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Abstract—As Clouds are complex, large-scale, and 

heterogeneous distributed systems, management of their resources 

is a challenging task. They need automated and integrated 

intelligent strategies for provisioning of resources to offer services 

that are secure, reliable, and cost-efficient. Hence, effective 

management of services becomes fundamental in software 

platforms that constitute the fabric of computing Clouds. In this 

direction, this paper identifies open issues in autonomic resource 

provisioning and presents innovative management techniques for 

supporting SaaS applications hosted on Clouds. We present a 

conceptual architecture and early results evidencing the benefits of 

autonomic management of Clouds. 

Keywords: Cloud Computing, Data Centers, Service Level 

Agreements, Resource Provisioning, and Autonomic Management.  

I. INTRODUCTION 

Cloud computing “refers to both the applications 

delivered as services over the Internet, and the hardware and 

system software in the data centres that provide those 

services”, according to Armbrust et al.[1], and “is a utility-

oriented distributed computing system consisting of a 

collection of inter-connected and virtualized computers that 

are dynamically provisioned and presented as one or more 

unified computing resource(s) based on service-level 

agreements established through negotiation between the 

service provider and consumers” according to Buyya et al. 

[2]. Both definitions capture the real essence of this new 

trend in distributed systems, where both software applications 

and computing infrastructure are moved from private 

environments to third party data centres, and made accessible 

through the Internet. Cloud computing delivers infrastructure, 

platform, and software (applications) as subscription-based 

services in a pay-as-you-go model. In industry, these services 

are referred to as Infrastructure as a Service (IaaS), Platform 

as a Service (PaaS), and Software as a Service (SaaS), 

respectively.   

To support end-user applications, service providers such 

as Amazon [3], HP [4], and IBM [5] have deployed Cloud 

data centers worldwide. These applications range from 

generic text processing software to online healthcare. Once 

applications are hosted on Cloud platforms, users are able to 

access them from anywhere at any time, with any networked 

device, from desktops to smartphones. The Cloud system taps 

into the processing power of virtualized computers on the 

back end, thus significantly speeding up the application for 

the users, who pay for the actually used services. However, 

management of large-scale and elastic Cloud infrastructure 

offering reliable, secure, and cost-efficient services is a 

challenging task. It requires co-optimization at multiple 

layers (infrastructure, platform, and application) exhibiting 

autonomic properties.  Some key open challenges are: 

• Quality of Service (QoS). Cloud service providers (CSPs) 

need to ensure that sufficient amount of resources are 

provisioned to ensure that QoS requirements of Cloud 

service consumers (CSCs) such as deadline, response 

time, and budget constraints are met. These QoS 

requirements form the basis for SLAs (Service Level 

Agreements) and any violation will lead to penalty. 

Therefore, CSPs need to ensure that these violations are 

avoided or minimized by dynamically provisioning the 

right amount of resources in a timely manner. 

• Energy efficiency. It includes having efficient usage of 

energy in the infrastructure, avoiding utilization of more 



resources than actually required by the application, and 

minimizing the carbon footprint of the Cloud application. 

• Security. Achieving security features such as 

confidentiality (protecting data from unauthorized 

access), availability (avoid malicious users making the 

application unavailable to legitimate users), and reliability 

against Denial of Service (DoS) attacks. The DoS is 

critical because, in a dynamic resource provisioning 

scenario, increase in the number of users causes automatic 

increase in the resources allocated to the application. If a 

coordinated attack is launched against the SaaS provider, 

the sudden increase in traffic might be wrongly assumed 

to be legitimate requests and resources would be scaled 

up to handle them. This would result in an increase in the 

cost of running the application (because provider will be 

charged by these extra resources) as well as a waste of 

energy. 

As Clouds are complex, large-scale, and heterogeneous 

distributed systems (e.g., consisting of multiple Data Centers, 

each containing 1000s of servers and peta-bytes of storage 

capacity), management is a crucial feature, which needs to be 

automated and integrated with intelligent strategies for 

dynamic provisioning of resources in an autonomic manner. 

Effective management of services becomes fundamental in 

platforms that constitute the fabric of computing Clouds; and 

to serve this purpose, autonomic models for PaaS (Platform 

as a Service) software systems are essential. 

Autonomic systems exhibit the ability of self-monitoring, 

self-repairing, and self-optimizing by constantly sensing 

themselves and tuning their performance [6]. Such autonomic 

features are also exhibited by market economy, where 

resources/services are priced so as to maintain equilibrium in 

the supply and demand. Clouds constitute an interesting 

venue to explore the use of autonomic features, because of 

their dynamism, large scale, and complexity. 

In this direction, this paper presents our early steps 

towards innovative autonomic resource provisioning and 

management techniques for supporting SaaS applications 

hosted on Clouds. Steps towards this goal include (i) 

development of an autonomic management system and 

algorithms for dynamic provisioning of resources based on 

users’ QoS requirements to maximize efficiency while 

minimizing the cost of services for users and (ii) creation of 

secure mechanisms to ensure that the resource provisioning 

system is able to allocate resources only for requests from 

legitimate users. We present a conceptual model able to 

achieve the aforementioned goals and present initial results 

that evidence the advantages of autonomic management of 

Cloud infrastructures. 

II. RELEVANT WORK 

Autonomic management [6], [25] is a desired feature for 

any large scale distributed system and even more important 

in dynamic infrastructures such as Clouds. Autonomic 

systems are self-regulating, self-healing, self-protecting, and 

self-improving. In other words, they are self-managing. 

Initial investigation on developing autonomic based systems 

in both academia and industry has been already carried out. 

Parashar and Hariri [11] reported an overview of the early 

efforts in developing autonomic systems for storage 

management (OceanStore [7], Storage Tank [8]), computing 

resources (Oceano [9]), and databases (SMART DB2 [10]). 

Computing Grids have benefited from the application of 

autonomic models for management of resources and the 

scheduling of applications [11], [12], [13], [14]. Even though 

none of these platforms considers energy-efficiency as a 

high-priority parameter to be optimized, the success in 

autonomic management for Grid applications demonstrates 

potential of integrating autonomic models in Cloud 

Computing.  

CometCloud [15] implements an infrastructure for 

autonomic management of workflow applications on Clouds. 

Recently other works [16],[17],[18] explored provisioning of 

resources for Grid and Cloud applications. However, they do 

not support an integrated solution for security-enforced, cost-

effective, energy efficient, and dynamic resource 

provisioning, which are key open issues. 

Solutions for secure Cloud platforms have been proposed 

in the literature [19]. However, existing works are yet to 

address issues related to recognition of attacks against SaaS 

with the aim of exploiting elasticity. A step towards this goal 

has been given by Sqalli et al. [20]. Their EDoS-Shield 

system is able to detect and mitigate distributed denial of 

service attacks against Clouds. However, research is required 

to determine if the same or similar techniques can be applied 

for thwarting attacks against elastic infrastructures. 

Amazon Elastic MapReduce has enabled its customers to 

dynamically modify the size of their running job flows. Using 

their API, customers have the flexibility to add or remove 

nodes based on the changing capacity needs of their job flow. 

However, this service does not offer automatic provisioning 

of new nodes based on end-user demands/QoS. 

III. ARCHITECTURE FOR AUTONOMIC CLOUD 

MANAGEMENT 

As we aim towards the development of autonomic 

resource provisioning and management techniques for 

supporting SaaS applications hosted on Clouds, the following 

aspects were identified as essential:  
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Figure 1. System architecture for autonomic Cloud management. 

• Development of an autonomic management system and 

algorithms for dynamic provisioning of resources based 

on users QoS requirements to maximize efficiency while 

minimizing the cost of services for users. 

• Creation of secure mechanisms to ensure that the resource 

provisioning system is able to allocate resources only for 

requests from legitimate users. 

Figure 1 shows the high-level architecture enabling 

autonomic management of SaaS applications on Clouds. The 

main components of the architecture are:  

• SaaS Application Portal: This component hosts the SaaS 

application using a Web Service-enabled portal system. 

Users or brokers acting on their behalf submit service 

requests from anywhere in the world to these SaaS 

applications. 

• Autonomic Management System and PaaS Framework: 

This layer serves as a Platform as a Service. Its 

architecture comprises of autonomic management 

components to be integrated in the PaaS level, along with 

modules enforcing security and energy efficiency. User 

QoS-based application scheduler and dynamic resource 

provisioning algorithms are added as plug-ins. 

• Infrastructure as a Service: This layer comprises 

distributed resources provided by private (enterprise 

networks) and public Clouds. Enterprise networks could 

leverage the resources in public Clouds by leasing them 

according to their user requirements, as and when needed.  

SaaS is described as a software application deployed as a 

hosted service and accessed over the Internet. This model 

provides a scalable way for service providers and ISVs 

(Independent Software Vendors) to deliver their existing 

and/or new software applications to end-users without having 

to worry about the expertise or the capital budget to purchase, 

install, and manage large IT infrastructure. In order to 

manage the SaaS applications in large scale, the PaaS layer 

has to coordinate the Cloud resources according to the SaaS 

requirements, which is ultimately the user QoS. This 

coordination requires the PaaS layer to handle the scheduling 

of applications and resource provisioning such that the user 



QoS is satisfied and also it does not make the provisioning 

too costly to the PaaS service provider. 

The autonomic management system incorporates the 

following services in the PaaS layer: Security and attack 

detection, application scheduling, and dynamic provisioning. 

The autonomic manager is composed by the following 

components, with specific roles: 

• Application Scheduler. The scheduler is responsible for 

assigning each task in an application to resources for 

execution based on user QoS parameters and the overall 

cost for the service provider. This scheduler is aware of 

different types of applications such as independent batch 

applications (such as Bag of Tasks), web multi-tier 

applications, and scientific workflows (where tasks have 

dependencies that have to be managed) executed in 

Clouds. Depending on the computation and data 

requirements of each application, it directs the dynamic 

resource-provisioning component to instantiate or 

terminates specified number of compute, storage, and 

network resources while maintaining a queue of tasks to 

be scheduled. Execution of the application also may 

require data transfer between Clouds, which is also 

handled by this component. This logic is embedded as 

multi-objective application scheduling algorithms [21]. 

This heuristic-based algorithm focuses on QoS 

parameters such as response time, cost of service usage, 

energy consumption, maximum number of resources 

available per unit price, and penalties for service 

degradation.  

• Energy-efficient scheduler. One of the main objectives to 

be optimized during the application scheduling process is 

energy utilization. Applications need to be scheduled in 

resources in such a way that their total energy 

consumption is minimized. However, the algorithm has to 

achieve this goal without compromising SLAs and cost. 

This is a multi-objective optimization problem with 

conflicting goals. An aspect of this problem that makes it 

even more challenging is the fact that energy 

consumption holds a non-linear relationship with cost and 

performance. Search for a solution for such a challenging 

and relevant problem is one of the main challenges of this 

research. 

• Dynamic Resource Provisioning Algorithms. This 

component implements the logic for provisioning and 

managing virtualized resources in private and public 

Cloud environments based on the resource requirements 

as directed by the application scheduler. This is achieved 

by dynamic negotiation with Cloud IaaS providers for the 

right type of resource for a certain time and cost by taking 

into account the past execution history of applications and 

budget availability. The resource-provisioning module is 

complemented with prediction-based algorithms that rely 

on market-oriented provisioning practices, for handling 

any change in spot prices. In particular, these algorithms 

perform the following tasks: 

o Dynamic resource allocation: Scaling in/out 

(expanding/shrinking of resources) will be 

carried out using an online instantiation 

mechanism where compute, storage and network 

services will be leased on the fly. Resources are 

terminated once they are no longer needed by the 

system. 

o Prediction for resource selection: As the cost of 

using resources depends on the duration and type 

of resources provisioned, a prediction 

mechanism will be implemented that takes into 

account historic execution statistics of SaaS 

applications. Based on prediction of time and 

cost, this component will control the resource 

plug-in component to allocate either the spot-

instances or the fixed price instances of IaaS 

resources. We also plan to conduct resource-

pricing design based on these predictions. The 

prediction will be based on the supply and 

demand for resources, similar to market-oriented 

principles used for reaching equilibrium state [2]. 

• Security and Attack Detection: This component 

implements all the checks to be performed when requests 

are received in order to evaluate their legitimacy. This 

prevents the scaling-up of resources to respond to 

requests created with the intention of causing a Denial of 

Service or other forms of cyber-attacks. The module must 

be able to distinguish between authorized access and 

attacks, and in case of suspicion of attack, it can either 

decide to drop the request or avoid excessive provision of 

resources to it. To achieve it, techniques already in use for 

detection of DDoS attacks need to be adapted to be able 

to handle exclusive characteristics of Cloud systems. In 

this sense, this module has to work as a “DDoS Detection 

as a Service” for the PaaS middleware. 

IV. DATA ANALYTICS WORKFLOW ENGINE: A CASE STUDY 

In order to demonstrate the importance and the impact of 

autonomic Cloud management, we present in this section a 

case study of autonomic Cloud management in the context of 

workflow applications for spatial-temporal data analytics for 

online prediction of dengue fever outbreaks in Singapore and 

their deployment on Clouds. 



 

Figure 2. Flows of  workflow-enabled scalable spatial-temporal analysis. 

Dengue is a mosquito-borne infectious disease that 

occurs especially in tropical regions such as South America 

and Southeast Asia. According to the World Health 

Organization (WHO), there are 2.5 billion people in the 

world living in dengue endemic places, which makes it a 

major international public health concern. This is further 

aggravated in densely populated regions, where the disease 

can spread quickly. Therefore, prediction and control of 

dengue is a very important public health issue for Singapore 

[22], and this motivated the development of prediction 

models for dissemination of the disease in the country. 

The application data requirement comprises multi-

dimensional data containing information such as reported 

dengue incidents, weather parameters, and geographic 

information. Incidence data can reach hundreds of MB, and 

the associated weather data can easily take up a few GBs. For 

example, at a daily resolution, a single output variable from 

the ECHAM5 climate model comprises 300,000 spatial 

points multiplied by 365,250 temporal intervals per century 

per scenario. Application users must be able to trace the 

number of dengue incidences by day, week, month, and year 

from 1960s to 2011. 

The processing time required to extract the data, model 

it, and interpolate for visualization is about 30 minutes in 

total for processing 1-day data set on a workstation with an 

Intel dual core 2.93GHz CPU and 4GB of memory. 

Moreover, in order to be of practical value in the case of 

dengue outbreak, the system must be able to dynamically 

allocate resources and optimize the application performance 

on Cloud infrastructures (private, public, or hybrid Clouds) to 

reduce the processing time and enable real-time spatial and 

temporal analysis with shorter turnaround time. 

From the above, we can clearly notice that autonomic 

Cloud technologies are paramount for the goals of timely 

prediction of dengue dissemination, so that health agencies 

can be mobilized to react to the incident. We now describe 

our Cloud-enabled Workflow Engine used in this case study. 

A. Cloud Workflow Engine and Autonomic Management 

The Cloudbus Workflow engine [24] is an extension of a 

Grid-based workflow management system [23] supporting 

the execution of workflows in private, public, and hybrid 

Clouds. Initially, it supported features such as GUI-based 

description of workflows, application composition, data 

movement across Clouds, and task scheduling and 

management. It has been further extended to incorporate 

autonomic management capabilities based on iterative 

optimizations. 

The overview of the autonomic workflow management 

system and its use in data analytics application is depicted in 

Figure 2. The performance requirements are achieved by 

partition of the data in different parallel tracks and execution 

of such tracks on multiple virtual machines simultaneously. 

To achieve this, the system autonomically optimizes its 

performance and finds the optimal provisioning for 

utilization and performance optimization. 

The iterative optimization is designed for workflow 

analytical applications in which a subset of the analytic 

tasks/functions is repeated during the analytics, forming a 

sort of “loop” in the workflow execution. When such loops 

are detected in the applications, the workflow engine profiles 

the early execution of tasks, storing information about their 

execution time. This profile information is used for optimal 

provisioning purposes in terms of cost and execution time 

(makespan). Hence, the performance of running the data 



Step 0. Initiate the Cloud resources to execute the 
tasks. 

Step 1. Apply a greedy algorithm to minimize 
the makespan ignoring cost and resource constraints. 

Step 2. Apply an initial schedule that fully utilize the 
allocated machines by scheduling extra tasks to 
resources as long as it does not increase the makespan. 

Step 3. Analyze whether downgrading the public 
Cloud instance type still enable completion of the 
workflow within the same time slot. If so, utilize the 
simpler and cheaper instance type. 

Step 4. Run the tasks on the schedule nodes. 

 

 
Figure 3. Algorithm for iterative optimization. 
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Figure 4. Experimental testbed. 
 

 

Figure 5. Iterative workflow model of the dengue fever 

prediction model used in the experiments. The iteration 

happens between tasks H and A, as depicted in the figure. 
 

analytics program is continuously improved by the system, 

which autonomically scales up and down provisioned 

resources to meet the users’ performance requirements. 

For the purposes of performing the dynamic 

provisioning, the optimization problem solved by the 

scheduler consists of an initial schedule S that allocates all 

the workflow tasks from the workflow graph G to Cloud 

resources considering precedence constraints. We define 

Time t(S) and Cost m(S) as the completion time and monetary 

cost of the schedule S, respective. The iterative optimization 

technique aims to derive an optimal schedule Sopt to achieve 

tmin(SG) and mmin(SG). As the problem of mapping workflow 

tasks onto distributed heterogeneous resources to achieve 

multi-objective optimization is NP-complete, we proposed 

a heuristic algorithm to achieve sub-optimal solution and 

improve the results iteratively during the workflow 

execution. The algorithm is described in Figure 3. 

The autonomic adaptive workflow engine design allows 

the system to select the most suitable resources according to 

the user requirements (e.g., update frequency, cost, etc), 

schedule the privacy-sensitive data in private resources, and 

tolerate faults when failure happens. Provisioning of Cloud 

resources and scheduling of workflow tasks are automatically 

performed based on a budget constraint, and the system 

schedules tasks to resources that can optimize the 

performance in terms of the total execution time while 

satisfying eventual budget requirements for application 

execution. 

Finally, it is worth noting that autonomic execution of 

workflows for dengue fever prediction is just one of the 

possible scenarios for application of autonomic management 

of Clouds. As Cloud platforms become more widespread as 

the infrastructure of choice for several domains such as e-

health, e-Science, e-government, and e-commerce, the need 

for autonomic management of Clouds will spread across all 

these domains. Nevertheless, the general principles and 

architectural aspects of such autonomic platforms will follow 

architectural elements presented in this paper, regardless the 

application domain. 

V. PERFORMANCE EVALUATION 

We present an evaluation of the autonomic iterative 

optimization feature of the workflow engine. The 

experimental testbed, depicted in Figure 4, consists of a 

hybrid Cloud composed of a local infrastructure (located in 

an A*STAR Institute, Singapore) containing four nodes, each 

of which had 24 cores (hyper-threaded) 2.93 GHz processor 

and 96 GB of memory and running 48 Linux CentOS 5.8 

virtual machines with 2 or 4 cores and 4 GB of memory. This 

local infrastructure is complemented by 25 Amazon EC2 

large compute instances (2 cores with 2 ECU and 7.5 GB of 

memory) deployed in the region of Asia Pacific (South East). 

The application utilized for the experiment is the dengue 

fever prediction application, which utilizes historical dengue 

cases and climate data from 2001 to 2010. 



 

Figure 6. Effect of the iteration optimization of workflow execution in the dengue fever prediction model. 
 

The predictive model utilized is based on a sliding 

window, where parameter variables are adjusted periodically 

through the comparison of real dengue cases with the 

prediction results. Such interactive analytics model can be 

mapped to the workflow in Figure 5. 

The iterative scheduling algorithm searches the 

suboptimal solutions aggressively by using information of 

previous iterations of the workflow execution. The iteration 

loop occurs between tasks labeled as H and A as shown in 

Figure 5. As a consequence of the iterative loop, tasks labeled 

from B to G are re-executed as each new iteration starts, with 

information related to a different time window being used as 

tasks input. 

As each of the iterations completes, the workflow system 

computes the expected execution time of tasks and the cost of 

keeping the current amount of resources for execution. If 

changes in the number of available resources can lead to 

substantial improvement in either makespan or cost, the 

number of provisioned resources is scaled up or down. This 

enables the system to fine-tune and adapt the provisioning 

and scheduling according to the characteristics of the 

workflow tasks and the execution environments.  

Figure 6 presents the results of variation of number of 

resources provisioned by the workflow engine in different 

iterations of the execution of the prediction model. After 

collecting information about the actual execution time of the 

tasks at the first iteration, the number of provisioned 

resources was corrected so that the tasks were consolidated in 

fewer Cloud resources. Further corrections where applied 

between iterations 2 and 3. Overall, the autonomic iterative 

optimization feature of the workflow engine enabled a 

reduction of execution time of 48% and reduction of cost of 

public Cloud utilization in 70% compared to a greedy 

solution for provisioning and scheduling of workflow 

applications in Clouds. 

VI. CONCLUSIONS AND FUTURE WORK 

The growing adoption of Cloud computing as the 

preferred solution for hosting business and academic systems 

evidences the need for better solutions for management of 

such platforms. Considering that Cloud platforms are 

typically composed of thousands of physical hosts and virtual 

machines, connected by many network elements, 

management of such infrastructures is also becoming a 

challenging task. Furthermore, as Clouds get bigger visibility 

as a strategic asset for organizations, they will also 

increasingly become the target of cyber-attacks. 

This paper presented our first steps towards an 

autonomic Cloud platform able to handle several of the above 

problems. Such a platform will be able to dynamically 

provision Cloud resources to applications in such a way that 

Quality of Service expectations of users are met with an 

amount of resources that optimizes the energy consumption 

required to run the application. Moreover, the platform will 

also be able to differentiate regular requests from DDoS 

attacks against the infrastructure, avoiding the wastage of 

energy and budget caused by provision of resources to 

illegitimate requests. 

Our early experiments demonstrate the potential of the 

platform to optimize workflow applications, which are 

complex applications where dependencies between tasks 

exist and have to be respected by the platform. 

As future work, we will implement more dynamic 

provisioning algorithms that are QoS and security-aware and 

energy efficient, and will demonstrate their effectiveness with 

real applications from domains like disaster management, 

environment data analysis and healthcare, as we identify 

these as target areas that can benefit the most from an 

autonomic Cloud system. 
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