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Abstract

An increasing number of providers are offering utility computing services which require users to pay only when
they use. Most of these providers currently charge users for metered usage based on fixed prices. In this paper,
we analyze the pros and cons of charging fixed prices as compared to variable prices. In particular, charging fixed
prices do not differentiate pricing based on different user requirements. Hence, we highlight the importance of
deploying an autonomic pricing mechanism that self-adjusts pricing parameters to consider both application and
service requirements of users. Performance results observed in the actual implementation of an enterprise Cloud show
that the autonomic pricing mechanism is able to achieve higher revenue than various other common fixed and variable
pricing mechanisms.
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1. Introduction

The next era of computing is envisioned to be
that of utility computing [1]. The vision of utility
computing is to provide computing services to users
on demand and charge them based on their usage
and Quality of Service (QoS) expectations. Users no
longer have to invest heavily in or maintain their
own computing infrastructure. Instead, they employ
computing services offered by providers to execute
their applications. This commoditized computing
model thus strengthens the case to charge users via
metered usage [2], just like in real-world utilities. In
other words, users only have to pay for what they
use.
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The latest emergence of Cloud computing [3] is
a significant step towards realizing this utility com-
puting model since it is heavily driven by indus-
try vendors. Cloud computing promises to deliver
reliable services through next-generation data cen-
ters built on virtualized compute and storage tech-
nologies. Users will be able to access applications
and data from a “Cloud” anywhere in the world
on demand and pay based on what they use. As
more providers are starting to offer pay-per-use util-
ity computing services using Cloud infrastructure,
the issue of how to determine the right price for
users is now becoming increasingly critical for these
providers. This is because pricing is able to regu-
late the supply and demand of computing services
and thus affects both providers (who supply the ser-
vices) and users (who demand the services) respec-
tively. When the right price is set, a provider can not
only attract/restrict a sufficient number of users to
meet its revenue target, but also provide computing
services more effectively and efficiently to meet the
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service needs of users. Hence, the aim of this paper
is to justify the need for an autonomic pricing mech-
anism that can set this right price for a provider.
In particular, this paper focuses on how a provider
can charge commercial users or enterprises which
make heavy demands on computing resources, as
compared to personal users or individuals with con-
siderably lower requirements.

Currently, providers follow a fairly simple pricing
scheme to charge users – fixed prices based on var-
ious resource types. For processing power (as of 15
October 2008), Amazon [4] charges $0.10 per virtual
computer instance per hour (Hr), Sun Microsystems
[5] charges $1.00 per processor (CPU) per Hr, and
Tsunamic Technologies [6] charges $0.77 per CPU
per Hr. Instead of charging fixed prices for these
heavy users, we advocate charging variable prices
and provide guaranteed QoS through the use of ad-
vanced reservations. Advance reservations are book-
ings made in advance to secure an available item in
the future and are used in the airline, car rental, and
hotel industries. In the context of utility comput-
ing, an advance reservation is a guarantee of access
to a computing resource at a particular time in the
future for a particular duration [7].

Charging fixed prices in utility computing is not
fair to both the provider and users since different
users have distinctive needs and demand specific
QoS for various resource requests that can change
anytime. In economics, a seller with constrained ca-
pacity can adjust prices to maximize revenue if the
following four conditions are satisfied [8]: (i) demand
is variable but follows a predictable pattern, (ii) ca-
pacity is fixed, (iii) inventory is perishable (wasted
if unused), and (iv) seller has the ability to adjust
prices. Thus, for utility computing, providers can
charge variable prices since: (i) demand for comput-
ing resources changes but can be expected using ad-
vanced reservations [7], (ii) only a limited amount of
resources is available at a particular site owned by a
provider, (iii) processing power is wasted if unused,
and (iv) a provider can change prices.

The main aim of providers charging variable
prices is to maximize revenue by differentiating the
value of computing services provided to different
users. Since providers are commercial businesses
driven by profit, they need to maximize revenue.
Profitable providers can then fund further expan-
sions and enhancements to improve their utility
computing service offerings. Charging variable
prices is also particularly useful for resource man-
agement as it can result in the diversion of demand

from high-demand time periods to low-demand time
periods [8], thus maximizing utilization for a utility
computing service. Higher prices increase revenue
as users who need services during high-demand time
periods are willing to pay more, whereas others will
shift to using services during low-demand periods.
The latter results in higher utilization during these
otherwise underutilized low-demand periods and
hence leads to higher revenue.

In general, fixed prices are simpler to understand
and more straightforward for users as compared to
variable prices. However, all users do not have the
same need. Hence, it is not fair for all users to be
charged the same fixed price since not all users may
afford the same price. Fixed prices also do not al-
low price-sensitive users to benefit from lower prices
which they prefer to accept in exchange of certain
restrictions. Moreover, fixed prices do not permit a
provider to give specific incentives via differentiated
pricing based on distinct user requirements, which
is the emphasis of this paper. In this paper, we pro-
pose charging variable prices with advanced reserva-
tions so that users are not only able to secure their
required resources in advance, but also know the ex-
act expenses which is computed during the time of
reservation (even though they are based on variable
prices). This will continue to enable users to perform
budgeting with known variable prices in advance as
in the case of fixed prices.

This paper proposes an autonomic pricing mecha-
nism for a utility computing service which automat-
ically adjusts prices when necessary to increase rev-
enue. In particular, we highlight the significance of
considering essential user requirements that encom-
pass application and service requirements. Pricing
computing resources according to user requirements
benefits the utility computing service since different
users require specific needs to be met and are will-
ing to pay varying prices to achieve them. The key
contributions of this paper are to:
– Consider two essential user requirements for au-

tonomic metered pricing: (i) application and (ii)
service.

– Describe how metered pricing can be imple-
mented in an enterprise Cloud with advanced
reservations.

– Analyze the performance of various fixed and vari-
able pricing mechanisms through experimental re-
sults to demonstrate the importance of autonomic
metered pricing.
This paper is organized as follows: Section 2 dis-

cusses related work. Section 3 examines economic
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aspects of a utility computing service. Section 4
describes the implementation of metered pricing us-
ing a service-oriented enterprise Cloud technology
called Aneka [9]. Section 5 explains the evaluation
methodology and experimental setup to assess the
performance of various fixed and variable pricing
mechanisms with respect to the application and
service requirements of users. Section 6 analyzes the
performance results. Section 7 presents conclusions
and future work.

2. Related Work

Many market-based resource management sys-
tems have been implemented across numerous com-
puting platforms [10] including clusters, distributed
databases, Grids, parallel and distributed systems,
peer-to-peer, and the World Wide Web. To manage
resources, these systems adopt a variety of economic
models [11], such as auction, bargaining, bartering,
commodity market, bid-based proportional resource
sharing, posted price, and tendering/contract-net.
In this paper, we examine metered pricing which is
applicable in commodity market and posted price
models.

Recently, several works have discussed pricing for
utility or on-demand computing services. In par-
ticular, these works have identified and addressed
various distinguished features of utility computing
which is different from traditional pricing mecha-
nisms in economics. Price-At-Risk [12] considers un-
certainty in the pricing decision for utility comput-
ing services which have uncertain demand, high de-
velopment costs, and short life cycle. Pricing models
for on-demand computing [13] have been proposed
based on various aspects of corporate computing
infrastructure which include cost of maintaining
infrastructure in-house, business value of infrastruc-
ture, scale of infrastructure, and variable costs of
maintenance. Another work [14] considers economic
aspects of a utility computing service whereby high
prices denote higher service level for faster compu-
tation. But, these works do not consider autonomic
pricing that addresses users’ application require-
ments (such as parallel applications) and service
requirements (such as deadline and budget).

Setting variable prices is known as price discrim-
ination in economics [15]. Sulistio et al. [16] have
examined third degree price discrimination by using
revenue management [8] to determine the pricing of
advanced reservations in Grids. It evaluates revenue

performance across multiple Grids for variable pric-
ing based on the combination of three market seg-
ments of users (premium, business, and budget) and
three time periods of resource usage (peak, off-peak,
and saver). Hence, it does not derive fine-grained
variable prices that differentiate specific application
and service requirements of individual users.

Chen et al. [17] have proposed pricing-based
strategies for autonomic control of web servers.
It uses pricing and admission control mechanisms
to control QoS of web requests such as slowdown
and fairness. However, this paper focuses on high-
performance applications and user-centric service
requirements (deadline and budget).

In our previous work, we have presented Li-
bra [18] as a market-based solution for delivering
more utility to users in clusters compared to tradi-
tional scheduling policies. As Libra only computes
a static cost, an extension called Libra+$ [19] uses
an enhanced pricing function that satisfies four
essential requirements for pricing of resources to
prevent workload overload: (i) flexible, (ii) fair,
(iii) dynamic, and (iv) adaptive. In this paper, we
propose an autonomic version of Libra+$ called
Libra+$Auto which is feasible as demonstrated
through its actual implementation in an enterprise
Cloud.

Libra+$Auto has a number of pros compared to
Libra+$ and Libra. First, Libra+$Auto is able to
automatically adjust pricing parameters and hence
does not rely on static pricing parameters to be con-
figured manually by the provider in the case of both
Libra+$ and Libra. Second, Libra+$Auto considers
the current workload across nodes when computing
prices, whereas Libra+$ only consider the current
workload within a node and Libra does not consider
any current workload at all. Third, Libra+$Auto
can exploit the budget limits of users to improve
the revenue of the provider by automatically adjust-
ing to increase prices when there are fewer avail-
able compute nodes and reduce prices when there
are more available nodes. Fourth, Libra+$Auto of-
fers more precise incentives to individual users which
can promote user demand and in turn improve rev-
enue, since it dynamically changes prices in a more
fine-grained manner than both Libra+$ and Libra
via expected workload demand and availability of
nodes. On the other hand, Libra+$Auto has only
one con compared to Libra+$ and Libra, which is
requiring more computation time to determine the
availability of nodes and adjust prices depending on
the acceptance of previous requests.
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3. Economic Aspects of a Utility Computing
Service

This section examines various economic aspects
of a utility computing service including: (i) variable
pricing with advanced reservations, (ii) pricing is-
sues, and (iii) pricing mechanisms. We consider a
scenario wherein a provider owns a set of resources
that we term as compute nodes. Each node can be
subdivided into resource partitions and leased to
users for certain time intervals.

3.1. Variable Pricing with Advanced Reservations

The use of advanced reservations has been pro-
posed to provide QoS guarantees for accessing var-
ious resources across independently administered
systems such as Grids [7]. With advanced reserva-
tions, users are able to secure resources required in
the future which is important to ensure successful
completion of time-critical applications such as real-
time and workflow applications or parallel applica-
tions requiring a number of processors to run. The
provider is able to predict future demand and usage
more accurately. Using this knowledge, the provider
can apply revenue management [8] to determine
pricing at various times to maximize revenue. Once
these prices are advertised, users are able to decide
in advance where to book resources according to
their requirements and their resulting expenses.

Having prior knowledge of expected costs is highly
critical for enterprises to successfully plan and man-
age their operations. Resource supply guarantee also
allows enterprises to contemplate and target future
expansion more confidently and accurately. Enter-
prises are thus able to scale their reservations ac-
cordingly based on short-term, medium-term, and
long-term commitments.

Users may face the difficulty of choosing the best
price for reserving resources from different utility
computing services at different times. This difficulty
can be overcome by using resource brokers [20] which
act on the behalf of users to identify suitable utility
computing services and compare their prices.

3.2. Pricing Issues

For simplicity, we examine metered pricing within
a utility computing service with constrained capac-
ity and do not consider external influences that can
be controlled by the provider, such as cooperating

Table 1
Pricing for processing power.

Name Configured Pricing Parameters

FixedMax $3/CPU/Hr

FixedMin $1/CPU/Hr

FixedTimeMax $1/CPU/Hr (12AM–12PM)

$3/CPU/Hr (12PM–12AM)

FixedTimeMin $1/CPU/Hr (12AM–12PM)

$2/CPU/Hr (12PM–12AM)

Libra+$Max $1/CPU/Hr (PBasej), α = 1, β = 3

Libra+$Min $1/CPU/Hr (PBasej), α = 1, β = 1

Libra+$Auto same as Libra+$Min

with other providers to increase the supply of re-
sources [21] or competing with them to increase mar-
ket share [22]. Price protection and taxation regula-
tions from authorities and inflation are beyond the
control of the provider. We assume that users have to
pay in order to guarantee reservations. Thus, a util-
ity computing service requires payment from users
either at the time of reservation or later depending
on payment agreements so as to reserve computing
resources in advance.

We also assume that the execution time period
of applications will be within the reservation time
period. In order to enforce other scheduled reser-
vations, a utility computing service will terminate
any outstanding applications that are still execut-
ing once the time period of reservation expires. This
implies that users must ensure that time periods of
reservations are sufficient for their applications to
be completed. Therefore, users may have to reserve
more time to protect their applications from forced
termination if they are uncertain whether their ap-
plications will take more time to execute than esti-
mated. Although this restriction is unfavorable for
users, users can try to minimize its impact by using
runtime prediction models [23][24] to estimate their
application runtimes more accurately. Users are also
personally responsible for ensuring that their appli-
cations can fully utilize the reserved resources. It is
thus disadvantageous to the users if their applica-
tions fail to use the entire amount of reserved re-
sources that they have already paid for.

3.3. Pricing Mechanisms

We compare three types of pricing mechanisms:
(i) Fixed, (ii) FixedTime, and (iii) Libra+$. As listed
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in Table 1, each pricing mechanism has maximum
and minimum types which are configured accord-
ingly to highlight the performance range of the pric-
ing mechanism. Fixed charges a fixed price for per
unit of resource partition at all times. FixedTime
charges a fixed price for per unit of resource parti-
tion at different time periods of resource usage where
a lower price is charged for off-peak (12AM–12PM)
and a higher price for peak (12PM–12AM).

Libra+$ [19] computes the price Pij for per unit
of resource partition utilized by reservation request
i at compute node j as: Pij = (α ∗ PBasej) +
(β ∗ PUtilij). The base price PBasej is a static
pricing component for utilizing a resource partition
at node j which can be used by the provider to
charge the minimum price so as to recover the op-
erational cost. The utilization price PUtilij is a dy-
namic pricing component which is computed as a
factor of PBasej based on the availability of the re-
source partition at node j for the required deadline
of request i: PUtilij = RESMaxj/RESFreeij ∗
PBasej . RESMaxj and RESFreeij are the maxi-
mum units and remaining free units of the resource
partition at node j for the deadline duration of re-
quest i respectively. Thus, RESFreeij has been de-
ducted units of resource partition committed for
other confirmed reservations and request i for its
deadline duration.

The factors α and β for the static and dynamic
components of Libra+$ respectively, provide the
flexibility for the provider to easily configure and
modify the weight of the static and dynamic compo-
nents on the overall price Pij . Libra+$ is fair since
requests are priced based on the amount of different
resources utilized. It is also dynamic because the
overall price of a request varies depending on the
availability of resources for the required deadline.
Finally, it is adaptive as the overall price is adjusted
(depending on the current supply and demand of
resources) to either encourage or discourage request
submission.

Fixed, FixedTime, and Libra+$ rely on static
pricing parameters that are difficult to be accu-
rately derived by the provider to produce the best
performance where necessary. Hence, we propose
Libra+$Auto, an autonomic Libra+$ that automat-
ically adjusts β based on the availability of compute
nodes. Libra+$Auto thus considers the pricing of
resources across nodes, unlike Libra+$ which only
considers pricing of resources at each node j via Pij .

Algorithm 1 shows the pseudocode for adjusting β
in Libra+$Auto. First, the previous dynamic factor

Algorithm 1: Pseudocode for adjusting β in Li-
bra+$Auto.

βPrev ← (
∑nprev

i=1
βi for previous request) / n ;1

maxNodes ← maximum number of nodes ;2
foreach node i allocated to new request do3

freeNodes ← free number of nodes for4
proposed time slot at this node i;
reservedNodes ← maxNodes − freeNodes ;5
if freeNodes = 0 then6

freeNodes ← 1 ;7

endif8
ratioFree ← maxNodes / freeNodes ;9
if reservedNodes = 0 then10

reservedNodes ← 1 ;11

endif12
ratioReserved ← reservedNodes / maxNodes ;13
if previous request meets budget then14

βi ← βPrev ∗ ratioFree ;15

else16
βi ← βPrev ∗ ratioReserved ;17

endif18

endfch19

βPrev is computed as the average of dynamic fac-
tors β at nprev number of allocated compute nodes
for the previous reservation request (line 1). Initially,
when adjusting β for the first request, βPrev uses
a default value that is given by the provider. The
maximum number of nodes is also assigned (line 2).
Then, the free and reserved number of nodes is deter-
mined for the proposed time slots at various nodes
to be allocated for the new reservation request (line
3–5). After that, the new dynamic factor βi for the
node i is updated depending on the outcome of the
previous request. βPrev is increased to accumulate
more revenue if the previous request meets the user-
defined budget, otherwise it is reduced (line 14–18).
For increasing βPrev, a larger increase is computed
when there are less free nodes left for the proposed
time slot so as to maximize revenue with decreasing
capacity (line 6–9). Conversely, for reducing βPrev,
a larger reduction is computed when there are more
free nodes left for the proposed time slot in order
not to waste unused capacity (line 10–13).

Assuming that the previous reservation request
wants to reserve nprev number of nodes, it takes
O(nprev) time to compute the previous dynamic fac-
tor βPrev (line 1). In addition, it takes O(nnew)
time to compute the new dynamic factor βi at each
node i for nnew number of nodes required by the new
reservation request (line 3–19). When there is max-
imum m number of nodes that can be possibly allo-
cated and searching through the entire data struc-
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ture containing all reserved time slots takes O(ts)
time in the worst case (depending on the type of data
structure which is used), it takes O((m− 1).O(ts))
time to determine the free number of nodes for the
proposed time slot at node i (line 4). Hence, adjust-
ing β in Libra+$Auto can take O(nprev +nnew.(m−
1).O(ts)) time in the worst case.

4. System Implementation

This section describes how metered pricing for a
utility computing service can be implemented us-
ing a .NET-based service-oriented enterprise Cloud
technology called Aneka [9]. Our implementation in
Aneka uses advanced reservations to guarantee ded-
icated access to computing resources for required
time periods in the future.

4.1. Aneka: Enterprise Cloud Technology

Aneka [9] is designed to support multiple applica-
tion models, persistence and security solutions, and
communication protocols such that the preferred se-
lection can be changed at anytime without affecting
an existing enterprise Cloud. To create an enterprise
Cloud, the provider only needs to start an instance
of the configurable Aneka container hosting required
services on each enterprise Cloud node.

The purpose of the Aneka container is to initial-
ize services and acts as a single point for interac-
tion with the entire enterprise Cloud. To support
scalability, the Aneka container is designed to be
lightweight by providing the bare minimum func-
tionality needed for an enterprise Cloud node. It pro-
vides the base infrastructure that consists of services
for persistence, security (authorization, authentica-
tion and auditing), and communication (message
handling and dispatching).

The Aneka container can host any number of
optional services that can be added to augment the
capabilities of an enterprise Cloud node. Examples
of optional services are information and indexing,
scheduling, execution, and storage services. This
provides a flexible and extensible framework or in-
terface for the provider to easily support various ap-
plication models, including MapReduce [25] which
is often associated with Cloud computing systems.
Thus, resource users can seamlessly execute differ-
ent types of application in an enterprise Cloud.

To support reliability and flexibility, services are
designed to be independent of each other in a Aneka

container. A service can only interact with other
services on the local node or other nodes through
known interfaces. This means that a malfunctioning
service will not affect other working services and/or
the Aneka container. Therefore, the provider can
easily configure and manage existing services or in-
troduce new ones into a Aneka container.

4.2. Resource Management Architecture

We implement a bi-hierarchical advance reser-
vation mechanism for the enterprise Cloud with a
Reservation Service at a master node that coordi-
nates multiple execution nodes and an Allocation
Service at each execution node that keeps track of
the reservations at that node. This architecture was
previously introduced by Venugopal et al. [26]. Fig-
ure 1 shows the interaction between the user/broker,
the master node and execution nodes in the en-
terprise Cloud. To use the enterprise Cloud, the
resource user (or a broker acting on its behalf) has
to first make advanced reservations for resources
required at a designated time in the future.

During the request reservation phase, the
user/broker submits reservation requests through
the Reservation Service at the master node. The
Reservation Service discovers available execution
nodes in the enterprise Cloud by interacting with
the Allocation Service on them. The Allocation
Service at each execution node keeps track of all
reservations that have been confirmed for the node
and can thus check whether a new request can be
satisfied or not.

By allocating reservations at each execution node
instead of at the master node, computation over-
heads arising from making allocation decisions are
distributed across multiple nodes and thus mini-
mized, as compared to overhead accumulation at a
single master node. The Reservation Service then
selects the required number of execution nodes and
informs their Allocation Services to temporarily lock
the reserved time slots. After all the required reser-
vations on the execution nodes have been temporar-
ily locked, the Reservation Service returns the reser-
vation outcome and its price (if successful) to the
user/broker.

The user/broker may confirm or reject the reser-
vations during the confirm reservation phase. The
Reservation Service then notifies the Allocation
Service of selected execution nodes to lock or re-
move temporarily locked time slots accordingly. We
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Fig. 1. Sequence of events between enterprise Cloud nodes for a successful reservation request.

assume that a payment service is in place to ensure
the user/broker has sufficient funds and can suc-
cessfully deduct the required payment before the
Reservation Service proceeds with the final confir-
mation.

During the execution phase when the reserved
time arrives, the user/broker submits applications to
be executed to the Scheduling Service at the master
node. The Scheduling Service determines whether
any of the reserved execution nodes are available
before dispatching applications to them for execu-
tion, otherwise applications are queued to wait for
the next available execution nodes that are part of
the reservation. The Execution Service at each exe-
cution node starts executing an application after re-
ceiving it from the Scheduling Service and updates
the Scheduling Service of changes in execution sta-
tus. Hence, the Scheduling Service can monitor exe-
cutions for an application and notify the user/broker
upon completion.

4.3. Allocating Advanced Reservations

Figure 2 shows that the process of allocating ad-
vanced reservations happens in two levels: the Allo-
cation Service at each execution node and the Reser-
vation Service at the master node. Both services are
designed to support pluggable policies so that the
provider has the flexibility to easily customize and
replace existing policies for different levels and/or
nodes without interfering with the overall resource
management architecture.

The Allocation Service determines how to sched-

ule a new reservation at the execution node. For sim-
plicity, we implement the same time slot selection
policy for the Allocation Service at every execution
node. The Allocation Service allocates the requested
time slot if the slot is available. Otherwise, it assigns
the next available time slot after the requested start
time that can meet the required duration.

The Reservation Service performs node selection
by choosing the required number of available time
slots from execution nodes and administers admis-
sion control by accepting or rejecting a reservation
request. It also calculates the price for a confirmed
reservation based on the implemented pricing pol-
icy. Various pricing policies considered in this paper
are explained in Section 3.3. Available time slots are
selected taking into account the application require-
ment of the user.

The application requirement considered here is
the task parallelism to execute an application. A se-
quential application has a single task and thus needs
a single processor to run, while a parallel applica-
tion needs a required number of processors to con-
currently run at the same time.

For a sequential application, the selected time
slots need not have the same start and end times.
Hence, available time slots with the lowest prices
are selected first. If there are multiple available time
slots with the same price, then those with the ear-
liest start time available are selected first. This en-
sures that the cheapest requested time slot is allo-
cated first if it is available. Selecting available time
slots with the lowest prices first is fair and realistic.
In reality, reservations that are confirmed earlier en-
joy the privilege of cheaper prices, as compared to
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Fig. 2. Interaction of services in enterprise Cloud.

reservation requests that arrive later.
But, for a parallel application, all the selected time

slots must have the same start and end times. Again,
the earliest time slots (with the same start and end
times) are allocated first to ensure the requested
time slot is allocated first if available. If there are
more available time slots (with the same start and
end times) than the required number of time slots,
then those with the lowest prices are selected first.

The admission control operates according to the
service requirement of the user. The service require-
ments examined are the deadline and budget to
complete an application. We currently assume both
deadline and budget are hard constraints. Hence, a
confirmed reservation must not end after the dead-
line and cost more than the budget. Therefore, a
reservation request is not accepted if there is insuf-
ficient number of available time slots on execution
nodes that ends within the deadline and the total
price of the reservation costs more than the budget.

5. Performance Evaluation

Figure 3 shows the enterprise Cloud setup used for
performance evaluation. The enterprise Cloud com-
prises 33 PCs providing dedicated access to comput-

17 Execution Nodes

Lab0112
11 Execution Nodes

Lab0111

4 Execution Nodes

Lab0113

Master Node

Users/

Brokers

Fig. 3. Configuration of enterprise Cloud.

ing resources through 1 master node and 32 execu-
tion nodes located across 3 student computer lab-
oratories in the Department of Computer Science
and Software Engineering, The University of Mel-
bourne. Synthetic workloads are created by utilizing
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trace data.
We use Feitelson’s Parallel Workload Archive [27]

to model the reservation requests because trace data
of Cloud applications are currently not released and
shared by any commercial Cloud service providers.
But, for a scientific research paper, it is extremely
important to have publicly accessible trace data so
that our experiments can be reproducible by other
researchers. Moreover, this paper focuses on study-
ing the application requirements of users in the con-
text of High Performance Computing (HPC). Hence,
the Parallel Workload Archive meets our objective
by providing the necessary characteristics of real
parallel applications collected from supercomputing
centers. Unfortunately, since the Parallel Workload
Archive is not based on paying users in utility com-
puting environments, it is possible that the trace
pattern of these archived workloads will be different
from those with paying users.

Our experiments utilize 238 reservation requests
in the last 7 days of the SDSC SP2 trace (April 1998
to April 2000) version 2.2 from the Parallel Work-
load Archive. The SDSC SP2 trace from the San
Diego Supercomputer Center (SDSC) in USA is cho-
sen due to the highest resource utilization of 83.2%
among available traces to ideally model a heavy
workload scenario. The trace only provides the inter-
arrival times of reservation requests, the number of
processors to be reserved as shown in Figure 4(a)
(downscaled from a maximum of 128 nodes in the
trace to a maximum of 32 nodes), and the duration
to be reserved as shown in Figure 4(b). Service re-
quirements are not available in this trace. Hence,
we use a methodology proposed by Irwin et al. [28]
to synthetically assign service requirements through
two request classes: (i) Low Urgency (LU) and (ii)
High Urgency (HU). Figure 4(b) and 4(c) show the
synthetic values of deadline and budget for the 238
requests respectively.

A reservation request i in the LU class has a dead-
line of high deadlinei/durationi value and budget
of low budgeti/f(durationi) value. f(durationi) is a
function representing the minimum budget required
based on durationi. Conversely, each request in the
HU class has a deadline of low deadlinei/durationi

value and budget of high budgeti/f(durationi)
value. This is realistic since a user who submits
a more urgent request to be met within a shorter
deadline offers a higher budget for the short notice.
Values are normally distributed within each of the
deadline and budget parameters.

For simplicity, we only evaluate the performance

of pricing for processing power as listed in Ta-
ble 1 with various combinations of application re-
quirements (sequential and parallel) and request
classes (LU and HU). However, the performance
evaluation can be easily extended to include other
resource types such as memory, storage, and band-
width. Both LU and HU classes are selected so as
to observe the performance under extreme cases of
service requirements with respective highest and
lowest values for deadline and budget. We also cur-
rently assume that every user/broker can definitely
accept another reservation time slot proposed by
the enterprise Cloud if the requested one is not
possible, provided that the proposed time slot still
satisfies both application and service requirements
of the user.

6. Performance Results

We analyze the performance results of seven var-
ious pricing mechanisms (listed in Table 1) over one
week with respect to the application and service re-
quirements of users. The three performance metrics
being measured are: (i) the accumulated revenue of
confirmed reservations in $, (ii) the current average
price of confirmed reservations in $/CPU/Hr, and
(iii) the accumulated number of confirmed reserva-
tions. The performance results of all three metrics
have been normalized to produce standardized val-
ues within the range of 0 to 1 for easier relative
comparison. The revenue (in $) of a confirmed reser-
vation is the total sum of revenue across all its re-
served nodes calculated using the assigned price (de-
pending on the specific pricing mechanism) and the
reserved duration at each node. Then, the average
price (in $/CPU/Hr) of a confirmed reservation is
computed to reflect the standard price across all its
reserved nodes.

6.1. Fixed Prices

Based on the configured pricing parameters of
the four fixed pricing mechanisms listed in Table 1,
we can observe that FixedMax charges the highest
current average price, followed by FixedTimeMax,
FixedTimeMin, and FixedMin (Figure 5(b), 6(b),
7(b), and 8(b)). FixedMax acts as the maximum
bound of the fixed pricing mechanisms by charg-
ing the highest price of $3/CPU/Hr for process-
ing power, while FixedMin acts as the minimum
bound by charging the lowest price of $1/CPU/Hr.
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The remaining FixedTimeMax and FixedTimeMin
falls within the maximum and minimum bounds by
charging the same price as FixedMin ($1/CPU/Hr)
for off-peak (12AM–12PM), and charging either the
same price as ($3/CPU/Hr for FixedTimeMax) or
a lower price ($2/CPU/Hr for FixedTimeMin) than
FixedMax for peak (12PM–12AM).

Given these current average price observa-
tions, one may infer that FixedMax should always
provide the highest accumulated revenue (maxi-
mum bound), followed by FixedTimeMax, Fixed-
TimeMin, and FixedMin with the lowest accumu-
lated revenue (minimum bound). However, our
performance results show that this inference is only
valid for three of our tested scenarios (Figure 5(a),
6(a), and 8(a)). For LU parallel application re-
quests (Figure 7(a)), FixedTimeMin and FixedMin
provide the highest accumulated revenue, instead
of FixedMax and FixedTimeMax. This is because
both FixedMax and FixedTimeMax charge sig-
nificantly higher current average prices (45% and
0%–45% more than FixedMin for FixedMax and
FixedTimeMax respectively in Figure 7(b)) that
mostly exceed the budget of LU parallel applica-
tion requests, and can thus only accept a lower
number of requests (52% and 31% less than Fixed-
Min for FixedMax and FixedTimeMax respectively
in Figure 7(c)). In contrast, both FixedMax and
FixedTimeMax only charge current average prices
that are not more than 31% higher than FixedMin
for the other three scenarios (Figure 5(b), 6(b), and
8(b)). This thus demonstrates the dilemma faced
by providers on how to set the best price for fixed
pricing mechanisms in order to achieve the best
revenue performance across all various scenarios.

We now determine whether Fixed or FixedTime
is a better fixed pricing mechanism across all var-
ious scenarios. We first compare FixedMax and
FixedTimeMax based on their improvement in rev-
enue compared to FixedMin (shown in Table 2
for Figure 5(a), 6(a), 7(a), and 8(a)) because they
reflect the same price difference of $2/CPU/Hr.
FixedMax charges $3/CPU/Hr, while FixedMin
charges $1/CPU/Hr. Likewise, FixedTimeMax
charges $1/CPU/Hr for off-peak (12AM–12PM)
and $3/CPU/Hr for peak (12PM–12AM), while
FixedMin charges the same $1/CPU/Hr for both
off-peak and peak.

Table 2 shows that FixedMax has a significantly
higher standard deviation (SD = 58.01) of improve-
ment in revenue compared to FixedMin, which is
about 2.5 times more than that of FixedTimeMax

Table 2
Improvement in revenue compared to FixedMin.

Pricing Sequential Parallel SD

LU HU LU HU

FixedMax 61% 26% -72% 33% 58.01

FixedTimeMax 36% 13% -18% 21% 22.76

FixedTimeMin 20% 7% 4% 19% 8.19

Libra+$Max -17% 70% -89% 43% 70.59

Libra+$Min 48% 24% -56% 24% 45.43

Libra+$Auto 24% 87% -8% 42% 39.65

Table 3
Gap in revenue compared to the upper bound.

Pricing Sequential Parallel SD

LU HU LU HU

FixedMax 31% 81% 23% 57% 26.36

FixedMin 75% 94% 43% 73% 21.08

FixedTimeMax 52% 87% 27% 64% 24.99

FixedTimeMin 63% 91% 33% 66% 23.75

Libra+$Max 21% 60% 14% 34% 20.27

Libra+$Min 41% 82% 26% 62% 24.46

Libra+$Auto 48% 49% 45% 52% 2.89

(SD = 22.76). But, FixedTimeMin (which charges
$2/CPU/Hr for peak) has an even lower standard
deviation (SD = 8.19) than that of FixedTimeMax
(SD = 22.76). This means that setting the ideal
price correctly for various time periods of resource
usage to satisfy different types of application and
service requirements is not easy. Still, out of these
four fixed pricing mechanisms, the FixedTime mech-
anisms are easier to derive and more reliable than
the Fixed mechanisms since they support a range of
prices across various time periods of resource usage
and are observed to have less revenue fluctuations
than Fixed mechanisms respectively.

Table 3 shows the gap in revenue from the upper
bound of revenue. This upper bound is computed
as the total budget of requests which are accepted.
Thus, pricing mechanisms can have different upper
bound values since they may not accept the same
requests. Defining this upper bound enables us to
know how optimal the pricing mechanisms are in
terms of maximizing the revenue out of the budget
given by the user. Hence, it is better to have a lower
percentage gap in Table 3 since it means that the
pricing mechanism is able to achieve more revenue
out of the maximum budget.
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As listed in Table 3, all four fixed pricing mecha-
nisms achieve a much worse percentage gap for HU
requests (57%–94%) than for LU requests (23%–
75%). But, FixedMin is the most optimal out of
them with the lowest standard deviation (SD =
21.08), followed by FixedTimeMin (SD = 23.75),
FixedTimeMax (SD = 24.99), and FixedMax (SD
= 26.36). This further reinforces that FixedTime
mechanisms are easier to derive and more reliable
for the provider compared to Fixed mechanisms.

6.2. Variable Prices

We analyze the three variable pricing mechanisms
which are based on Libra+$ as listed in Table 1: Li-
bra+$Max, Libra+$Min, and Libra+$Auto. Unlike
the previously discussed four fixed pricing mecha-
nisms, Libra+$ considers the service requirement of
users by charging a lower price for a request with
longer deadline as an incentive to encourage users to
submit requests with longer deadlines that are more
likely to be accommodated than shorter deadlines.
The difference in prices charged by Libra+$Max,
Libra+$Min, and Libra+$Auto is primarily depen-
dent on the β factor for the dynamic pricing com-
ponent of Libra+$ as explained in Section 3.3 – a
higher β factor means that Libra+$ will charge a
higher price.

Table 1 shows that Libra+$Max and Libra+$Min
has a β value of 3 and 1 respectively, thus Li-
bra+$Max always charges a higher price than
Libra+$Min (Figure 5(b), 6(b), 7(b), and 8(b)).
However, Libra+$Max only provides higher accu-
mulated revenue than Libra+$Min for HU requests
with short deadline and high budget (Figure 6(a)
and 8(a)). For LU requests with long deadline and
low budget (Figure 5(a) and 7(a)), Libra+$Max
instead provides the least accumulated revenue out
of all seven fixed and variable pricing mechanisms,
even though it charges the highest prices at various
times (Figure 5(b) and 7(b)). This highlights the
inflexibility of static pricing parameters to maxi-
mize revenue for different service requirements. In
this case, β of Libra+$Max is set too high such that
requests are rejected due to low budget.

On the other hand, Libra+$Auto is initially
configured with the same pricing parameters as Li-
bra+$Min, but will automatically adjust β based on
the availability of compute nodes over time. Since
Libra+$Auto does not have a statically defined β
value, it has the flexibility to charge prices that are

higher (Figure 6(b)) or lower (Figure 5(b), 7(b),
and 8(b)) than Libra+$Max and Libra+$Min. In
particular, Libra+$Auto is able to exploit the high
budget of users by automatically adjusting to a
higher β to increase prices and maximize revenue
when the availability of nodes is low. This can be
observed for HU sequential application requests
(Figure 6(b)) wherein Libra+$Auto continues in-
creasing prices to higher than that of Libra+$Max
and other pricing mechanisms when demand is high
such as during the later half of day 1, 2, 3, and 5.

Conversely, Libra+$Auto also adjusts to a lower β
to decrease prices when demand is low to accommo-
date users with lower budgets. Thus, Libra+$Auto
can continue to generate revenue, but at a slower
rate when demand is low (i.e., when there are more
unused nodes which will otherwise be wasted). This
can again be observed for HU sequential application
requests (Figure 6(b)), when demand is low such
as during the early half of day 2, 3, 5, and 6, Li-
bra+$Auto keeps reducing prices to lower than that
of Libra+$Max to accept requests that are not will-
ing to pay more.

With this autonomic pricing feature, we can ob-
serve that Libra+$Auto is able to generate the
most highest (Figure 6(a)) and second highest
(Figure 8(a)) revenue for sequential and parallel
applications of HU requests respectively. In partic-
ular, Libra+$Auto is able to achieve these highest
revenues by accepting an almost similar number
of HU requests as most other pricing mechanisms
for both sequential and parallel applications (Fig-
ure 6(c) and 8(c)). A similar number of HU requests
are accepted since nodes are less likely to be avail-
able for short deadlines. Thus, it demonstrates that
Libra+$Auto adjusts pricing by considering the
service requirements (deadline and budget) of users.

In addition, for sequential applications, we can
observe that Libra+$Auto accepts the least num-
ber of requests for both LU and HU requests (Fig-
ure 5(c) and 6(c)). But, for parallel applications,
Libra+$Auto is able to accept a higher number of
requests similar to most other pricing mechanisms
(Figure 7(c) and 8(c)). This is because parallel ap-
plications need multiple nodes which require higher
budget, compared to sequential applications which
only require a single node. Hence, the low budget
leads to a huge inconsistency in performance be-
tween sequential and parallel applications for other
pricing mechanisms due to the inflexibility of static
pricing parameters. However, Libra+$Auto is able
to progressively increase the accumulated revenue
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over the 7-days period for parallel applications
(Figure 7(a) and 8(a)), as compared to sequential
applications (Figure 5(a) and 6(a)). For example,
Libra+$Auto is still able to achieve almost the same
revenue as Libra+$Max even though Libra+$Max
accumulates more revenue much earlier from Day 2
to 5 (Figure 8(a)). This is because Libra+$Auto ad-
justs to a lower β at various times to accommodate
more requests with lower prices than Libra+$Max
to eventually fix the initial shortfall (Figure 8(b)).
Hence, unlike Libra+$Max and Libra+$Min, Li-
bra+$Auto can also automatically adjust pricing
based on application requirements, in addition to
service requirements.

As listed in Table 2, Libra+$Auto has a signif-
icantly lower standard deviation (SD = 39.65) of
improvement in revenue compared to FixedMin,
which is about 1.8 and 1.1 times less than that of
Libra+$Max (SD = 70.59) and Libra+$Min (SD
= 45.43) respectively. In fact, the standard devia-
tion of Libra+$Auto is also much lower than that
of FixedMax (SD = 58.01) which is a fixed pricing
mechanism. Even though Libra+$Auto has a higher
standard deviation than that of FixedTimeMax
(SD = 22.76) and FixedTimeMin (SD = 8.19), Li-
bra+$Auto is able to generate considerably higher
revenue for HU requests of both sequential and par-
allel applications by differentiating both application
and service requirements of users, which is critical
from the perspective of a utility computing service.

Table 3 shows that Libra+$Auto is the most op-
timal out of all seven pricing mechanisms across all
various scenarios. Libra+$Auto has the lowest stan-
dard deviation (SD = 2.89) of gap in revenue com-
pared to the upper bound, which is about 7.0 and 8.4
times less than that of Libra+$Max (SD = 20.27)
and Libra+$Min (SD = 24.46) respectively. Unlike
the other six mechanisms which have a wide range
of percentage gap between LU and HU requests, Li-
bra+$Auto consistently maintains a narrow range
of percentage gap for both LU and HU requests
(45%–52%). This demonstrates that Libra+$Auto
is able to adjust pricing effectively to maximize rev-
enue across all various scenarios.

However, Libra+$Auto is not the most optimal
for each specific scenario. Libra+$Auto is only the
most optimal for HU sequential application requests
with the lowest percentage gap of 49%. Instead, Li-
bra+$Max is the most optimal for the other three
scenarios with the lowest percentage gap of 21%,
14%, and 34% for LU sequential, LU parallel and HU
parallel application requests respectively. Hence, the

current simple heuristic of Libra+$Auto can be fur-
ther enhanced to not only maximize revenue across
all various scenarios, but also for each specific sce-
nario.

7. Conclusion

This paper studies the performance of charging
fixed and variable prices for a utility computing
service. Charging fixed prices is simple to under-
stand and straightforward for users, but do not
differentiate pricing to exploit different user require-
ments in order to maximize revenue. Hence, this
paper emphasizes the importance of implementing
autonomic metered pricing for a utility computing
service to self-adjust prices to increase revenue. In
particular, autonomic metered pricing can also be
straightforward for users through the use of ad-
vanced reservations. With advanced reservations,
users can not only know the prices of their required
resources in the future ahead, but are also able to
guarantee access to future resources to better plan
and manage their operations.

Through the actual implementation of an en-
terprise Cloud, we show that a simple autonomic
pricing mechanism called Libra+$Auto is able to
achieve higher revenue than other common fixed
pricing mechanisms by considering two essential
user requirements: (i) application (sequential and
parallel) and (ii) service (deadline and budget). The
use of advanced reservations enables Libra+$Auto
to self-adjust prices in a more fine-grained manner
based on the expected workload demand and avail-
ability of nodes so that more precise incentives can
be offered to individual users to promote demand
and thus improve revenue. Experimental results
show that Libra+$Auto is able to exploit budget
limits to achieve higher revenue than other variable
and fixed pricing mechanisms by automatically ad-
justing to a higher β to increase prices when the
availability of nodes is low and a lower β to reduce
prices when there are more unused nodes which will
otherwise be wasted.

Our future work will involve conducting exper-
imental studies using real applications and service
requirements of users which can be collected by
providers such as Amazon, Sun Microsystems, or
Tsunamic Technologies. We also need to under-
stand how users will react to price changes and
when they will switch providers. This knowledge
can be used to derive more sophisticated models to
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construct a more complex autonomic pricing mech-
anism that considers more dynamic factors such as
user response from price changes and competition
from other providers. A stochastic model can then
be built based on historical observation data to pre-
dict future demand and adjust prices accordingly.
In addition, allowing cancellation of reservations is
essential to provide more flexibility and convenience
for users since user requirements can change over
time. Therefore, future work needs to investigate
the implication of cancellations for a utility comput-
ing service and possible overbooking of reservations
to address cancellations. It may be possible to apply
revenue management [8] to monitor current can-
cellations, amend cancellation and refund policies,
and adjust prices for new reservations accordingly.
The providers may also require users to pay penal-
ties or not be entitled to any refunds for cancelling
reservations depending on specific booking terms
and agreements during the time of reservation.
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