
Aneka: Next-Generation Enterprise Grid Platform for e-Science
and e-Business Applications

Xingchen Chu, Krishna Nadiminti, Chao Jin, Srikumar Venugopal, Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Email: {xchu, kna, chaojin, srikumar, raj}@csse.unimelb.edu.au

Abstract

In this paper, we present the design of Aneka, a

.NET based service-oriented platform for desktop grid

computing that provides: (i) a configurable service

container hosting pluggable services for discovering,

scheduling and balancing various types of workloads

and (ii) a flexible and extensible framework/API

supporting various programming models including

threading, batch processing, MPI and dataflow. Users

and developers can easily use different programming

models and the services provided by the container to

run their applications over desktop Grids managed by

Aneka. We present the implementation of both the

essential and advanced services within the platform.

We evaluate the system with applications using the

grid task and dataflow models on top of the

infrastructure and conclude with some future

directions of the current system.

1. Introduction

The term “desktop grid computing” refers to

systems that harness the unused CPU cycles of desktop

Personal Computers (PCs) connected over a corporate

network or the Internet to accelarate application

performance. Within an enterprise, desktop grids allow

an organisation to improve the utilization of its IT

resources, by allowing it to harness the power of

unused PCs for computational tasks without affecting

productivity of the PC users. While the notion of

desktop grid computing is well-understood, there are a

lot of challenges in realising such a system. Some of

the key issues include: resource management, failure

management, reliability, application composition,

scheduling and security [3].

Our previous efforts in desktop grid computing

resulted in Alchemi [6], a Microsoft .NET-based

framework which provides an object-oriented threading

API and file-based grid job model to create grid

applications over various desktop PCs. However,

Alchemi was limited to a master-slave architecture, and

lacked the flexibility for efficiently implementing other

parallel programming models such as message-passing

and dataflow. We have improved upon Alchemi to

create a service-oriented, desktop grid system called

Aneka, also developed on top of the .NET platform.

This paper describes its design and implementation.

Aneka was conceived with the aim of providing a

set of services that make grid construction and

development of applications as easy as possible without

sacrificing flexibility, scalability, reliability and

extensibility. The key features supported by Aneka are:

• A configurable container enabling pluggable

services, persistence solutions, security

implementations, and communication protocols;

• decentralized architecture peering individual

nodes;

• multiple programming models including object-

oriented grid threading programming model (fine-

grained abstraction), file-based grid task model

(coarse-grained abstraction) for grid-enabling

legacy applications, and dataflow model for

coarse-grained data intensive applications;

• multiple authentication/authorisation mechanisms

such as role-based security, X.509 certificates/GSI

proxy and Windows domain-based authentication;

• multiple persistence options including RDBMS,

ODBMS and XML or flat files;

• Web services interface supporting the task model

for interoperability with custom grid middleware

(e.g. for creating a global, cross-platform grid

environment via a resource broker) and non-.NET

programming languages.

The rest of the paper is organized as follows: First,

we discuss related work; we follow this with a

presentation of the architecture of our Aneka platform

along with detailed description of its services. Then,

we present the detailed implementations of the core

services and discuss the threading, task and dataflow

application models supported in our system along with

the performance evaluation of running sample

applications with different models in our container

environment. Finally, we conclude the paper with

future directions.

2. Related Work

The idea of using under-utilized networked PCs for

performing computational tasks is well-established and

there are several projects in this area. Some of the more

well-known ones are the @Home projects

(SETI@Home[2], Folding@Home[13]), Entropia[3],

XtremeWeb[5], Alchemi[6] and SZTAKI Desktop

Grid [7]. The approach followed by SETI@Home and

other related projects is to dispatch workloads

consisting of data to be analysed, from a central server

to millions of clients running on desktops around the

world, and was specific to the processing of astronomy

application data. These and similar projects are

considered as the “first generation” of desktop grids[9].

The infrastructure underlying SET@Home was

generalized to create the Berkeley Open Infrastructure

for Internet Computing (BOINC)[8]. BOINC allows

desktop clients to select the project to which they

wanted to donate idle computing power to and is used

by many scientific distributed computing projects (e.g.

climateprediction.net[15], SZTAKI Desktop Grid [7]).

Entropia[3] and United Devices[4] are similar

systems in the sense that they create a Windows

desktop grid environment using an architecture in

which a central job manager is responsible for

decomposing the jobs and distributing them to the

desktop clients. XtremWeb[5] also provides a

centralized architecture which consists of three entities,

the coordinator, the worker and the clients to create a

XtremWeb network. Clients submit tasks to the

coordinator, along with binaries and optional parameter

files and retrieve the results for the end user. The

workers in the network are the software components

that actually execute and compute the tasks. As

mentioned previously, Alchemi also follows a master-

slave architecture consisting of managers and executors

wherein the former can either connect to the executors

or other managers to create a hierarchical network

structure. The executor can run in either a dedicated or

a non-dedicated mode.

According to Capello[9], these grid systems can be

categorized as the second generation of desktop grid.

They are built with a rigid architecture with little or no

modularity and extensibility; and components such as

the job scheduler, data management and

communication protocols are dedicated to the system.

The execution nodes need to directly communicate

with a central master node in both the centralized and

the hierarchical architecture. The major problems with

this approach are latency, performance bottlenecks,

single point of vulnerability of the system, and high

cost of the centralised server. In addition, it lacks the

capabilities required for advanced applications that

involve complex dependencies between parallel

execution units, and the flexibility required for

implementing various types of widely-employed

parallel models such as message-passing and dataflow.

The limitations of the above systems motivate the

introduction of a new architecture for desktop grid

computing in which the capabilities required for

different applications are separated from the message-

passing infrastructure so that the platform is able to

support different configurations as required. In the

recent past, the Grid community has standardized on

the Web Services Resource Framework (WSRF)[16] in

which the different functionalities offered by a grid

resource are made available through loosely-coupled,

stateful service instances hosted in a Web-enabled

container that provides the basic infrastructure.

However, WSRF encompasses a lot of standards

designed for wide-area grid infrastructure.

This paper therefore, presents the following

contributions:

1. The design and implementation of a lightweight,

service-oriented, desktop computing platform that

 Remote interactions
Optional Compulsory

Message Handler / Dispatcher
SecurityAuthorizat ionAuditingAuthent icat ionServicesInformation & Index ingApplicationCatalogDataCatalogMembershipCatalog SchedulingThreadScheduler DataflowSchedulerMPIScheduler MappingSchedulerExecut ion StorageDataf lowExecutorMPIExecutor ThreadExecutor FileServer

Communication Layer
Container

OthersBankingService…………Persistence
Remote interactions

Optional Compulsory
Message Handler / Dispatcher

SecurityAuthorizat ionAuditingAuthent icat ionServicesInformation & Index ingApplicationCatalogDataCatalogMembershipCatalog SchedulingThreadScheduler DataflowSchedulerMPIScheduler MappingSchedulerExecut ion StorageDataf lowExecutorMPIExecutor ThreadExecutor FileServer
Communication Layer

Container
OthersBankingService…………PersistenceOptional Compulsory

Message Handler / Dispatcher
SecurityAuthorizat ionAuditingAuthent icat ionServicesInformation & Index ingApplicationCatalogDataCatalogMembershipCatalog SchedulingThreadScheduler DataflowSchedulerMPIScheduler MappingSchedulerExecut ion StorageDataf lowExecutorMPIExecutor ThreadExecutor FileServer

Communication Layer
Container

OthersBankingService…………Persistence
Message Handler / Dispatcher

SecurityAuthorizat ionAuditingAuthent icat ionServicesInformation & Index ingApplicationCatalogDataCatalogMembershipCatalog SchedulingThreadScheduler DataflowSchedulerMPIScheduler MappingSchedulerExecut ion StorageDataf lowExecutorMPIExecutor ThreadExecutor FileServer
Communication Layer

Container
OthersBankingService…………Persistence

Figure 1. Aneka Single Node Architecture

consists of a configurable container hosting

pluggable services

2. The use of this platform to realise multiple parallel

and distributed programming models. This is

illustrated through two case studies implementing

task farming and dataflow computing models.

Aneka’s design makes it very flexible and extensible

so that multiple application models, security solutions,

communication protocols and persistence can be

supported without affecting an existing Aneka

ecosystem. Therefore, Aneka is an example of the

“third generation” of desktop grids[9].

3. Architecture Overview

Aneka provides a highly modular architecture, as

shown in Figure 1. An Aneka node consists of an

instance of a configurable container that hosts several

compulsory services and any number of optional

services. The compulsory services provide functions

such as security, persistence mechanisms, and

communication protocols, and are together called as

the base infrastructure. The optional services include

specific executors for different types of programming

models and/or associated schedulers. The following

sections will give more details about each of these

components within Aneka.

3.1. Container

The Aneka container is designed as a runtime host

and coordinator for other components. The container

uses the Inverse of Control (IoC)[14] concept to inject

dependencies at runtime. Details of compulsory and

optional services, security, persistence, and associated

communication protocols are specified in an XML

configuration file which is read by the container when

it is initialized. The main responsibility of the container

is to initialize the services and present itself as a single

point for communication to the rest of the system.

However, to improve the reliability and flexibility of

the system, neither the container nor the hosted services

are dependent on each other. This is so that a

malfunctioning service will not affect the others and/or

the container. Also, this enables the administrator of an

Aneka system to easily configure and manage existing

services or introduce new ones into a container.

3.2. Base Infrastructure

The base infrastructure for the runtime framework

provides message dispatching, security,

communication, logging, network membership, and

persistence functions that are then used by the hosted

services. However, it is possible to substitute different

implementations of these functions as per requirements

of the services. For example, users can choose either a

light- weight security mechanism such as role-based or

a certificate-based security such as X.509 certificate by

modifying the configuration file, and the runtime

system will automatically inject them on-demand by the

services. In a similar manner, the system can support

different persistence mechanisms such as memory, file

or database backends. A message dispatcher acting as a

front controller enables node to node service

communication. Every request from the client or other

nodes to the container is treated as a message, and is

identified and dispatched through the message

dispatcher component. The communication mechanism

Client

MessageDispatcher

Scheduler Node

Services

SchedulingService

MessageDispatcher

Index Node

Services

MembershipCatalogue

Quer
y M

es
sa

ge

Ava
ila

ble
Sch

ed
uler

s

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

Submit Message
Application Result

Q
u
er

y
M

es
sa

g
e

A
va

il
a
b
le

 E
xe

cu
to

rs

1

2

3

4

Job submission /

Result collection

5

ClientClient

MessageDispatcher

Scheduler Node

Services

SchedulingService

MessageDispatcher

Scheduler Node

Services

SchedulingService

MessageDispatcher

Index Node

Services

MembershipCatalogue

MessageDispatcher

Index Node

Services

MembershipCatalogue

Quer
y M

es
sa

ge

Ava
ila

ble
Sch

ed
uler

s

Quer
y M

es
sa

ge

Ava
ila

ble
Sch

ed
uler

s

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

MessageDispatcher

Executor Node

Services

ExecutionService

Submit Message
Application Result

Q
u
er

y
M

es
sa

g
e

A
va

il
a
b
le

 E
xe

cu
to

rs

Q
u
er

y
M

es
sa

g
e

A
va

il
a
b
le

 E
xe

cu
to

rs

1

2

3

4

Job submission /

Result collection

5

Figure 2. Application running in Aneka environment

used by the message dispatcher can also be configured

to use socket, .NET remoting or web services.

3.3. Services

The services provide the core functionality of the

distributed computing environment, while the

infrastructural concerns are handled by the runtime

framework. This model is similar to a web-server or

application-server where the user hosts custom services

/ modules that run in a managed container. For

enabling a distributed computing environment on top of

the container, various services such as resource

information indexes, execution services, scheduling

and resource allocation, and storage services would be

necessary. The only mandatory service that a container

needs to host is the Membership Catalogue, which

maintains network connectivity between the nodes.The

services themselves are independent of each other in a

container and only interact with other services on the

network, or the local node through known interfaces.

Figure 4 shows the interaction between different

components within the Aneka environment. A client

program first searches, through the index nodes in the

Aneka network, for available Aneka nodes where the

appropriate scheduling service is deployed. Once a

scheduler is discovered, the client program will submit

its work along with its credentials. The scheduling

service will authenticate the client’s request, and

discover appropriate executors for executing the

client’s program, using the index nodes. Once suitable

executors are found, the jobs will be dispatched to

those nodes and executed. A service on the scheduler

node will monitor the executions, collect the results and

send them to the client once the executions are

completed. The messages exchanged between client,

schedulers and executors contains information about

the security token, source and destination URLs, the

name of the service that actually handles the message,

and any required application data. The services will

never communicate with each other and exchange the

messages between themselves directly, all the messages

are dispatched and handled through the

MessageDispatcher deployed in each container.

3.4. Node Arrangement

The network architecture is dependent on the

interactions among the services, as each Container has

the ability to directly communicate with any other

Container reachable on the network. Each Aneka node

in the network takes on a role depending on the

services deployed within its container. For example, a

node can be a pure indexing server if only the indexing

services (Membership Catalog) are installed in the

container; nodes with scheduler services

(ThreadScheduler, DataflowScheduler) can be pure

scheduler nodes that clients submit their jobs to; nodes

with execution services (ThreadExecutor,

DataflowExecutor) can be solely concerned with

completing the required computation. A node can also

host multiple services, and be both a scheduler and

executor at the same time. As can be seen in Fig 3,

where different types of Aneka nodes are configured to

create a network in which each node works as a peer, a

request from the end user can potentially spread to

every node with the appropriate functions. In this case,

as there is no central manager to manage other

executors, the request will be filtered by each node

which will decide whether to handle or to ignore the

request.

4. Implementation of Multiple Application

Models on Aneka

Aneka runtime is implemented by leveraging

Microsoft .NET platform and using the IoC

implementation in the Spring .NET framework [12].

We chose Microsoft .NET on account of its ubiquity on

Windows desktops and the potential of running Aneka

Node NodeNodeNode NodeNode
Node

MixedMembershipIndex onlyScheduler nodeExecutionnodeNode Storagenode
Node
Node

All[Hosts all the services]
Node NodeNodeNode NodeNode

Node
MixedMembershipIndex onlyScheduler nodeExecutionnodeNode Storagenode

Node
Node

All[Hosts all the services]

Figure 3. A Sample Aneka configuration

on Unix-class operating systems through the .NET-

compliant Mono platform[1]. The multiple application

models are implemented as extended services on top of

the runtime framework. The following sections explain

the implementation of two known distributed

programming models on top of Aneka, and also how

the users configure and deploy an Aneka node.

4.1. Task Farming Model

A task is a single unit of work processed in a node.

It is independent from other tasks that may be executed

on the same or any other node at the same time. It is

also atomic, in the sense that it either executes

successfully or fails to produce any meaningful result.

The task model involves the following components:

the client, the scheduler and the executor. The task

object is serialised and submitted by the client to the

scheduler. The task scheduler is implemented as a

service hosted in the Aneka container, and

continuously listens for messages for requests such as

task submission, query, and abort. Once a task

submission is received, it is queued in its database. The

scheduler thread picks up queued tasks and maps them

to available resources based on various parameters

including priorities, user QoS requirements, load and

so on. These parameters and scheduling policy is

pluggable and can be replaced with custom policies.

The task scheduler keeps track of the queued and

running tasks and information about the perceived

performance of the task executor nodes it is able to find

in the network, by communicating with the membership

service.

The task executor is also implemented as a service

hosted in a container, and its main job is to listen for

task assignments from the scheduler. When the

executor receives a task, it unpacks the task object and

its dependencies, creates a separate security context for

the task to run, and launched the task. This allows the

task to run in a sandboxed application domain separate

from the main domain in which the container runs. The

executor supports multi-core and multi-CPU scenarios

by accepting as many tasks to run in parallel as there

are free CPUs / cores. Once a task is complete, it

notifies and sends the results back to the scheduler. The

executor can accept tasks from any scheduler in the

network.

In order to enable the interoperability with custom

grid middleware and the creation of a global, cross-

platform grid environment, a web services interface

that provides the job management and monitoring

functionalities has been implemented on top of the task

model.

4.2. Dataflow Programming Model

Dataflow programming model abstracts the process

of computation as a dataflow graph consisting of

vertices and directed edges. The vertex embodies two

entities: the data created during the computation or the

initial input data if it is the first vertex, and the

execution module to generate the corresponding vertex

data. The directed edge connects vertices, which

indicates the dependency relationship between vertices.

The dataflow programming model consists of two

key components, the scheduler and the worker. The

scheduler is responsible for monitoring the status of

each worker, dispatching ready tasks to suitable

workers and tracking the progress of each job

according to the data dependency graph. It is

implemented as a set of three key services:

• Registry service: maintains the location

information for available vertex data. In particular,

it maintains a list of indices for each available

vertex data.

• Dataflow Graph service: maintains the data

dependency graph for each job, keeps track of the

availability of vertices and explores ready tasks.

When it finds ready tasks, it will notify the

scheduler component.

• Scheduling service: dispatches ready tasks to

suitable workers for executing. For each task, the

master notifies workers of inputs & initiates the

associated execution module to generate the output

data.

The worker works in a peer to peer fashion. To

cooperate with the scheduler (which acts as the master),

each worker has two functions: executing upon

requests from master and storing the vertex data.

Therefore, the worker is implemented as two services:

• Executor service: receives execution requests from

the master, fetches input from the storage

component, stores output to the storage component

and notifies master about the availability of the

output data for a vertex.

• Storage service: is responsible for managing and

holding data generated by executors and providing

it upon requests. To handle failures, the storage

component can keep data persistently locally or

replicate some vertices on remote side to improve

the reliability and availability.

To improve the scalability of the system, workers

transfer vertex data in a P2P manner between

themselves. Whenever the executor service receives an

executing request from the master node, it sends a fetch

request to the local storage service. If there is one local

copy for the requested data, the storage service will

fetch the data from remote worker according to the

location specified in the executing request. When all

the input data is available on the worker node, the

executor service creates an instance for the execution

module based on the serialized object from the master,

initialises it with the input vertices and starts the

execution. After the computation finishes, the executor

service saves the result vertex into local storage and

notify the registry service. The storage service keeps

hot vertex data in memory while holding cold data on

the disk. The vertex data will be dumped to disk

asynchronously to reduce memory space if necessary.

The worker schedules the executing and network traffic

of multiple tasks as a pipeline to optimize the

performance

4.3. Configuration and Deployment

The Aneka container provides a unified

environment for configuration and deployment of

services. All services are able to use the configuration

APIs which store per-user, per-host settings in a simple

XML file for each service. This way the settings and

preferences for each service are separated from each

other, and also allow for customised settings for each

user. The deployment of services is a simple operation

involving modification of the application configuration

file, and adding in entries for the new service to be

included in the container’s service dictionary.

5. Experimental Evaluation

We have conducted two sets of experiments: the

first examined the performance of a single container,

and the second evaluated case studies of applications

using Aneka’s task farming and dataflow programming

models to execute over a distributed system.

5.1. Performance Results of Single Container

The Aneka container is the interface to the rest of

the distributed system. That is, it sends and receives all

messages on behalf of the services hosted within it. In

the following experiments, we will evaluate whether

this aspect of design has an impact on the performance

and scalability of the system. In particular, we will

measure the impact of number of services, number of

connected clients, and the size and volume of messages

on the performance of the container. All the

experiments were performed using a single Aneka

container running on a PC with an Intel Pentium4 3

GHz CPU, 1 GB of RAM and with Windows XP as the

operating system.

In the first experiment, we measured the variation in

startup time of a container with respect to the number

of services that are hosted inside it. We evaluated this

with two types of services, viz., stateful and stateless. A

stateless service is similar to a Web server where the

service does not track the state of the client. A stateful

service on the other hand tracks requests and connects

to the database to store the state of the request. A

stateful service also runs in a separate thread. We

performed the experiment by starting 1 to 1000

Figure 4. Effect of number of services on

startup time

Figure 5. Effect of message size on throughput

Figure 6. Effect of number of clients on

response time

services of each type and measuring the time required

for initialising the container.

Figure 4 shows the results of our evaluations.

Stateless services do not request any resources and

therefore, the time measured here is that required for

starting up the container alone. This, as can be seen

from the graph, is constant for any number of stateless

services. However, the time increases exponentially if

the services are stateful. This can, of course, be

attributed to the more resource-intensive nature of

these services. The curve is uniformly exponential in

this case as the same service was started multiple times.

However, this may not be true always as different

stateful services could affect the startup times in

different ways by requiring different amounts of

resources. It can also be seen that, in this case, the

effects of stateful services become significant only

when their number exceeds 300.

As discussed in previous sections, the Aneka

container is designed as a lightweight hosting

mechanism that provides the bare minimum

functionality to the hosted services to create a desktop

grid. Figure 3 shows an expected deployment where an

Aneka node will offer specific functionality enabled by

a small number of specialized services that are likely to

be stateful. The above results show that the container

does not impact start-up performance in such cases.

The second experiment measures effect of the size

and number of messages on the throughput of the

Aneka container. The container was initialized with an

echo service with a constant time for processing a

single message. We then send 10000 messages to the

container with sizes varying from 0.1 to 100000 KB

and measure the aggregate response time. The results,

as shown in Figure 5, are predictable with the message

handling rate (number of messages per sec) decreasing

uniformly as the size of the message increases.

However, the amount of data processes becomes

almost constant after a message size of 100 KB. This is

because of the configuration of the underlying 100

Mbps network to the container and is not due to the

container itself. It can be inferred from the results that

Aneka is suitable for embarrassingly parallel

applications such as those following master-worker

model of computation where the communication occurs

only at the end of task execution, and for message-

passing applications where the message size is less than

100 KB. However, it may not be suitable for Data Grid

applications that require constant access to large

amounts of data.

The last experiment determines the response time of

the container with respect to number of clients

connecting to it. We performed this experiment by

keeping the total number of received messages constant

at 10,000, but increased the number of threads sending

the messages, thereby emulating simultaneous

connections from multiple clients. It can be seen from

the results shown in Figure 6 that the average response

time per message increases steeply when the numbers

of clients exceed 400. Even so, the response time per

message is within 20 ms for up to 1000 concurrent

clients. Currently, every message is synchronised which

means it is a blocking call on the container, and

therefore performance for large number of clients is

affected.

5.2. Case Study

We illustrate the versatility of Aneka through case

studies involving two distributed applications that were

implemented using two different programming models

on top of the same infrastructure. The first application

predicted the secondary structure of a protein given its

sequence, using Support Vector Machines-based

classification algorithms[17]. This was implemented

using the independent task programming model. The

other application performed matrix multiplication and

was implemented using the dataflow programming

model presented in the previous section. These

applications were evaluated on a testbed consisting of

32 PCs located in a student laboratory; each of which

were similar to the PC on which the container was

tested. These PCs were connected through a 100 Mbps

network.

The structure prediction application was executed as

a master-worker application across the testbed. Each

executor (or worker) node runs an instance of

BLAST[18] for each protein sequence, the results of

which are then input to a set of classifiers that attempts

to predict the secondary structure. The result of this

Figure 7. Execution time vs. No. of nodes for

Protein Sequence Analysis

process is returned to the master process. Each instance

of the application accessed a 2.8 GB-sized database

which, in this case, was replicated across all the nodes.

The evaluation was carried out using 64 protein

sequences at a time, with varying number of worker

nodes. The results of the experiment are shown in

Figure 7. The execution time decreases logarithmically

until the number of nodes reaches 16 after which there

is no more gain in performance to be derived from

increased parallelization.

The block-based square matrix multiplication

experiment was evaluated with two 8000 x 8000

matrices over a varying number of nodes up to a

maximum of 30 nodes. The matrix was partitioned into

256 square blocks where each block was around 977

KB. On the whole, the experiment used 488 MB of

data as input and generated a result of size 244 MB.

The results of the experiment are shown in Figure 8.

There are 2 main factors that determine the execution

time of the matrix multiplication: the distribution of

blocks between the executors (or workers) and the

overhead introduced by the transmission of

intermediate results between the executors. The

network overhead is measured here as the ratio of the

time taken for communication to the time taken for

computation. As can be seen from Figure 8, for larger

number of executors, while the speedup improves, the

network overhead is also substantially increased. The

speedup line starts diverging from the ideal when the

network overhead increases to more than 10 % of the

execution time.

6. Conclusion and Future Work

This paper presented the design, implementation

and evaluation of Aneka, a new service-oriented

enterprise grid computing framework. Aneka improves

over existing desktop grid implementations with fixed

capabilities, by using a container in which services can

be added to augment the capabilities of the node. We

have demonstrated the flexibility of Aneka through

case studies using two different programming models

executed on top of the same desktop grid. Besides

these two models, the threading programming model

derived from Alchemi, and a limited subset of MPI, are

also supported in Aneka.

From the results, it can be seen that while the

container is lightweight in itself, there is scope for

improving message handling at the container level and

the response time for a large number of clients. The

system needs to provide facilities for asynchronous

message passing. In the future, we plan to evaluate the

design using a larger testbed that spans wide-area

networks. We also plan to add peer-to-peer indexing

service so that applications can create custom overlays

on top of the Aneka infrastructure.

Acknowledgements

We would like to thank the anonymous reviewers

for their valuable comments. This work is partially

supported by grants from the Australian Research

Council (ARC) and the Australian Department of

Education, Science and Training (DEST).

Reference

[1] Mono, http://www.mono-project.com/Main_Page

(accessed December 2006).

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky,

D.Werthimer, SETI@home: An Experiment in Public-

Resource Computing, Communications of the ACM,

Vol. 45 No. 11, ACM Press, USA, November 2002.

[3] A. Chien, B. Calder, S. Elbert, K. Bhatia, Entropia:

Architecture and Performance of an Enterprise Desktop

Grid System, Journal of Parallel and Distributed

Computing, Volume 63, Issue 5, Academic Press, USA,

May 2003.

[4] Intel Corporation, United Devices’ Grid MP on Intel

Architecture,

http://www.ud.com/rescenter/files/wp_intel_ud.pdf

(accessed November 2006)

[5] C. Germain, V. Neri, G. Fedak, F. Cappello,

XtremWeb: building an experimental platform for

Global Computing, Proc. of the 1st IEEE/ACM

International Workshop on Grid Computing (Grid

2000), Bangalore, India, Dec. 2000.

[6] A. Luther, R. Buyya, R. Ranjan, S. Venugopal,

Alchemi: A .NET-Based Enterprise Grid Computing

System, Proceedings of the 6th International

Conference on Internet Computing (ICOMP'05), June

27-30, 2005, Las Vegas, USA.

Figure 8. Speedup Gain for Matrix

Multiplication

[7] P. Kacsuk, N. Podhorszki, T. Kiss, Scalable desktop

Grid system. Proc. of 7th International meeting on high

performance computing for computational science

(VECPAR 2006), Rio de Janeiro, 2006.

[8] D. P. Anderson, BOINC: A System for Public-Resource

Computing and Storage, Proc. of 5th IEEE/ACM

International Workshop on Grid Computing, November

8, 2004, Pittsburgh,USA.

[9] F. Cappello, 3rd Generation Desktop Grids, Proc. of 1st

XtremWeb Users Group Workshop (XW'07).

Hammamet, Tunisia, 2007.

[10] M. Litzkow, M. Livny, M. Mutka, Condor - A Hunter of

Idle Workstations, Proceedings of the 8th International

Conference of Distributed Computing Systems (ICDCS

88), San Jose, CA, IEEE, CS Press, USA, 1988.

[11] R. Ranjan, R. Buyya, A. Harwood, A Model for

Cooperative Federation of Distributed Clusters, Poster

Paper, Proc. of the 14th IEEE International Symposium

on High Performance Distributed Computing (HPDC-

14), July 2005, Research Triangle Park, N. C., USA,

IEEE CS Press, Los Angeles, USA.

[12] Spring.NET, http://www.springframework.net,

(accessed November, 2006).

[13] S. M. Larson, C. D. Snow, M. R. Shirts, V. S. Pande,

Folding@Home and Genome@Home: Using distributed

computing to tackle previously intractable problems in

computational biology, Computational Genomics,

Richard Grant (ed.), Horizon Press, 2002.

[14] M. Fowler, Inversion of Control Containers and the

Dependency Injection pattern,

http://www.martinfowler.com/articles/injection.html,

(accessed October, 2006).

[15] climateprediction.net, http://www.climateprediction.net,

(accessed November, 2006).

[16] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S.

Graham, T. Maguire, D. Snelling, S. Tuecke, Modeling

and Managing State in Distributed Systems: The Role of

OGSI and WSRF, Proceedings of the IEEE, volume 93,

pages 604 – 612, March 2005.

[17] J. Gubbi, M. Palaniswami, D. Lai, M. Parker, A Study

on the Effect of Using Physico-Chemical Features in

Protein Secondary Structure Prediction, Applied

Artificial Intelligence, pp. 609-617, World Scientific

Press, 2006.

[18] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.

J. Lipman, Basic Local Alignment Search Tool, Journal

of Molecular Biology, 1990 Oct 5; 215(3):403-10.

