurrent and fully-connected lay-
ers, and these models are known to be sensitive to respective

hyper-parameters or application/workload context. Therefore,
configuring hyper-parameters can also be an intensive task in
real-world settings. Additionally, the proposed agent analyzes
individual workload demand for a particular function, the learn-
ing cannot be generalized to other functions with different
resource requirement profiles and therefore requires individual
training models to be commissioned. However, techniques like
transfer learning or categorising functions with similar resource
and workload profile to use a trained agent as a starting point
could be explored. Moreover, these agents could be deployed
in similar fashion to tools like AWS Compute Optimiser [43]
to gradually obtain experiences and build models with high
confidence, from real-time data before making any recommen-
dation/autonomous decision.

Furthermore, the agent is trained for a limited number of
episodes, approximately 500 episodes and evaluated, but the
chances of exploring are limited. Therefore, the agent expects to
be guided by its actor-critic network policies in making informed
decisions. Additionally, the agent utilizes resource-based met-
rics that affect the cold starts, so the availability of relevant tools
and techniques to collect instantaneous metrics is essential [11]
in reducing the observation uncertainty. Also, the respective plat-
form implementation, such as metric collection frequency, func-
tion concurrency policy, and request queuing, can extend support
to the analyses. Hence, based on performance evaluation results
and discussion, we can adequately conclude that the proposed
LSTM-PPO agent successfully performs at par with competing
policies for given workload and experimental settings.

VI. CONCLUSIONS AND FUTURE WORK

The FaaS model executes the piece of code inside a container,
known as a function and prepares new function containers
on demand. FaaS platforms usually support threshold-based
autoscaling mechanisms like CPU utilisation to cope with in-
coming demand and heuristically create more functions. These
methods do not consider any system complexity or workload
characteristics for scaling and therefore result in sub-optimal
scaling policies. Therefore, an adaptive autoscaling mechanism
is required to analyse the workload and system uncertainty to
optimally scale resources while improving system throughput.

In this work, we investigated a recurrent RL approach for
function autoscaling and presented results against a state-of-the-
art PPO algorithm and commercially applied threshold-based
autoscaling. We perform our analyses for matrix multiplication
function and utilise an open-source function trace by Azure [23].
The experimental multi-node cluster was set up on the MicroK8s
distribution and took advantage of the OpenFaaS serverless
framework. We presented evidence of modelling real-time FaaS
environments as partially observable and application of recur-
rent networks to model-free RL algorithms to maximise the
objective. We evaluate our proposed technique after training of
more than 500 episodes and successfully validate our hypothesis
that recurrent techniques capture the system dynamicity and
uncertainty to give better autoscaling policies. In our evalu-
ation setting, experiments show that RPPO improved system
throughput by 18%, 22%, 35% and 58% in comparison to PPO,
DRQN, HPA and rps scaling policy, respectively.
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As part of future work, we will extend our analysis to different
functions and workload types to examine the effect of POMDP
modelling. We further plan to experiment with other on-policy
and off-policy RL methods like TD3, to expedite the learning
process due to their sample efficiency. The proposed methods
are dependent on the metric collection process for observing
system states which can act as bottlenecks and single points of
failure [11]. Therefore, we plan to investigate distributed metric
collection and agent learning to avoid single-point-failure and
improve learning and sample efficiency for estimating optimal
function autoscaling policies.

Software Availability: Our environment setup code and algo-
rithms we implemented for OpenFaaS can be accessed from:
https://github.com/Cloudslab/DRe-SCale
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