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ABSTRACT 

In this thesis, we study several auction based resource selection policies for 

users in grid, which assist them in choosing the resource according to user 

preference. While choosing the resource these policies try to optimize 

parameters like average turnaround time, average budget per job, and number 

of jobs finished within deadline according to user preference. First we 

proposed simple TimeOptimized and BudgetOptimized policies which 

improve only one parameter i.e. either average turnaround time or average 

budget per job. We compared these policies with a Random policy which 

selects resources randomly. Later we improved these algorithms and 

proposed NewTimeOptimized and NewBudgetOptimized policies which 

consider the success rate also. We next presented a policy that considers the 

relative preferences of the user for the different parameters in selecting a 

resource. Finally we proposed a history based policy that tries to improve 

above parameters by considering the previous bids. We used GridSim 

simulation framework to evaluate our policies. 
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C h a p t e r  1  

INTRODUCTION 

Grid computing has emerged as a promising next generation collaborative 

problem solving platform for industry, science, and engineering. Grid 

computing is defined as coordinated resource sharing and problem solving in 

dynamic, multi-institutional virtual organizations [19]. The sharing ranges 

from simple file transfer to direct access to computers, software, data, and 

other network accessible resources. At the heart of the grid is the ability to 

discover, allocate and negotiate the use of these resources. Grid enables this 

sharing, selection, and aggregation of a wide variety of resources including 

supercomputers, storage systems, data sources, and specialized devices that 

are geographically distributed and owned by different organizations [3]. Grid 

computing is generally used for problems with large scale collaboration and 

huge computational and/or data storage requirement. The applications of grid 

includes large scale simulations in astrophysics, climate modeling, modeling 

for drug design, high energy physics, infrastructure for multiplayer games etc 

[4, 21, 22]. 

The main characteristics of a grid are [3]: 

• Multiple administrative domains: Grid spawns into multiple 

administrative domains. This characteristic makes it different from 

clusters. Since, it spawns into multiple administrative domains, the 

policies and autonomy of different domains needs to be maintained. 

• Heterogeneity: Grid contains different types of resources like personal 

computers to super computers to specialized devices like telescopes. 

Grid provides seamless way to access different resources. 
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• Scalability: A grid might grow from few integrated resources to 

millions. The performance might be degraded as the size of the grid 

increases. The applications that require a large number of 

geographically located resources must be designed to be latency and 

bandwidth tolerant. 

• Adaptivity: Grid should be resilient to failure of individual nodes. As 

it contains a large number of nodes, the probability of failure of nodes 

will be high. So the applications and resource brokers behave should 

adapt dynamically and use the available resources and services 

efficiently and effectively. 

1.1. Overview of a Grid  

In this section, we will explain about the various entities in a grid computing 

environment and interaction between them. The main entities in a grid are 

user, resource broker, information service, and resources. The interactions 

between these entities is shown in Figure 1. For each user, there will be one 

resource broker. Users in grid will submit their program to the resource 

broker. The resource broker in turn will find out appropriate resources and 

submit the program to the resource. Here a resource may be computational 

resource or storage resource or network resource or any device that is able to 

participate in the grid. Resources at a minimum should implement enquiry 

mechanisms that permit discovery of their structure, state and capability [19]. 

The resource broker contacts an Information Service to find an appropriate 

resource. The Information Service maintains complete information of all 

resources (like its capability, status, contact information etc) available in the 

grid. The resource broker will select one among them and submit the job to it. 

After authentication, the remote resource will execute the user program. In 

executing the user program, it may in turn need another resource to complete  
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Figure1: Working of the grid 

the job (like, it may have to access data from other machine or it may need to 

make the execution faster). If the user has appropriate credentials to access 

this new resource, then the remote machine (currently using machine) will get 

authenticated on behalf of the user (single sign-on) and it will use this new 

resource to complete the job. 

A resource broker may need to access, Replica Catalog to locate the data. The 

replica management system controls where and when copies of files are 

created, and provides information about where files are located. In other 

words a replica management system maintains a mapping between logical 

names for files and collections to one or more physical locations. 

1.2. Market Economics 

For exploiting the full potential of a distributed system consisting of resources 

with comparable but different capability and availability, a mechanism is 

required to gather and compare such information for various resources in the 
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system and assign each job to the most appropriate resource [34]. Viewing the 

resources as suppliers and the users as consumers of computing services, 

markets for computing services/resources have been examined as one of the 

most promising mechanisms for global scheduling [34]. Framing the resource 

allocation problem in economic terms is attractive for several reasons [48].   

• Resource usage is not free. Initially the main motivation of building 

grids is to support research. To make grids successful commercially, 

resource owners and users should get adequate rewards. The main 

aim of users will be to execute the maximum number of jobs, 

satisfying QOS requirements etc. Similarly the main aim of resource 

owners will be to make profit out of the resources.  

• The dynamics of grid performance are difficult to model. By 

formulating gird resource usage in market terms, we are able to apply 

analytical research from economics for understanding of the behavior 

of grids. 

• Market formulation carries with it an inherent notion of relative worth 

which can be used to quantify the cost to benefit ratio for both grid 

users and resource owners. 

The first step to use market economics is to define the market mechanism to 

be used. Here market is where goods and services are bought and sold and 

market mechanism is the process by which the market solves the resource 

allocation problem, especially deciding how much goods or service should be 

produced, deciding the price of goods and other such problems [51]. Broadly, 

market mechanisms can be categorized into one of three types. 

• Commodity markets: In this type of market model, we treat 

different resources like computers, disk storage, bandwidth, and 

applications as commodity goods and we purchase from the suppliers. 



 

5 

We can pay the cost of the resources in different ways. Pricing 

schemes in commodity market model can be based on flat fee, usage 

duration, subscription, and demand and supply based. In the flat fee 

scheme, buyers will pay a fixed amount for a certain period 

irrespective of the service quality. The second scheme is based on the 

usage duration. If the resource is used for one hour then the buyer 

will pay for that one hour only. In the third scheme, i.e. subscription 

based, the user pays a fixed price for a certain duration. It is thus a 

more generalized form of the flat fee model. In the final scheme, the 

prices will change dynamically based on the supply and demand of the 

product. The disadvantage of the first three pricing schemes is that 

they do not exploit the demand for the resources. If there is a high 

demand for a resource, then it is not desired to sell the resource at a 

lower price. Similarly, if the demand for a resource is less, then 

decreasing the resource price may attract new users.  

• Tendering/Contract Net: In this model, the resource broker will 

ask for bids from the sellers. A buyer will send the specification of the 

process (expected run time, resource requirements etc.) to the 

potential providers and the interested resource providers will 

participate in the bidding process. The resource broker will evaluate 

the bids and will give the contract to the most appropriate one.  

• Auctions: In this model, a resource provider accepts bids from the 

resource broker for the resource. There are two types of bids, open 

and closed bids. In open bidding, participants will know the bid 

amount of the other players. In closed bids, participants will not know 

the bid amount of the other players. There will be a period of time in 

which the resource providers will accept bids and after the end of the 

bidding period the resource provider will evaluate the user bids and 

will give the resource to the appropriate resource broker. Auctions 



 

6 

can be of several types such as first price sealed bid auction, vickrey 

auction, english auction, double auction etc. More details on auctions 

can be found in [5]. 

The money exchanged between a user and a resource provider may be real 

money or virtual money. As we said earlier, here we are using markets as a 

controlling mechanism for allocating resources to users. The demand and 

supply of resources determine the prices and in turn controls the allocation. If 

demand for some resources is high, then price of the resource will also be 

higher and very few will be able to afford that resource.  

1.3. Motivation of this Work  

In our work, we focus on auctions as the market mechanism to use in grids. 

The advantages of auction over other market models are:  

• The auction model supports one-to-many negotiation between a 

service provider and many consumers, and reduces negotiation to a 

single value. 

• Auctions require little of global price information and are easy to 

implement in grid settings [5]. 

• Unlike commodity market model, auctions are completely 

decentralized.  

There exist several studies on applying auctions to solve resource allocation 

problem in grids [9, 25, 28, 29, 48, 49]. Most of the studies in auctions assume 

that the resources are homogenous. For example, most of them assumes that 

all resources have the same speed and cost. In such a case, choosing resources 

is trivial as choosing any random resource will serve the purpose. But in a real 

world environment, resources will be heterogeneous. When we consider 

heterogeneous resources different parameters like resource architecture, 
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resource speed, available memory, price of resource, bandwidth charges etc 

will come into picture. The choice of a proper resource for an application will 

thus be based on various parameters. Moreover, some of these parameters 

may be interdependent and trying to optimize one can affect the other 

adversely. For example, if we choose resources with high speed, then the cost 

will be higher. So, in such cases, there should be some mechanism to choose 

the resources according to the user’s requirements which should consider the 

user preference as well as chances of winning in the auction.  

1.4. Problem Statement  

In our work, we considered resources with different capabilities (speeds) and 

prices. A set of users, each with a set of jobs, wish to use these resources. 

Each job has a deadline and an allowed maximum budget. We considered two 

parameters; time and budget. The problem is to define resource allocation 

policies that allocate resources to the jobs while increasing the number of jobs 

finishing within their deadline and decreasing the average turnaround time 

and the average budget spent for these jobs. The allocation policies should be 

able to take into consideration user preferences on which parameter to 

optimize more. We introduce several algorithms that optimize time and 

budget to different extents.  

1.5. Contributions  

In this thesis we introduced policies for users to choose resources in a grid 

environment using auction. The main contributions of this work can be 

summarized as follows: 

1. We first presented three policies for resource allocation - Random, 

TimeOptimized and BudgetOptimized policies. In Random policy, a user 

chooses resources randomly. In TimeOptimized, a user will select 

resources based on the completion time of job and in BudgetOptimized, 
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user select resources based on its cost. TimeOptimized policy tries to 

optimize the average turnaround time of jobs and BudgetOptimized tries 

to optimize the average budget spent per job. If every user in grid uses the 

same policy then there will be contention for high speed/low cost 

resources and because of this, some jobs may loose the deadline. Thus the 

number of jobs finishing within deadline in TimeOptimized and 

BudgetOptimized policies is less when compared with the Random 

policy.  Random selection maximizes chances of winning but the 

turnaround time is higher than TimeOptimized policy and average budget 

spent per job is higher than BudgetOptimized policy. We then proposed 

two new policies. The first one, NewTimeOptimized policy, tries to 

minimize average turnaround time while increasing the number of jobs 

finishing within deadline. The second one NewBudgetOptimized policy, 

tries to minimize the budget spent per job while increasing the number of 

jobs finishing within deadline 

2. We next introduced a resource selection policy that tries to optimize both 

the above parameters; average turnaround time and average budget spent 

per job based on user preference. We have used Analytic Hierarchy 

Process (AHP) technique to model the user preference. 

3. Finally we introduced policy where the user will give preference in terms 

of success rate. The success rate is defined as the number of jobs finishing 

within deadline. Initially we start with NewTimeOptimized policy and 

when success rate is reaches the user given value, we will shift to 

NewBudgetOptimized policy. In NewBudgetOptimized we do not use 

our complete budget for a job to bid. So first we are using our complete 

amount for bidding in the initial stage, and after getting sufficient success 

rate we are shifting to NewBudgetOptimized policy. This policy 

effectively tries to reduce the average budget spent per job while 

maintaining the user requirements. 
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1.6. Organization of the Thesis  

 The thesis is organized into the following chapters. In Chapter 2, we briefly 

explain the various auction mechanisms used in grid setting and then we 

discuss related work in this field. In Chapter 3, we discuss the overall system 

model we used in our simulations. After that we discuss about the simulator 

we used. In Chapter 4, we discuss Random, TimeOptimized, and 

BudgetOptimized policies and their results. In Chapter 5, we presented the 

NewTimeOptimized and NewBudgetOptimized policies and their results. In 

Chapter 6, we discuss a user preference based allocation method and its 

results. In Chapter 7, we present a history based policy and its results. In 

Chapter 8, we conclude the thesis and discuss the future work. 
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C h a p t e r  2  

RELATED WORK 

The market mechanism used in this thesis is auctions. In this chapter, we first 

discuss the auction mechanism in detail and then describe the work done 

using auction in grids. 

2.1. Different Auction Mechanisms 

There are different variations of auctions. Auctions mainly differ in two 

aspects, whether they are open cry or closed, and whether they are ascending 

or descending auctions. In open cry auctions all the participants know the 

other participants bid information.  In closed auctions, participants do not 

have access to other participant’s bid information. The ascending auctions 

start with a low price and will go higher and higher until no one bids. 

Descending auctions start with a high price and will go lower and lower until 

one accepts the bid. Based on the above criterion auctions can be divided into 

the following types.  

• English Auction: The Auctioneer will start the auction with the 

reserve price (lowest acceptable amount) and takes larger and larger 

bids until no one will increase the amount. The auctioneer will give 

the resource to the highest bidder. 

• Sealed bid: The Auctioneer accepts bids from users in which the 

players will not know the other player’s bid amount. At the end of the 

auction period, the auctioneer opens the bids and gives the resource 

to the highest bidder. 
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• Vickrey Auction: In Vickrey or Second price sealed bid auction the 

bidders will bid the amount without knowing the other bidders’ 

amount. The bidder who bids the highest amount will get the 

resource but he/she will pay the price of the second highest bid 

amount. 

• Dutch Auction: It is similar to English Auction but the bidding 

process starts with the highest amount instead of the lowest amount. 

The auctioneer will continuously decrease the amount. The bidder 

who can pay the current bidding amount will get the resource.  

• Double Auction: This type of auction is common in stock 

exchanges. In this type of auction sellers’ offer are called asks and the 

bidders’ amount are called bids. The restriction is that the seller must 

ask a price that is less than the current ask and the bidder must bid an 

amount higher than the current highest bid. When a match occurs 

between asks and bids, the transaction is committed. Another type of 

double auction is Clearing House Auction in which the bidders will 

submit their bids and the sellers will submit asks. Once submitted, 

asks are sorted in ascending order and bids are sorted in descending 

order. The price is the average of the lowest ask and the highest bid 

offer. This type of auction is normally considered fair. The only 

difference between normal double auction and clearing house auction 

is that in normal auction, the transaction is committed immediately 

after a match, and in clearing house double auction, it will be after 

some specific time.  

In our work, we concentrated mainly on sealed bid auction. One should 

choose a mechanism for which truthfully revealing one's true willingness to 

pay is a dominant strategy. A mechanism of this sort is called direct 

mechanism or strategy proof mechanism [44]. Vickrey auction is such a 
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mechanism but vickrey auction will not be of much help in a grid setting. In a 

grid environment, the users will participate again and again in repeated 

auctions and so the users can behave strategically. To simplify the problem, 

we are not considering strategic users in our work. 

The second reason why vickrey auction is not much helpful in our settings 

can be explained using the revenue equivalence theorem [30]. The revenue 

equivalence theorem states that when bidders are risk-neutral and have 

independent private values (but it does not hold for common values with risk 

averse bidders), any auction format will on an average generate same expected 

revenue. However, revenue equivalence breaks down when bidders are risk-

averse. Here independent private values means that each bidder knows how 

much it values the objects for sale, but its value is private to itself [30]. 

Common values means that the actual value is the same for every one but 

bidders have different private information about the actual value [30]. For 

example, if resources are not permanent in grid then before bidding, users 

have to consider the participation time of resources in grid as well. In that 

case all the users value the resource the same but each user estimates the 

participation time differently. The bidder would change his/her estimate of 

the value if he/she learnt another bidder’s estimate. This is in contrast to the 

private value case in which his value would be unaffected by learning other 

bidders information. 

Describing how to design auctions efficiently is out of the scope of this 

document. Economists use game theory to model participant’s interaction 

and the subject that deals with this is mechanism design (also called 

implementation theory). More information on mechanism design in auctions 

can be found in [30, 44].  
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2.2. Related Work 

Research work in the area of market economics in grid computing can be 

classified into three areas.  

The first area of work examines different market mechanisms for grid 

environments. Here a mechanism may be auction, commodity market etc. 

The mechanism that is applied should encourage users and resource owners 

to participate in the grid. There exists several studies that compare different 

market mechanisms for grid environment [9, 25, 29, 48]. Here we will discuss 

few of them briefly. Wolski et al. [48] compares commodity market model 

and auctions with respect to price stability, market equilibrium, application 

efficiency and resource efficiency. He concludes that commodity market 

model is better than auctions with respect to the above parameters. Wolski 

has used Smale’s technique [48] for finding unit price in commodity market. 

The problem with this technique is that there should be some cooperation 

between the service providers or some regulatory authority which decides the 

unit price (its job is to find the supply and demand of the service providers 

and calculate the unit price accordingly). This is not practical in real world grid 

environments. Grosu and Das [25] compares first price, vickrey, and double 

auction with respect to user payments, resource profits, payment structure, 

and resource utilization. They conclude that first price auction is better from 

resource perspective, vickrey is better from user’s perspective, and double 

auction is better for both. The problem with double auction is that again there 

should be some cooperation between resource providers. Kant and Grosu 

[29] compare different double auction protocols with respect to the above 

parameters.  

The second area of work examines the scheduling strategies for resource 

providers. Xiao et al. [49] deals mainly with scheduling of accepted jobs at the 

server side. It uses tender/contract-net economic model. When a resource 

receives notification of a new job, the resource has to decide whether to 
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accept the job or not. It might have sent a bid request to some other user and 

is waiting for the response, and in this case, if it sends again it may eventually 

get both jobs and one of them may miss the deadline. To control such 

behavior they introduced penalty for resource providers if they did not meet 

the deadline and thus prevents them from accepting more jobs than they can 

handle. This is controlled by conservative degree (CD). CD = 0 means it is 

aggressive and accepts all jobs. CD = 1 means it is conservative. They 

compared conservative degree with failure rate and deadline miss rate. At low 

system load and under low CD there are no deadline misses and job fails. 

Deadline miss rate is increased when the system load is increased but failure 

rate is not increased. At high CD deadline miss rate is zero but failure rate 

increases with increasing load. Ernemann et al. [15] also deal with scheduling 

the jobs at the server end that maximizes the given utility function. Here 

utility is like minimizing startup time etc. Kale et al. [28] uses tender/contract-

net economic model. It also investigates scheduling algorithms that will be 

best suited for resource providers. It compares Gantt chart scheduling and 

best fit strategy with respect to loadfactor vs revenue gained, loadfactor vs 

percentage work done, loadfactor vs percentage utilization, and loadfactor vs 

percentage of rejected jobs. 

The third area of work has attempted to find resource selection policies for 

users. Buyya et al. proposed Nimrod-G [6] which supports several economic 

models like commodity market, spot market, and contract net. It implements 

two resource selection policies for the above market models, time 

optimization, and budget optimization policies. The problem with this 

approach is they assumed that one centralized agent will do the scheduling for 

all the users. In their work they have not applied those policies to auctions. In 

auctions, we can not directly use those policies.  

In our model we assumed that for each job there will be certain amount 

allocated to it and for each job there will be a deadline associated with it. The 
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job should finish its execution within its deadline and budget. The work in 

[25, 29] considered resources with different capabilities but they selected 

resources randomly for bidding. The problem with random policy is that the 

resource capabilities are not considered for bidding. Hence the average 

turnaround time and the average budget spent per job both increases.  

In the next chapter, we discuss the overall system model we used in our 

simulations. After that we discuss about the simulator we used. 
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C h a p t e r  3  

SYSTEM MODEL  

In this chapter we first explain the system model and then we explain the 

simulator we used. 

3.1. System Model 

The grid computational environment consists of resource consumers or users 

and resource providers. Resource consumers have jobs to be done and are 

willing to pay for it. Resource providers have computational resources and are 

willing to rent them for profit. Scheduling enables the interaction between the 

two parties and maps jobs to resources properly [48]. We used sealed bid 

auction as our market mechanism.  

Each resource consumer or user has its corresponding resource broker and 

submit their jobs to the resource broker. A resource broker will take care of 

searching for suitable resource providers and submitting the job to a resource 

provider. Let U1, U2, U3 … UN be the users participating in the grid and J1, J2, 

J3 … JK be the corresponding jobs for each user. Each job specification Ji 

includes job length, deadline, and budget. The jobs have to be completed 

within its deadline and its cost of execution should not exceed its allocated 

budget. The job length is specified in millions of instructions (MI). The 

deadline includes the time spent on the auctions also.  

A resource provider executes jobs for resource consumers and charges them 

for usage of resource. Let R1, R2 … Rm be the resources participating in the 

grid. Each resource Ri is modeled by processor speed and unit price. The 

capability of resources is expressed in terms of millions of instructions the 
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resource can process in one second (MIPS). The unit price is the amount a 

user pays for one second usage of the resource. Here it specifies the minimum 

price the resource Ri accepts. In our work we considered resources with single 

processor. Each resource Ri will conduct auction Ai. Users who want to use 

the resource have to participate in the auction. In the rest of the thesis, the 

speed of the resource i is referred as Ri.speed, resource usage start time is 

referred as Ri.resource_usage_start_time, and unit price of the resource is referred 

as Ri.price . 

The main job of a resource broker is to find an appropriate resource 

according to user policy and to bid for that resource. Let Rb1, Rb2 … RbN be 

the resource brokers for the users U1, U2 … UN respectively. A user will 

specify which resource selection policy resource broker has to use and the 

resource broker in turn select resources accordingly. In the rest of this thesis, 

we have not differentiated much between the resource broker and the user 

and we have used resource broker and user interchangeably.  The details of 

these policies will be explained in the next chapter.  

Grid Information Service (GIS) contains complete information about current 

auctions. Each auction description Ai includes the resource provider id, 

auction number, starting time of resource usage, auction end time, reserve 

price and capability of resource. It does not include resource usage end time; 

it depends on the job it accepts in the auction. The resource broker will first 

contact the GIS for auction information. Resource providers will periodically 

update their auction information in GIS. It uses a soft state protocol, meaning 

that the GIS will not query resource providers for the latest information. It is 

the job of a resource provider to provide the latest information about current 

auctions to GIS.  



 

18 

Each resource provider will conduct sealed-bid auction and accept the bids 

until the end of auction period. Here the bidding amount is in terms of 

cost/sec. The bidding amount should be greater than the reserved price for 

that resource. At the end of the auction, the resource provider will open the 

bids and inform the resource brokers whether they won in the auction or not. 

The maximum bid amount is not revealed to others. This is to prevent 

resource brokers from behaving strategically. A resource broker may learn the 

bid amount to bid by participating in repeated auctions, but we are not 

considering it here. If no one participated in the bidding by the end of the 

auction, the above process will be repeated. 

For TimeOptimized policy, the resource broker uses its complete amount 

allocated to the job for bidding but for BudgetOptimized policy, it calculates 

the penalty in execution time by choosing low cost resources. It reduces the 

bid money proportional to that. The choosing of a particular auction from set 

of auctions for bidding will be explained in the next chapter. After the end of 

the current auction, the resource providers will start new auctions for the next 

available time slot. The starting time of the next usage is changed in 

accordance with the current accepted job. The complete interaction between 

users and resource providers is shown in Figure 2. 

The complete interaction between users and resource providers can be 

summarized as follows. Whenever a job is available to a user, it will submit 

the complete job specification to its resource broker. The resource broker will 

query GIS for the current auction information. After getting information 

from GIS, according to predefined policy specified by the user, the resource 

broker will choose one provider and bid for that resource. At the end of the 

auction, the resource provider will inform whether it won in the auction or 

not. If it won, it will submit the current job to the resource provider. If it did 

not win then it again repeats the whole process. At the end of the execution 
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of the current job, the resource provider returns the result to the resource 

broker.  

 

Figure 2: Interaction between users and resource providers 

3.2. GridSim 

We used GridSim [7] for evaluating the proposed user selection policies. 

GridSim is a java based discrete event grid simulation toolkit. GridSim toolkit 

provides a comprehensive facility for simulation of different classes of 

heterogeneous resources, users, applications, resource brokers, and 

schedulers. It can be used to simulate application schedulers for single or 

multiple administrative domain distributed computing systems such as 

clusters and grids [7]. Other features of GridSim include advance reservation 

capability, network topology consideration capability, background network 

traffic functionality, and support for different time zones. 
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GridSim uses simjava. Simjava is a discrete event simulation package for java. 

The main classes in GridSim are GridSim, GridResource, AllocPoilicy, 

GridInformationService, and Gridlet. All the entities in the GridSim are derived 

from the GridSim class. The GridSim class provides methods for sending and 

receiving messages between entities, managing and accessing handles to 

various GridSim core entities and recording statistics [7]. The GridResource 

class is derived from the GridSim class and act as a grid resource entity. The 

GridResource class can be used to create machines with single processor to 

multi processor machines and clusters as well. By default the GridResource 

class provides two scheduling algorithms, time share and space shared algorithms. 

We have to extend the AllocPolicy class to provide our own scheduling 

algorithm for scheduling the jobs at the resource end. The 

GridInformationService class is a GridSim entity that provides resource 

registry, indexing and discovery services. The Gridlet class is a job package 

that stores complete information about the job like job length, job deadline, 

etc.  

The communication between the entities in GridSim is through messages. All 

the entities in GridSim are java threads. Simjava maintains the queue of 

messages and delivers the message to appropriate entities at the right time. 

Users and resource brokers are derived from the GridSim class. A user will 

submit jobs to a resource broker and the resource broker will participate in 

the auction. Before accepting the job, the user has to participate in the auction 

conducted by the resource. Each resource will conduct an auction on its own. 

To simulate that, in GridSim, we extended GridResource class to provide the 

auction capability into it. The interaction between the user and the resource, 

before submitting a job, can be visualized as message exchange between them. 

So to provide auction capability into GridResource class we added message 

handlers into it. Similarly we modified the resource broker class.  
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In the next chapter, we discuss Random, TimeOptimized, and 

BudgetOptimized policies and their results. 
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C h a p t e r  4  

RESOURCE SELECTION POLICIES 

In this chapter, we first implement three simple policies for resource 

allocation - Random, TimeOptimized and BudgetOptimized policies. The 

user will specifies  a policy for its resource broker and it will choose the 

resource according to that policy. 

4.1. Resource Selection Policies 

• Random policy: In Random policy, a user randomly chooses one 

resource for bidding that can complete the job within the deadline 

and budget allocated for the job. The pseudocode for Random policy 

is shown in Figure 3.  

 

Figure 3: Algorithm for Random policy 

 

S = { NULL }; 
 
// Find set of resources who can complete the job within deadline and 
budget 
for (i=0; i<n; i++){ 
 

//  minimum time required to execute the job 

exec_time = job_length / Ri.speed; 

 
// completion time on Resource i 

completion_time = Ri.resource_usage_start_time + exec_time;  

if ((budget >=(Ri.price * exec_time )) AND (completion_time<=deadline) ){ 

S = S U  Ri;  

} 
} 

select randomly one resource Ri from S;  
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• TimeOptimized policy: In TimeOptimized, a user will always bid for a 

resource that can complete the job the earliest within the deadline and 

budget allocated for it. It uses the whole budget allocated to the job 

for bidding for the selected resource. If it fails in the current auction, 

it then chooses the next resource that can complete the job within 

deadline and bids for it. This continues until the job either finds a 

resource or misses the deadline. The pseudocode for TimeOptimized 

policy is shown in Figure 4.  

 

Figure 4: Algorithm for TimeOptimized policy 

• BudgetOptimized policy: In BudgetOptimized case, a user will always 

bid for a resource that costs less. In BudgetOptimized case it will not 

use its whole amount allocated to the job for bidding. Instead, it 

calculates the penalty and it will reduce the allocated amount in 

proportion to the penalty. Here penalty is the degradation in the 

performance a user is getting by choosing a low speed resource. The 

penalty is high for low speed resource and it is very low for high 

S = { NULL }; 
 
// Find set of resources who can complete the job within deadline and 
budget  
for (i=0; i<n; i++){ 
 

//  minimum time required to execute the job 

exec_time = job_length / Ri.speed; 

 
// completion time on Resource i 

completion_time = Ri.resource_usage_start_time + exec_time;  

if ((budget >=(Ri.price * exec_time )) AND (completion_time<=deadline) ){ 

S = S U  Ri;  

} 
} 
sort S by completion time;   

select R1 from S;  
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speed resource. So it bids less for a low speed resource and it bids 

higher for a high speed resource. If it fails in the current auction, it 

then chooses the next high cost resource which can complete the job 

within deadline and bids for it. The pseudocode for BudgetOptimized 

policy is shown in Figure 5.  

 

Figure 5: Algorithm for BudgetOptimized policy 

S = { NULL }; 
 
// Find set of resources who can complete the job within deadline and 
budget  
for (i=0; i<n; i++){ 
 

//  minimum time required to execute the job 

exec_time = job_length / Ri.speed; 

 
// completion time on Resource i 

completion_time = Ri.resource_usage_start_time + exec_time;  

if ((budget >=(Ri.price*exec_time)) AND (completion_time<=deadline) ){ 

S = S U  Ri;  

} 
} 
sort S by price; 
 

// R1 will be the resource with lowest budget 

select R1 from S;  

 
// max_speed is the maximum speed of the resource the user can bid 

penalty = R1.speed / max_speed; 

 
// minimum amount needed to complete the job 

min_amount_needed = (job_length/R1.speed)*R1.price; 

bid_amount = budget – (budget –min_amount_needed)*penalty ; 

use bid_amount to bid for R1; 
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4.2. Simulation Results 

In this section we have provided simulation based evaluation of the policies 

we explained in the previous section. 

4.2.1. Experimental Methodology 

The simulated grid environment consists of 15 resources and 10 users. 

Resources have different processing speeds and reserve prices as given in 

Table 1. The processing rates are within the range [400, 2000], which includes 

low speed to high speed resources and characterizes real grid environment. 

The reserve prices for these machines are in the range [2, 18] and chosen such 

a way that price per MI is increasing when we go from low speed resource to 

high speed resource. The increase in the amount per MI is the premium paid 

to the resource for executing the job faster. If we have given same price per 

MI for all resources, then the user always chooses high speed resources only. 

We assumed that each machine will execute one job at a time. After 

completion of the present job it will again start new auction. There are a total 

of 50 jobs for each user.  

Incoming jobs for each user will come according to Poisson distribution with 

mean -. For all experiments we have kept - constant at 0.01. If we choose 

high - then the jobs fail because of high load so we have chosen a low -. A 

job should not miss its deadline. The job deadline includes auction 

participating time, execution time of job, and waiting time at the resource end. 

For each job, deadline is set according to the following expression. 

Ji.deadline = Eij + Rand(Ei) + -. 

where Ji.deadline is the deadline for job i, Eij is the execution time of Ji on Rj 

where Rj is the slowest processor available in the grid. Execution time is 

calculated as job length / MIPS of processor, Rand(Ei) is a random value 
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between 1 and Eij, and - is positive constant. This constant is added to 

alleviate the effect of time spent on auctions. For all our experiments we kept 

- constant at 30. This value is equal to the default auction time.  

The budget for each job is distributed uniformly over the interval [-1, -2]. 

We have taken this approach from [12]. The lower limit -1 of jobs budget 

interval is given by the product of the lowest computational time of a job and 

lowest reservation price of a resource while the upper limit -2 is given by the 

product of highest computational time of a job and the highest reservation 

price of a resource. 

In TimeOptimized policy, the user uses his entire amount for bidding but in 

BudgetOptimized policy, the user does not use his entire amount. Instead he 

calculates the penalty in performance he is getting by choosing the low speed 

resource instead of high speed ones and reduces the money in proportion to 

the amount allocated to it. The bidding amount for a job is calculated as 

shown in Figure 5. 

4.2.2. TimeOptimized and BudgetOptimized Policies 

In the first experiment, we implemented Random, TimeOptimized and 

BudgetOptimized policies. The job length in this experiment varies from 

10000MI to 20000MI. In TimeOptimized, the user tries to minimize the 

average turnaround time of a job. In BudgetOptimized, user will try to 

minimize the average budget spent per job. Figure 6 shows the comparison of 

the job success rate in TimeOptimized and Random policies. Here success 

rate is defined as the number of jobs finishing within their deadline. Figure 7 

shows the comparison of average turnaround time per job in TimeOptimized 

and Random policies. Figure 8 shows the comparison of the job success rate 

in BudgetOptimized policy. Figure 9 shows the comparison of budget spent 

per job in BudgetOptimized and Random policies. 
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M/c MIPS Rating 400 800 1200 1600 2000 

Cost/Sec 2 6 10 14 18 

No of machines 3 3 3 3 3 

Table 1: MIPS and cost of each machine 
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Figure 6: Job success rate in TimeOptimized and Random policies 
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Figure 7: Average turnaround time per job in TimeOptimized and Random 

policies 
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Figure 8: Job success rate in BudgetOptimized and Random policies 
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Figure 9: Average budget spent per job in BudgetOptimized and Random 

policies 

From Figure 6 and Figure 7 it is clear that TimeOptimized policy reduces the 

average turnaround time but the number of jobs finishing within deadline is 

less than in Random policy. Similarly, in BudgetOptimized policy, the average 

budget spent per job is less than Random policy but the number of jobs 

finishing within deadline is also less in BudgetOptimized policy. The 

advantage of Random policy is that as each user selects the resource 

randomly, overall there will be less contention for resources, so most of the 
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time the users will win in auctions. In TimeOptimized policy there will be 

high contention for high speed resources and only one user wins in auction 

and the rest who participated in the auction will fail. These failed jobs again 

participate in new auction. This process repeats and eventually they miss the 

deadline. A Similar phenomenon happens in BudgetOptimized policy. The 

justification for the above policies is explained below. 

The probability of a user Ui winning in auction Aj is given by 

∑

u

j i k
k = 1

Ρ

(

Α

)

* Β > Β
. Where Bi is the bid of Ui, u is total number of users 

participating in the auction and P(Aj) is probability of choosing Auction j. In 

the above expression ∑

u

i k
k = 1

Β > Β
refers to the probability of winning in the 

auction. If we consider that the budget allocations for users follow the 

uniform distribution then the probability of winning in Aj is proportional to 

the number of users participating in the grid. In both the policies, the 

probability of winning the resource is same but the probability of choosing 

the resource varies. In the TimeOptimized policy the probability P(Aj) is 

dependent on the capability of resource. Highly capable resources will have 

high probability of being chosen as they will complete the jobs earlier. In 

random policy the probability P(Aj) of choosing auction j is 1/n (n is the total 

number of auctions). Similar explanation holds for BudgetOptimized policy. 

Thus the number of jobs finishing within deadline in TimeOptimized and 

BudgetOptimized policies is less when compared with the Random policy.  

Random selection maximizes chances of winning but the average turnaround 

time will be higher than TimeOptimized policy and average budget per job 

(cost of acquiring the resources) will be higher than BudgetOptimzied policy.  
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In the next chapter, we propose two new policies. The first one, 

NewTimeOptimized policy, tries to minimize the average turnaround time 

while increasing the number of jobs finishing within their deadlines. The 

second one NewBudgetOptimized policy, tries to minimize the average 

budget spent per job while increasing the number of jobs finishing within 

their deadlines.  
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C h a p t e r  5  

NEWTIMEOPTIMIZED AND 
NEWBUDGETOPTIMIZED POLICIES 

In this chapter we proposed two policies. The first one, NewTimeOptimized, 

tries to minimize the average turnaround time while increasing the number of 

jobs finishing within their deadlines. The second one NewBudgetOptimized, 

tries to minimize the average budget spent per job while increasing the 

number of jobs finishing within their deadlines. 

5.1. NewTimeOptimized Policy 

In NewTimeOptimized policy we sort the resources according to completion 

time and then we select one resource randomly from the top k resources for 

bidding. Here the user will specify the value of k. For k = 1 this policy is 

equivalent to the TimeOptimized case and for k = n this policy is equal to the 

Random policy; where n is the total number of resources in the system. When 

we change k from 1 to n, effectively we are moving from TimeOptimized to 

Random policy. As k increases, the number of jobs finishing within their 

deadline increases, but the average turnaround time also increases. The 

pseudocode for this policy is shown in Figure 9. 

5.1.1. Experiment Results 

We conducted the experiment for three different job lengths, 10000MI to 

20000MI, 50000MI to 100000MI and 100000MI to 200000MI. These three 

different job lengths reflect jobs with small, medium, and large CPU 

requirements. For each experiment, we varied k from 1 to 15 and we 

measured the average turnaround time and job success rate. Here success rate 

is defined as the number of jobs finishing within their deadline. It shows how 

the success rate and average turnaround time varies when we move from 
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TimeOptimized policy to Random policy. Figure 11 and Figure 12 show the 

job success rate and average turnaround time respectively for different values 

of k and for different job lengths. 

 

Figure 10: Algorithm for NewTimeOptimized policy 

From Figure 11 and Figure 12 it is clear that when we go from k = 1 to k = 

15 the success rate is increasing and at the same time the average turnaround 

time is also increasing. This is because, at k = 1, all users go for high capability 

resources and the competition for those resources will be high. Only one user 

in the auction will win and the rest of the resources who participated in the 

auction will lose, and to complete the job they have to again participate in 

S = { NULL }; 
 
// Find set of resources who can complete the job within deadline and 
budget  
for (i=0; i<n; i++){ 
 

//  minimum time required to execute the job 

exec_time = job_length / Ri.speed; 

 
// completion time on Resource i 

completion_time = Ri.resource_usage_start_time + exec_time;  

if ((budget>=(Ri.price*exec_time)) AND (completion_time <=deadline) ){ 

S = S U  Ri;  

} 
} 
 
sort S by completion_time;  
 
// we will keep top k resources and remove rest of the resources 
for (i=k+1; i<S.length; i++) 

remove Si; 
select randomly one resource Ri from S;  

use complete amount allocated to job to bid Ri;   
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another auction. This will repeat and eventually some jobs will miss the 

deadline. When we increase k, users will start choosing resources  
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Figure 11: Job success rate in NewTimeOptimized policy for different values 

of k 
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Figure 12: Average turnaround time in NewTimeOptimized policy for 

different values of k 
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randomly and the competition for resources will become less. At the same 

time the average turnaround time is increasing because of choosing lower 

capability resources.  

At k = 4 the success rate is fairly high than at k = 15. At k = 15 all the users 

will choose resources randomly and distribution of jobs is random. Here 

distribution of jobs means, resources with high capability can execute more 

number of jobs than resources lower capability. Ideally any policy should 

distribute more number of jobs to high capable resources and less number of 

jobs to low capable resources. But when we follow Random policy, jobs will 

not get distributed in the above manner. So the number of jobs executing is 

higher at k = 4.  

5.2. NewBudgetOptimized Policy 

In NewBudgetOptimized policy, we sort resources according to cost and we 

select one resource randomly from the top k resources for bidding. At k = 1 

this policy is equivalent to BudgetOptimized policy, and at k = n this is equal 

to the Random policy. When we change k from 1 to n we are moving from 

BudgetOptimized to Random policy. As k increases, the number of jobs 

finishing within deadline increases but the average budget spent per job also 

increases. The pseudocode for NewBudgetOptimized policy is shown in 

Figure 13. 

5.2.1. Experiment Results 

Similar to NewTimeOptimized policy, we conducted the experiment for three 

different job lengths. For each experiment, we changed k from 1 to 15 and we 

measured out the average budget spent per job, job success rate, and the 

average turnaround time. Figure 14, Figure 15, and Figure 16 shows how the 
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average budget spent per job, success rate, and the average turnaround time 

varied when we move from BudgetOptimized policy to Random policy. 

 

Figure 13: Algorithm for the NewBudgetOptimized Policy 

From Figure  14, Figure  15, and Figure  16 it is clear that when we go from k 

= 1 to k = 15, the budget spent per job will be increased and number of jobs 

getting executed will also be increased. Similar to TimeOptimized policy, at k 

= 4, the number of jobs is high and at the same time budget spent per job is 

S = { NULL }; 
 
// Find set of resources who can complete the job within deadline and 
budget  
for ( i=0; i<n; i++){ 
 

//  minimum time required to execute the job 

exec_time = job_length / Ri.speed; 

 
// completion time on Resource i 

completion_time = Ri.resource_usage_start_time + exec_time;  

if((budget >=(Ri.price * exec_time)) AND (completion_time<=deadline) ){ 

S = S U  Ri;  

} 
} 
sort S by price;  

max_speed = RS.length;  
 
// we will keep top k resources and remove rest of the resources 
for (i = k+1; i < S.length; i++) 

remove Si; 

select randomly one resource R i from S; 

penalty = Ri.speed / max_speed; 

 
// minimum amount needed to complete the job 

min_amount_needed = (job_length/R1.speed)*R1.price; 

bid_amount = budget – (budget –min_amount_needed)*penalty;  

use bid_amount to bid for Ri; 
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less. The reason for this is the same as in NewTimeOptimized policy. As we 

increase k, the competition for low cost resources will be decreased, so the 

number of jobs getting executed will be increased. As we increase k, we start  
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Figure 14: Average budget spent per job in NewBudgetOptimized policy for 

different values of k 
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Figure 15: Job success rate in NewBudgetOptimized policy for different 

value of k 
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choosing resources randomly so the budget spent per job will be increased. 

The average turnaround time is very high at k = 1 because of choosing low 

cost resources. The cost of resources is proportional to resource speed. When 

we increase k, we choose resources randomly so the average turnaround time 

will be decreased. 
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Figure 16: Average turnaround time in NewBudgetOptimized policy for 

different values of k 

The above two policies either optimize the average turnaround time or 

average budget spent per job but not both. In the next chapter, we combined 

above two policies using AHP (Analytic Hierarchy Process) to take into 

account user preferences. 
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C h a p t e r  6  

RESOURCE SELECTION POLICY USING AHP 

In the NewTimeOptimized and NewBudgetOptimized policies, we optimized 

only one parameter, either average turnaround time or average budget spent 

per job. We next implemented a resource selection policy that tries to 

decrease the average turnaround time and average budget spent per job based 

on user preference.  

A user may not need to use just the TimeOptimized or BudgetOptimized 

policies alone. Usually a user wants to achieve a certain performance, but may 

also want to save on money spent at the same time. Thus, a user will usually 

have some relative preference for speed over time or vice versa. In our case, 

the user will specify the preference for time vs. budget. We have used Analytic 

Hierarchy Process (AHP) [9, 21] technique to model the user preference.  

6.1. Analytic Hierarchy Process 

AHP, developed by Saaty [14], is a mathematical technique for multicriteria 

decision making. The structure of AHP consists of a hierarchy of criteria and 

sub-criteria cascading from the decision objective or goal. By making pairwise 

comparisons at each level of the hierarchy, we develop relative weights, called 

priorities, to differentiate between the importance of the criteria. Here criteria 

are nothing but the parameters on which we want to make our decision. In 

our case, we are considering two parameters, time and budget, and the user 

will give preference to time vs. budget. As shown in Table 2, we form a 

pairwise comparison of each criterion, where the ith row and the jth column 

give the relative weight of criteria’s Ci and Cj. The weights are assigned on the 

relative scale between 1 and 9; 1 means equal importance and 9 means 

extreme important. Full details of the AHP can be found in [15]. The 
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advantage of the AHP is we can combine the qualitative and quantitative 

information. Although in our paper we are considering quantitative 

information like cost and speed of resources we can also use qualitative 

information like reliability of the resource etc. In the rest of this chapter, we 

used the term criteria to describe the parameters on which we want to take 

decision and alternatives refer to the resources which we want to choose.  

 C1 C2 …. Cn 

C1 1 C12 …. C1n 

C2 1/C12 1 …. C2n 

: : : : : 

Cn 1/C1n 1/C2n …. 1 

Table 2: Example of pairwise comparison matrix 

 

 Budget Time Normalized 

Values 

Budget 1 1/9 0.16102 

Time 9 1 0.83898 

Table 3: Preference of time and budget 

 

6.2. Steps in AHP 

In this section, we have explained the AHP by taking an example. Let us 

assume that there are 3 resources and we have to choose one resource among 

them for bidding. Let R1, R2, R3 be the available resources and their cost, 

speed and their assigned weights are shown in Table 4. The problem is that 

we have to choose one resource for bidding according to user preference.  

1. The first step in AHP is to decide the criteria or parameters by which one 

is chosen among the alternatives. In this problem, one resource should be 
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selected for bidding based on the average turnaround time and cost of the 

resources.  

2. The second step is to determine the relative weights of each of the criteria 

compared. The relative weights are taken from the scale 1 to 9. 1 means 

equal preference and 9 means extremely high preference. The AHP uses 

pairwise comparison technique. If user has given time to budget 

preference as 9 means, he has given high preference to turnaround time. 

The pairwise comparison matrix for our problem is shown in Table 3. 

3. The third step is to compare the alternatives based on the each selected 

criteria. In our case for each criterion we will compare the resources based 

on the average turnaround time and cost.  

Resource R1 R2 R3 

Budget (rank) 2 (3) 6 (2) 10 (1) 

Time (rank) 400 (1) 800 (2) 1200 (3) 

Budget weight log(2*WeightRank) 0.77815 0.602059 0.301029 

Speed Weight log(2*SpeedRank) 0.301029 0.602059 0.778155 

Table 4: Weights assigned to resources 

 

In this problem, the resources are not compared based on the absolute 

scale. For example in the case of budget, the resources are not directly 

compared based on their cost of the resources. First the resources are 

ranked according to the speed and cost of the resources. The highest 

speed or the lowest cost resource will get a high rank. Resources with 

equal capability will get equal rank. The reason for doing this is as follows. 

Suppose that we have resources with speed 400MIPS, 900MIPS, and 

3000MIPS. If the resources are compared based on the absolute scale, 

3000MIPS resource will get very high preference. To avoid this, we are 

considering the resource ranks instead of their absolute values. After this 
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we have taken the logarithmic value of the rank. The advantage of doing 

this is that in the logarithmic scale, the slope of the curve will decrease 

when we increase the values. In other words, the resources with high 

capability will get high preference and it will become less and less as we go 

down towards lower capability resources. Table 4 shows the rank and 

weight of the resources. After assigning the weights we have to compare 

the resources pairwise based on these weights. By comparing the 

resources pairwise, we will get the relative importance of one resource 

over other. These relative values should be normalized before using. 

Table 5 and Table 6 show the pairwise comparison of resources based on 

the speed and budget respectively. Let us assume Wsi is the relative weight 

of alternative i with respect to speed and Wbi is weight of alternative i 

with respect to budget. Mathematically we can express the above as:  

Ws = Ws1 + Ws2 + …. + Wsn; 

Wb = Wb1 + Wb2+ …. + Wbn; 

where  

∑

n
i

i
j  =  1 j

l o g

(

R s

)

1W s = W s l o g

(

R s

)

 

with Rsi as the rank of alternative i with respect to speed, and 

∑

n
i

i
j  =  1 j

l o g

(

R b

)

1W b = W b l o g

(

R b

)

 

where Rbi is the rank of alternative i with respect to budget. 
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R1 R2 R3 

Normalized 
Values 

R1 1 1.292481 2.584967 0.462843 

R2 0.773706 1 2.000003 0.358105 

R3 0.386852 0.499999 1 0.179052 

Table 5: Pairwise comparison of resources based on speed of the resources 

 

 

 
R1 R2 R3 

Normalized 
Values 

R1 1 0.499999 0.38685 0.179051 

R2 2.000003 1 0.773701 0.358103 

R3 2.584984 1.29249 1 0.462845 

Table 6: Pairwise comparison of resources based on budget of the resources 

 

4. The final step is to take the weighted average of the relative weights 

obtained in step 2 with the above normalized values. Table 7 shows the 

above process for the example we have taken. The resource with the 

highest weight is chosen for bidding. Based on the given time to budget 

preference, R3 will get the highest weight, meaning that R3 is the most 

suitable resource. Instead, if the time to budget preference is 1, then R2 

will get the highest weight. The pseudocode for choosing the resources 

based on the AHP is explained in Figure 17. In the pseudocode, 

Ri.speed_rank refers to rank of resource i based on speed, Ri.cost_rank 

refers to rank of resource i based on cost, Ri.speed_weight refers to weight 

assigned to resource i based on speed, and Ri.cost_weight refers to weight 

assigned to resource i based on cost. Mathematically we can express the 

above as:  

( ) ( )( )Pa  = Ws  ×UPtb + Wb  × 1-UPtbi i i
 

where Pai is the final weights of alternative i and UPtb is the time to 

budget preference. 
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 Cost 

Values 

Speed 

Values 

 Attribute 

Weights 

 Final 

Weights 

R1 0.462 0.179 = 0.225 0.161 

R2 0.358 0.358  0.358 

R3 0.179 0.463 

X 

0.839  0.417 

Table 7: Weighted average of cost, speed values with attribute weights 

 

 

Figure 17: Algorithm for the combined policy 

Let S be the set of resources that user can complete the job within deadline 
and budget; 
Let assume that A be the normalized attribute matrix; 

For each Ri in S, find its rank Ri.speed_rank and Ri.cost_rank according to 

speed and cost; 
for (i=0; i<S.length; i++){ 

Ri.speed_weight = log(2* Ri.speed_rank); 

Ri.cost_weight = log(2* Ri.cost_rank); 

total_speed_val += Ri.speed_weight; 

total_cost_val += Ri.cost_weight; 

} 
V = {0};  
for (i=0; i<S.length; i++){ 

V[i][0] = Ri.cost_weight / total_cost_val; 

V[i][1] = Ri.speed_weight / total_speed_val; 

} 
 
// Multiply the above two matrices and W gives the final weights of 
alternatives 
W = V x A; 

select Ri from S which has maximum weight;  

 
//max_speed is the maximum speed of the resource that the user can bid 

penalty = Ri.speed / max_speed;  

 
// minimum amount needed to complete the job 

min_amount_needed = (job_length/ Ri.speed)* Ri.price; 

bid_amount = budget – (budget –min_amount_needed)*penalty;  

use bid_amount to bid for Ri; 
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6.3. Experimental Results 

First, the time to budget preference is varied from 9 to 1/9 for all users. The 

experiment is conducted for three different job lengths; 10000MI to 

20000MI, 50000MI to 100000MI and 100000MI to 200000MI. Time to 

budget preference of 9 means there is high preference for the turnaround 

time of the resources and time to budget preference of 1 means, there is equal 

preference for turnaround time and cost of the resources. When we change 

the value from 9 to 1/9, effectively we are moving from TimeOptimized to 

BudgetOptimized policy. Figure 18 shows the job success rate with respect to 

time to budget preference. Figure 19 shows the average turnaround time of 

jobs for different values of time to budget preference. Figure 20 shows the 

average budget per job for different values of time to budget preference. 

 From Figure 19 it is clear that when the time vs. budget preference is 

changing from TimeOptimized to BudgetOptimized policy, the average 

turnaround time per job is increasing. This is because as the value is changing 

from TimeOptimized to BudgetOptimized policy, we are choosing resources 

with lower and lower speeds and the execution time on these low speed 

resources will be high which in turn increases the total turnaround time for 

the jobs. Figure 20 shows that the average budget spent per job is decreasing 

when the value is changing from from TimeOptimized to BudgetOptimized 

policy. This is because as the value changes from TimeOptimized to 

BudgetOptimized policy, we are choosing low speed resources and the price 

per MI will be lower and budget per job will be decreased. Effectively the 

resources are chosen according to user choice.  
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Figure 18: Job success rate for different values of time vs. budget preferences 
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Figure 19: Average turnaround time for different values of time vs. budget 

preference 
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Figure 20: Average budget spent per job for different values of time vs. 

budget preference 

From Figure 18, the job success rate is decreasing when the preference is 

changing from TimeOptimized to BudgetOptimized policy. This is because 

the execution time on a high speed resource is low so it can execute more 

number of jobs when compared with a low speed resource. In other words, 

the number of auctions conducted by a high speed resource in some time 

interval is more when compared with a low speed resource. So the success 

rate is decreasing when the preference is changing from TimeOptimized to 

BudgetOptimized policy. Let us assume that three jobs J1, J2, and J3 are 

participating in an auction and assume that their job length is 150MI and its 

deadline 100 sec. First, assume that all the jobs are participating in the auction 

conducted by the 2000MIPS resource and its default auction time is 30 sec. 

Let assume that J1 first won in the auction and then J2 and J3. In that case J1 

will complete the job by 37.5 sec, J2 will complete the job by 67.5 sec and J3 

will complete the job by 97.5 sec. Instead if all participated in the auction 

conducted by 400MIPS resource, in that case only J1 and J2 can complete the 

job. J3 will miss the deadline. This is because the execution time on the 

400MIPS resource will be more and all the jobs will have to wait more time to 

get the resource. 
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If TimeOptimized policy is compared with combined policy at the time to 

budget preference of 9, except the job success rate, there is not much 

difference in the average turnaround time and average budget spent per job. 

But the job success rate is increased around 83% in the combined policy as 

compared to around 74% in TimeOptimized policy. The difference between 

these two can be explained by considering the demand for the resources. 

From Table 7, the number of auctions with single user participation is almost 

10% higher than TimeOptimized policy and this is the main reason for 

increase in the success rate in the combined policy. The reason is, although 

time to budget preference of 9 means high importance for turnaround time, 

still there is a small percentage of preference we have given to budget and this 

is the reason for the difference in the success rate. 

No of 
Participants 

Frequency Cumulative % 

1 281 71.50% 

2 81 92.11% 

3 19 96.95% 

4 10 99.49% 

5 2 100.00% 

6 0 100.00% 

Table 8: Percentage of users participating in the auctions in the combined 
policy 

 

 

No of 
Participants 

Frequency Cumulative 
% 

1 217 60.78% 

2 84 84.31% 

3 30 92.72% 

4 20 98.32% 

5 5 99.72% 

6 1 100.00% 

Table 9: Percentage of users participating in the auctions in TimeOptimized 
policy 

 

At higher job lengths, the ratio of the number of jobs succeeded to the 

number of jobs failed at time vs. budget preference of 9 to 1/9 is reduced 
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when compared with lower job lengths. This is because, when the job size is 

increased, the advantage of high speed resource as explained in the above will 

be reduced if the job size is high.  

In the second experiment, we have given different time to budget preferences 

for users as shown in Table 9. The job length for this experiment is varied 

from 10000MI to 20000MI. This experiment is performed to show that the 

user is getting the resource it wants according to its preference. From Figure 

21, the average budget spent per job is decreasing when the user chooses low 

speed to budget preference. From Figure 22, the average turnaround time per 

job is increasing when he chooses low time to budget preference. Figure 23 

shows the success rate for users. Unlike our previous experiment, the success 

rate is not decreasing when we decrease the time vs. budget preference. The 

reason for this is, unlike our previous experiment, all the users are not having 

the same preference and there will be less contention for resources.  

We can improve the success rate in the above experiments by using the 

strategy employed in the NewTimeOptimized and NewBudgetOptimized 

policies i.e. we can select one resource from the top k resources randomly.  

 

User Time vs. Budget Preference 

User 1 9 

User 2 7 

User 3 5 

User 4 3 

User 5 1 

User 6 1/3 

User 7 1/5 

User 8 1/7 

User 9 1/9 

User 10 1/10 

Table 10: Time vs. Budget preference for users 
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Figure 21: Average budget spent per job for users with different time vs. 

budget preference 
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Figure 22: Average turnaround time per job for users with different time vs. 

budget preference 
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Figure 23: Success rate for users with different time vs. budget preference 

6.4. Extending to More Than Two Parameters 

In our present work, the decision is taken by considering only two 

parameters, speed and budget of the resources. It can be extended similarly 

for other parameters also. For example we can include available memory in 

the above case. The same methodology that is used in the above case can be 

used for this also i.e. sort the resources according to available memory and 

assign weights to it as explained in the step3 of section 6.2. The next step is to 

add one more column and row in the attribute matrix. We have to compare 

the speed with memory and budget with memory and finally we will take the 

weighted average of attribute matrix with the individual values formed based 

on speed, cost, and memory of the resources. In a similar way we can include 

other parameters also. In general,  

∑ ∑

m n

i  i j j
i = 1 j = 1

P =  W × U P
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where Pi is the preference of criteria i, Wij is the relative weight of alternative i 

with respect to criteria j.  

AHP can be used to combine qualitative and quantitative information easily. 

For example assume that we want to include qualitative parameters like 

reliability of resources. The same procedure as explained above for qualitative 

parameters can be used for reliability of resource with one exception. The 

alternatives can not be compared based on qualitative parameter, so we have 

to express it in terms of quantitative information. The relative preference of 

one alternative over other can be expressed in a scale from 1 to 9.  

In the next chapter, we presented one history based technique that considers 

the previous success rate for choosing resources. 
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C h a p t e r  7  

HISTORY BASED POLICY 

In this chapter we presented one history based technique that considers the 

previous success rate for choosing resources. Here the user will give 

preference in terms of the minimum percentage of jobs that should be 

finished within deadline. 

7.1. History Based Policy 

The main motivation for this policy is, the success rate in 

NewTimeOptimized policy is higher than NewBudgetOptimized policy but in 

NewTimeOptimized policy the user is not able to save money. In this policy 

after getting the minimum success rate we are trying to save money by 

shifting to NewBudgetOptimized policy. 

Initially we start with NewTimeOptimized policy with k = 4 and when the 

success rate exceeds the user specified value we shift to 

NewBudgetOptimized policy with k = 4. In NewBudgetOptimized we do not 

use our complete budget for a job to bid. So first we are using our complete 

amount for bidding in the initial stage, and after getting sufficient success rate 

we are shifting to NewBudgetOptimized policy. This policy effectively tries to 

reduce the average budget spent per job while maintaining the user 

requirements. If the user specifies high success rate then this policy is then 

same as NewTimeOptimized policy and if user specifies very low success rate 

then this policy is same as NewBudgetOptimized policy.  

The pseudocode for this policy is shown in Figure 24. In the algorithm, the 

penalty will be very less for NewTimeOptimized policy and we almost use our 

complete amount allocated to the job for bidding. But if we use 
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NewBudgetOptimized policy then the penalty will be higher and it will not 

use the complete amount allocated for bidding.  

 

Figure 24: Algorithm for history based policy 

S = { NULL }; 
 
// Find set of resources who can complete the job within deadline and 
budget  
for (i=0; i<n; i++){ 
 

//  minimum time required to execute the job 

exec_time = job_length / Ri.speed; 

 
// completion time on Resource i 

completion_time = Ri.resource_usage_start_time + exec_time;  

if((budget >=(Ri.price * exec_time)) AND (completion_time<=deadline) ){ 

S = S U  Ri;  

} 
} 
 
success_rate = no_jobs_finished / total_no_jobs;  
if(success_rate <= user_success_rate) 

Sort S by completion_time;  
else 

Sort S by budget; 
 
// we will keep top k resources and remove rest of the resources 
for (i = k+1; i < S.length; i++)  

remove Si; 

select randomly one resource R i  from S; 

 
// penalty will be very less if we choose TimeOptimized and we use almost 
all the amount for bidding 

penalty = Ri.speed / max_speed; 

 
// minimum amount needed to complete the job 

min_amount_needed = (job_length/R1.speed)*R1.price; 

bid_amount = budget – (budget –min_amount_needed)*penalty; 

Use bid_amount to bid for Ri; 
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7.2. Experimental Results 

We compared the proposed adaptive policy with NewTimeOptimized policy. 

In adaptive policy, we have taken the user specified success rate as 70%, 

meaning that the resource broker will initially try to get 70% success rate by 

using NewTimeOptimized policy and after getting that, it will shift to 

NewBudgetOptimized policy and tries to decrease the total amount spent. 

Figure 25 compares the adaptive policy with NewTimeOptimized on the 

success rate, turnaround time, and average budget per job for average job 

length of 10000MI. Similarly Figure 26 and Figure 27 show the same for 

average job length of 50000MI and 100000MI respectively.  

From Figure  25, for user specified success rate of 70%, the actual success 

rate obtained is around 84%, which is slightly less when compared to 

NewTimeOptimized policy but the average budget per job is decreased by 

around 12% when compared to NewTimeOptimized policy. This is because, 

after getting sufficient success we are switching to NewBudgetOptimized 

policy and we are trying to save money after that. With this policy we are 

missing some of jobs but at the same time we are reducing the average budget 

spent per job.  

The same explanation is true for budget 50000MI and for 100000MI job 

lengths. But for 100000MI job lengths, the actual success rate is less than the 

user specified success rate but it is very close to it. This is because the success 

rate for NewTimeOptimized policy is exactly 70% and in our history based 

policy the success rate is usually less than NewTimeOptimized. So in this 

policy it is slightly reduced. 
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Figure 25: Comparison of NewTimeOptimized policy with Adaptive policy 

for average job length of 10000MI 
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Figure 26: Comparison of NewTimeOptimized policy with Adaptive policy 

for average job length of 50000MI 
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Figure 27: Comparison of NewTimeOptimized policy with Adaptive policy 

for average job length of 100000MI 
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C h a p t e r  8  

CONCLUSION & FUTURE WORK 

In this thesis, we proposed and evaluated several auction based resource 

selection policies for users in grid. In all these policies we tried to optimize the 

average turnaround time, the average budget spent per job, and the success 

rate. First we proposed simple TimeOptimized, BudgetOptimized, and 

Random policies. The success rate of these policies is less than Random 

policy but the average turnaround time and average budget spent per job is 

more in Random policy. We next proposed NewTimeOptimized and 

NewBudgetOptimized policies that tries to increase the number of jobs 

getting successful and at the same time it reduces the average turnaround time 

and average budget spent per job respectively. Next we proposed a policy that 

tries to optimize the average turnaround time and average budget spent per 

job simultaneously based on the user preference. Finally we proposed a 

history based policy that considers the previous success rate and depending 

on that it chooses either NewTimeOptimized or NewBudgetOptimized 

policy.  

In our work we considered only two parameters, average turnaround time and 

average budget spent per job. However, our policies can be easily extended to 

include more parameters. In chapter 6, we explained this by taking an 

example on how to include more parameters into it. We evaluated each of the 

above policies through simulation and presented the results.  

In future, we would like to improve the history based policy. At present the 

history based policy is not considering the previous bid information for future 

bidding. We can find the relative demand of the resources by considering the 

previous bid. In this way we can behave more strategically while bidding. We 

would like to investigate the scalability of auction for larger number of users 
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& resources and to explore the use of other market mechanisms for resource 

allocation in grids.  
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