

Market Economy Based

Resource Allocation in Grids

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

In

Information Technology

By

Sai Rahul Reddy P
[Roll No. 04IT6011]

Under the supervision of

Dr. Arobinda Gupta

School of Information Technology

Indian Institute of Technology, Kharagpur

India

May 2006

i

School of Information Technology
Indian Institute of Technology
Kharagpur-721302

Certificate

This is to certify that the Thesis titled “Market Economy Based Resource

Allocation in Grids”, submitted by Sai Rahul Reddy P, to the School of

Information Technology, in partial fulfillment for the award of the degree

of Master of Technology (Information Technology) is a bona-fide

record of work carried out by him under my supervision and guidance. The

thesis has fulfilled all the requirements as per the regulations of the

institute and, in my opinion, has reached the standard needed for

submission.

Dr. Arobinda Gupta

School of Information Technology &

Department of Computer Science and Engineering

I.I.T. Kharagpur - 721302

i

ABSTRACT

In this thesis, we study several auction based resource selection policies for

users in grid, which assist them in choosing the resource according to user

preference. While choosing the resource these policies try to optimize

parameters like average turnaround time, average budget per job, and number

of jobs finished within deadline according to user preference. First we

proposed simple TimeOptimized and BudgetOptimized policies which

improve only one parameter i.e. either average turnaround time or average

budget per job. We compared these policies with a Random policy which

selects resources randomly. Later we improved these algorithms and

proposed NewTimeOptimized and NewBudgetOptimized policies which

consider the success rate also. We next presented a policy that considers the

relative preferences of the user for the different parameters in selecting a

resource. Finally we proposed a history based policy that tries to improve

above parameters by considering the previous bids. We used GridSim

simulation framework to evaluate our policies.

ii

ACKNOWLEDGMENTS

It brings me immense pleasure to express my deepest sense of gratitude to my

guide Dr. Arobinda Gupta for his expert guidance and support throughout

the project work. His suggestions and invaluable ideas provided the platform

to the whole project work. In spite of his extremely busy schedule, I have

always found him accessible for suggestions and discussions. I look at him

with great respect for his profound knowledge and relentless pursuit for

perfection. His ever-encouraging attitude and help has been immensely

valuable.

Nothing would have been possible without the support of my family

members, who have been backing me up throughout my life. I wish to convey

my sincere thanks to my parents; Partha Saradhi Reddy P, Lakshmi

Thulasi P, and my sister Sai Prasanthi P who have given me an endless

support and love and who also provided me with the opportunity to reach

this far with my studies.

I would like to express my sincere thanks to Dr. Shamik Sural for providing

the printing facility. I would like to express my thanks to all faculty members,

my classmates and all my friends in IIT Kharagpur for their support.

Sai Rahul Reddy P,
School Of Information Technology,
Indian Institute of Technology,
Kharagpur - 721302, INDIA.

iii

TABLE OF CONTENTS

Chapter 1: Introduction... 1

1.1. Overview of a Grid ...2

1.2. Market Economics ..3

1.3. Motivation of this Work...6

1.4. Problem Statement..7

1.5. Contributions ...7

1.6. Organization of the Thesis ..9

Chapter 2: Related Work ..10

2.1. Different Auction Mechanisms ..10

2.2. Related Work..13

Chapter 3: System Model ...16

3.1. System Model ...16

3.2. GridSim ...19

Chapter 4: Resource Selection Policies .. 22

4.1. Resource Selection Policies..22

4.2. Simulation Results ...25

4.2.1. Experimental Methodology...25

4.2.2. TimeOptimized and BudgetOptimized Policies26

Chapter 5: NewTimeOptimized and NewBudgetOptimized Policies......31

5.1. NewTimeOptimized Policy...31

5.1.1. Experiment Results...31

iv

5.2. NewBudgetOptimized Policy ...34

5.2.1. Experiment Results...34

Chapter 6: Resource Selection Policy using AHP 38

6.1. Analytic Hierarchy Process..38

6.2. Steps in AHP..39

6.3. Experimental Results ..44

6.4. Extending to More Than Two Parameters...50

Chapter 7: History Based Policy... 52

7.1. History Based Policy ...52

7.2. Experimental Results ..54

Chapter 8: Conclusion & Future work ... 57

References ... 59

v

LIST OF FIGURES

Figure1: Working of the grid ..3

Figure 2: Interaction between users and resource providers....................................19

Figure 3: Algorithm for Random policy...22

Figure 4: Algorithm for TimeOptimized policy ...23

Figure 5: Algorithm for BudgetOptimized policy..24

Figure 6: Job success rate in TimeOptimized and Random policies27

Figure 7: Average turnaround time per job in TimeOptimized and

Random policies...27

Figure 8: Job success rate in BudgetOptimized and Random policies...................28

Figure 9: Average budget spent per job in BudgetOptimized and Random

policies..28

Figure 10: Algorithm for NewTimeOptimized policy...32

Figure 11: Job success rate in NewTimeOptimized policy for different

values of k ...33

Figure 12: Average turnaround time in NewTimeOptimized policy for

different values of k...33

Figure 13: Algorithm for the NewBudgetOptimized Policy35

Figure 14: Average budget spent per job in NewBudgetOptimized policy

for different values of k ..36

Figure 15: Job success rate in NewBudgetOptimized policy for different

value of k ...36

vi

Figure 16: Average turnaround time in NewBudgetOptimized policy for

different values of k...37

Figure 17: Algorithm for the combined policy ...43

Figure 18: Job success rate for different values of time vs. budget

preferences ..45

Figure 19: Average turnaround time for different values of time vs. budget

preference ..45

Figure 20: Average budget spent per job for different values of time vs.

budget preference ..46

Figure 21: Average budget spent per job for users with different time vs.

budget preference ..49

Figure 22: Average turnaround time per job for users with different time

vs. budget preference ..49

Figure 23: Success rate for users with different time vs. budget preference50

Figure 24: Algorithm for history based policy ..53

Figure 25: Comparison of NewTimeOptimized policy with Adaptive

policy for average job length of 10000MI...55

Figure 26: Comparison of NewTimeOptimized policy with Adaptive

policy for average job length of 50000MI...55

Figure 27: Comparison of NewTimeOptimized policy with Adaptive

policy for average job length of 100000MI...56

vii

LIST OF TABLES

Table 1: MIPS and cost of each machine ...27

Table 2: Example of pairwise comparison matrix..39

Table 3: Preference of time and budget ...39

Table 4: Weights assigned to resources ..40

Table 5: Pairwise comparison of resources based on speed of the

resources ..42

Table 6: Pairwise comparison of resources based on budget of the

resources ..42

Table 7: Weighted average of cost, speed values with attribute weights................43

Table 8: Percentage of users participating in the auctions in the combined

policy ..47

Table 9: Percentage of users participating in the auctions in

TimeOptimized policy ..47

Table 10: Time vs. Budget preference for users..48

1

C h a p t e r 1

INTRODUCTION

Grid computing has emerged as a promising next generation collaborative

problem solving platform for industry, science, and engineering. Grid

computing is defined as coordinated resource sharing and problem solving in

dynamic, multi-institutional virtual organizations [19]. The sharing ranges

from simple file transfer to direct access to computers, software, data, and

other network accessible resources. At the heart of the grid is the ability to

discover, allocate and negotiate the use of these resources. Grid enables this

sharing, selection, and aggregation of a wide variety of resources including

supercomputers, storage systems, data sources, and specialized devices that

are geographically distributed and owned by different organizations [3]. Grid

computing is generally used for problems with large scale collaboration and

huge computational and/or data storage requirement. The applications of grid

includes large scale simulations in astrophysics, climate modeling, modeling

for drug design, high energy physics, infrastructure for multiplayer games etc

[4, 21, 22].

The main characteristics of a grid are [3]:

• Multiple administrative domains: Grid spawns into multiple

administrative domains. This characteristic makes it different from

clusters. Since, it spawns into multiple administrative domains, the

policies and autonomy of different domains needs to be maintained.

• Heterogeneity: Grid contains different types of resources like personal

computers to super computers to specialized devices like telescopes.

Grid provides seamless way to access different resources.

2

• Scalability: A grid might grow from few integrated resources to

millions. The performance might be degraded as the size of the grid

increases. The applications that require a large number of

geographically located resources must be designed to be latency and

bandwidth tolerant.

• Adaptivity: Grid should be resilient to failure of individual nodes. As

it contains a large number of nodes, the probability of failure of nodes

will be high. So the applications and resource brokers behave should

adapt dynamically and use the available resources and services

efficiently and effectively.

1.1. Overview of a Grid

In this section, we will explain about the various entities in a grid computing

environment and interaction between them. The main entities in a grid are

user, resource broker, information service, and resources. The interactions

between these entities is shown in Figure 1. For each user, there will be one

resource broker. Users in grid will submit their program to the resource

broker. The resource broker in turn will find out appropriate resources and

submit the program to the resource. Here a resource may be computational

resource or storage resource or network resource or any device that is able to

participate in the grid. Resources at a minimum should implement enquiry

mechanisms that permit discovery of their structure, state and capability [19].

The resource broker contacts an Information Service to find an appropriate

resource. The Information Service maintains complete information of all

resources (like its capability, status, contact information etc) available in the

grid. The resource broker will select one among them and submit the job to it.

After authentication, the remote resource will execute the user program. In

executing the user program, it may in turn need another resource to complete

3

Figure1: Working of the grid

the job (like, it may have to access data from other machine or it may need to

make the execution faster). If the user has appropriate credentials to access

this new resource, then the remote machine (currently using machine) will get

authenticated on behalf of the user (single sign-on) and it will use this new

resource to complete the job.

A resource broker may need to access, Replica Catalog to locate the data. The

replica management system controls where and when copies of files are

created, and provides information about where files are located. In other

words a replica management system maintains a mapping between logical

names for files and collections to one or more physical locations.

1.2. Market Economics

For exploiting the full potential of a distributed system consisting of resources

with comparable but different capability and availability, a mechanism is

required to gather and compare such information for various resources in the

4

system and assign each job to the most appropriate resource [34]. Viewing the

resources as suppliers and the users as consumers of computing services,

markets for computing services/resources have been examined as one of the

most promising mechanisms for global scheduling [34]. Framing the resource

allocation problem in economic terms is attractive for several reasons [48].

• Resource usage is not free. Initially the main motivation of building

grids is to support research. To make grids successful commercially,

resource owners and users should get adequate rewards. The main

aim of users will be to execute the maximum number of jobs,

satisfying QOS requirements etc. Similarly the main aim of resource

owners will be to make profit out of the resources.

• The dynamics of grid performance are difficult to model. By

formulating gird resource usage in market terms, we are able to apply

analytical research from economics for understanding of the behavior

of grids.

• Market formulation carries with it an inherent notion of relative worth

which can be used to quantify the cost to benefit ratio for both grid

users and resource owners.

The first step to use market economics is to define the market mechanism to

be used. Here market is where goods and services are bought and sold and

market mechanism is the process by which the market solves the resource

allocation problem, especially deciding how much goods or service should be

produced, deciding the price of goods and other such problems [51]. Broadly,

market mechanisms can be categorized into one of three types.

• Commodity markets: In this type of market model, we treat

different resources like computers, disk storage, bandwidth, and

applications as commodity goods and we purchase from the suppliers.

5

We can pay the cost of the resources in different ways. Pricing

schemes in commodity market model can be based on flat fee, usage

duration, subscription, and demand and supply based. In the flat fee

scheme, buyers will pay a fixed amount for a certain period

irrespective of the service quality. The second scheme is based on the

usage duration. If the resource is used for one hour then the buyer

will pay for that one hour only. In the third scheme, i.e. subscription

based, the user pays a fixed price for a certain duration. It is thus a

more generalized form of the flat fee model. In the final scheme, the

prices will change dynamically based on the supply and demand of the

product. The disadvantage of the first three pricing schemes is that

they do not exploit the demand for the resources. If there is a high

demand for a resource, then it is not desired to sell the resource at a

lower price. Similarly, if the demand for a resource is less, then

decreasing the resource price may attract new users.

• Tendering/Contract Net: In this model, the resource broker will

ask for bids from the sellers. A buyer will send the specification of the

process (expected run time, resource requirements etc.) to the

potential providers and the interested resource providers will

participate in the bidding process. The resource broker will evaluate

the bids and will give the contract to the most appropriate one.

• Auctions: In this model, a resource provider accepts bids from the

resource broker for the resource. There are two types of bids, open

and closed bids. In open bidding, participants will know the bid

amount of the other players. In closed bids, participants will not know

the bid amount of the other players. There will be a period of time in

which the resource providers will accept bids and after the end of the

bidding period the resource provider will evaluate the user bids and

will give the resource to the appropriate resource broker. Auctions

6

can be of several types such as first price sealed bid auction, vickrey

auction, english auction, double auction etc. More details on auctions

can be found in [5].

The money exchanged between a user and a resource provider may be real

money or virtual money. As we said earlier, here we are using markets as a

controlling mechanism for allocating resources to users. The demand and

supply of resources determine the prices and in turn controls the allocation. If

demand for some resources is high, then price of the resource will also be

higher and very few will be able to afford that resource.

1.3. Motivation of this Work

In our work, we focus on auctions as the market mechanism to use in grids.

The advantages of auction over other market models are:

• The auction model supports one-to-many negotiation between a

service provider and many consumers, and reduces negotiation to a

single value.

• Auctions require little of global price information and are easy to

implement in grid settings [5].

• Unlike commodity market model, auctions are completely

decentralized.

There exist several studies on applying auctions to solve resource allocation

problem in grids [9, 25, 28, 29, 48, 49]. Most of the studies in auctions assume

that the resources are homogenous. For example, most of them assumes that

all resources have the same speed and cost. In such a case, choosing resources

is trivial as choosing any random resource will serve the purpose. But in a real

world environment, resources will be heterogeneous. When we consider

heterogeneous resources different parameters like resource architecture,

7

resource speed, available memory, price of resource, bandwidth charges etc

will come into picture. The choice of a proper resource for an application will

thus be based on various parameters. Moreover, some of these parameters

may be interdependent and trying to optimize one can affect the other

adversely. For example, if we choose resources with high speed, then the cost

will be higher. So, in such cases, there should be some mechanism to choose

the resources according to the user’s requirements which should consider the

user preference as well as chances of winning in the auction.

1.4. Problem Statement

In our work, we considered resources with different capabilities (speeds) and

prices. A set of users, each with a set of jobs, wish to use these resources.

Each job has a deadline and an allowed maximum budget. We considered two

parameters; time and budget. The problem is to define resource allocation

policies that allocate resources to the jobs while increasing the number of jobs

finishing within their deadline and decreasing the average turnaround time

and the average budget spent for these jobs. The allocation policies should be

able to take into consideration user preferences on which parameter to

optimize more. We introduce several algorithms that optimize time and

budget to different extents.

1.5. Contributions

In this thesis we introduced policies for users to choose resources in a grid

environment using auction. The main contributions of this work can be

summarized as follows:

1. We first presented three policies for resource allocation - Random,

TimeOptimized and BudgetOptimized policies. In Random policy, a user

chooses resources randomly. In TimeOptimized, a user will select

resources based on the completion time of job and in BudgetOptimized,

8

user select resources based on its cost. TimeOptimized policy tries to

optimize the average turnaround time of jobs and BudgetOptimized tries

to optimize the average budget spent per job. If every user in grid uses the

same policy then there will be contention for high speed/low cost

resources and because of this, some jobs may loose the deadline. Thus the

number of jobs finishing within deadline in TimeOptimized and

BudgetOptimized policies is less when compared with the Random

policy. Random selection maximizes chances of winning but the

turnaround time is higher than TimeOptimized policy and average budget

spent per job is higher than BudgetOptimized policy. We then proposed

two new policies. The first one, NewTimeOptimized policy, tries to

minimize average turnaround time while increasing the number of jobs

finishing within deadline. The second one NewBudgetOptimized policy,

tries to minimize the budget spent per job while increasing the number of

jobs finishing within deadline

2. We next introduced a resource selection policy that tries to optimize both

the above parameters; average turnaround time and average budget spent

per job based on user preference. We have used Analytic Hierarchy

Process (AHP) technique to model the user preference.

3. Finally we introduced policy where the user will give preference in terms

of success rate. The success rate is defined as the number of jobs finishing

within deadline. Initially we start with NewTimeOptimized policy and

when success rate is reaches the user given value, we will shift to

NewBudgetOptimized policy. In NewBudgetOptimized we do not use

our complete budget for a job to bid. So first we are using our complete

amount for bidding in the initial stage, and after getting sufficient success

rate we are shifting to NewBudgetOptimized policy. This policy

effectively tries to reduce the average budget spent per job while

maintaining the user requirements.

9

1.6. Organization of the Thesis

 The thesis is organized into the following chapters. In Chapter 2, we briefly

explain the various auction mechanisms used in grid setting and then we

discuss related work in this field. In Chapter 3, we discuss the overall system

model we used in our simulations. After that we discuss about the simulator

we used. In Chapter 4, we discuss Random, TimeOptimized, and

BudgetOptimized policies and their results. In Chapter 5, we presented the

NewTimeOptimized and NewBudgetOptimized policies and their results. In

Chapter 6, we discuss a user preference based allocation method and its

results. In Chapter 7, we present a history based policy and its results. In

Chapter 8, we conclude the thesis and discuss the future work.

10

C h a p t e r 2

RELATED WORK

The market mechanism used in this thesis is auctions. In this chapter, we first

discuss the auction mechanism in detail and then describe the work done

using auction in grids.

2.1. Different Auction Mechanisms

There are different variations of auctions. Auctions mainly differ in two

aspects, whether they are open cry or closed, and whether they are ascending

or descending auctions. In open cry auctions all the participants know the

other participants bid information. In closed auctions, participants do not

have access to other participant’s bid information. The ascending auctions

start with a low price and will go higher and higher until no one bids.

Descending auctions start with a high price and will go lower and lower until

one accepts the bid. Based on the above criterion auctions can be divided into

the following types.

• English Auction: The Auctioneer will start the auction with the

reserve price (lowest acceptable amount) and takes larger and larger

bids until no one will increase the amount. The auctioneer will give

the resource to the highest bidder.

• Sealed bid: The Auctioneer accepts bids from users in which the

players will not know the other player’s bid amount. At the end of the

auction period, the auctioneer opens the bids and gives the resource

to the highest bidder.

11

• Vickrey Auction: In Vickrey or Second price sealed bid auction the

bidders will bid the amount without knowing the other bidders’

amount. The bidder who bids the highest amount will get the

resource but he/she will pay the price of the second highest bid

amount.

• Dutch Auction: It is similar to English Auction but the bidding

process starts with the highest amount instead of the lowest amount.

The auctioneer will continuously decrease the amount. The bidder

who can pay the current bidding amount will get the resource.

• Double Auction: This type of auction is common in stock

exchanges. In this type of auction sellers’ offer are called asks and the

bidders’ amount are called bids. The restriction is that the seller must

ask a price that is less than the current ask and the bidder must bid an

amount higher than the current highest bid. When a match occurs

between asks and bids, the transaction is committed. Another type of

double auction is Clearing House Auction in which the bidders will

submit their bids and the sellers will submit asks. Once submitted,

asks are sorted in ascending order and bids are sorted in descending

order. The price is the average of the lowest ask and the highest bid

offer. This type of auction is normally considered fair. The only

difference between normal double auction and clearing house auction

is that in normal auction, the transaction is committed immediately

after a match, and in clearing house double auction, it will be after

some specific time.

In our work, we concentrated mainly on sealed bid auction. One should

choose a mechanism for which truthfully revealing one's true willingness to

pay is a dominant strategy. A mechanism of this sort is called direct

mechanism or strategy proof mechanism [44]. Vickrey auction is such a

12

mechanism but vickrey auction will not be of much help in a grid setting. In a

grid environment, the users will participate again and again in repeated

auctions and so the users can behave strategically. To simplify the problem,

we are not considering strategic users in our work.

The second reason why vickrey auction is not much helpful in our settings

can be explained using the revenue equivalence theorem [30]. The revenue

equivalence theorem states that when bidders are risk-neutral and have

independent private values (but it does not hold for common values with risk

averse bidders), any auction format will on an average generate same expected

revenue. However, revenue equivalence breaks down when bidders are risk-

averse. Here independent private values means that each bidder knows how

much it values the objects for sale, but its value is private to itself [30].

Common values means that the actual value is the same for every one but

bidders have different private information about the actual value [30]. For

example, if resources are not permanent in grid then before bidding, users

have to consider the participation time of resources in grid as well. In that

case all the users value the resource the same but each user estimates the

participation time differently. The bidder would change his/her estimate of

the value if he/she learnt another bidder’s estimate. This is in contrast to the

private value case in which his value would be unaffected by learning other

bidders information.

Describing how to design auctions efficiently is out of the scope of this

document. Economists use game theory to model participant’s interaction

and the subject that deals with this is mechanism design (also called

implementation theory). More information on mechanism design in auctions

can be found in [30, 44].

13

2.2. Related Work

Research work in the area of market economics in grid computing can be

classified into three areas.

The first area of work examines different market mechanisms for grid

environments. Here a mechanism may be auction, commodity market etc.

The mechanism that is applied should encourage users and resource owners

to participate in the grid. There exists several studies that compare different

market mechanisms for grid environment [9, 25, 29, 48]. Here we will discuss

few of them briefly. Wolski et al. [48] compares commodity market model

and auctions with respect to price stability, market equilibrium, application

efficiency and resource efficiency. He concludes that commodity market

model is better than auctions with respect to the above parameters. Wolski

has used Smale’s technique [48] for finding unit price in commodity market.

The problem with this technique is that there should be some cooperation

between the service providers or some regulatory authority which decides the

unit price (its job is to find the supply and demand of the service providers

and calculate the unit price accordingly). This is not practical in real world grid

environments. Grosu and Das [25] compares first price, vickrey, and double

auction with respect to user payments, resource profits, payment structure,

and resource utilization. They conclude that first price auction is better from

resource perspective, vickrey is better from user’s perspective, and double

auction is better for both. The problem with double auction is that again there

should be some cooperation between resource providers. Kant and Grosu

[29] compare different double auction protocols with respect to the above

parameters.

The second area of work examines the scheduling strategies for resource

providers. Xiao et al. [49] deals mainly with scheduling of accepted jobs at the

server side. It uses tender/contract-net economic model. When a resource

receives notification of a new job, the resource has to decide whether to

14

accept the job or not. It might have sent a bid request to some other user and

is waiting for the response, and in this case, if it sends again it may eventually

get both jobs and one of them may miss the deadline. To control such

behavior they introduced penalty for resource providers if they did not meet

the deadline and thus prevents them from accepting more jobs than they can

handle. This is controlled by conservative degree (CD). CD = 0 means it is

aggressive and accepts all jobs. CD = 1 means it is conservative. They

compared conservative degree with failure rate and deadline miss rate. At low

system load and under low CD there are no deadline misses and job fails.

Deadline miss rate is increased when the system load is increased but failure

rate is not increased. At high CD deadline miss rate is zero but failure rate

increases with increasing load. Ernemann et al. [15] also deal with scheduling

the jobs at the server end that maximizes the given utility function. Here

utility is like minimizing startup time etc. Kale et al. [28] uses tender/contract-

net economic model. It also investigates scheduling algorithms that will be

best suited for resource providers. It compares Gantt chart scheduling and

best fit strategy with respect to loadfactor vs revenue gained, loadfactor vs

percentage work done, loadfactor vs percentage utilization, and loadfactor vs

percentage of rejected jobs.

The third area of work has attempted to find resource selection policies for

users. Buyya et al. proposed Nimrod-G [6] which supports several economic

models like commodity market, spot market, and contract net. It implements

two resource selection policies for the above market models, time

optimization, and budget optimization policies. The problem with this

approach is they assumed that one centralized agent will do the scheduling for

all the users. In their work they have not applied those policies to auctions. In

auctions, we can not directly use those policies.

In our model we assumed that for each job there will be certain amount

allocated to it and for each job there will be a deadline associated with it. The

15

job should finish its execution within its deadline and budget. The work in

[25, 29] considered resources with different capabilities but they selected

resources randomly for bidding. The problem with random policy is that the

resource capabilities are not considered for bidding. Hence the average

turnaround time and the average budget spent per job both increases.

In the next chapter, we discuss the overall system model we used in our

simulations. After that we discuss about the simulator we used.

16

C h a p t e r 3

SYSTEM MODEL

In this chapter we first explain the system model and then we explain the

simulator we used.

3.1. System Model

The grid computational environment consists of resource consumers or users

and resource providers. Resource consumers have jobs to be done and are

willing to pay for it. Resource providers have computational resources and are

willing to rent them for profit. Scheduling enables the interaction between the

two parties and maps jobs to resources properly [48]. We used sealed bid

auction as our market mechanism.

Each resource consumer or user has its corresponding resource broker and

submit their jobs to the resource broker. A resource broker will take care of

searching for suitable resource providers and submitting the job to a resource

provider. Let U1, U2, U3 … UN be the users participating in the grid and J1, J2,

J3 … JK be the corresponding jobs for each user. Each job specification Ji

includes job length, deadline, and budget. The jobs have to be completed

within its deadline and its cost of execution should not exceed its allocated

budget. The job length is specified in millions of instructions (MI). The

deadline includes the time spent on the auctions also.

A resource provider executes jobs for resource consumers and charges them

for usage of resource. Let R1, R2 … Rm be the resources participating in the

grid. Each resource Ri is modeled by processor speed and unit price. The

capability of resources is expressed in terms of millions of instructions the

17

resource can process in one second (MIPS). The unit price is the amount a

user pays for one second usage of the resource. Here it specifies the minimum

price the resource Ri accepts. In our work we considered resources with single

processor. Each resource Ri will conduct auction Ai. Users who want to use

the resource have to participate in the auction. In the rest of the thesis, the

speed of the resource i is referred as Ri.speed, resource usage start time is

referred as Ri.resource_usage_start_time, and unit price of the resource is referred

as Ri.price .

The main job of a resource broker is to find an appropriate resource

according to user policy and to bid for that resource. Let Rb1, Rb2 … RbN be

the resource brokers for the users U1, U2 … UN respectively. A user will

specify which resource selection policy resource broker has to use and the

resource broker in turn select resources accordingly. In the rest of this thesis,

we have not differentiated much between the resource broker and the user

and we have used resource broker and user interchangeably. The details of

these policies will be explained in the next chapter.

Grid Information Service (GIS) contains complete information about current

auctions. Each auction description Ai includes the resource provider id,

auction number, starting time of resource usage, auction end time, reserve

price and capability of resource. It does not include resource usage end time;

it depends on the job it accepts in the auction. The resource broker will first

contact the GIS for auction information. Resource providers will periodically

update their auction information in GIS. It uses a soft state protocol, meaning

that the GIS will not query resource providers for the latest information. It is

the job of a resource provider to provide the latest information about current

auctions to GIS.

18

Each resource provider will conduct sealed-bid auction and accept the bids

until the end of auction period. Here the bidding amount is in terms of

cost/sec. The bidding amount should be greater than the reserved price for

that resource. At the end of the auction, the resource provider will open the

bids and inform the resource brokers whether they won in the auction or not.

The maximum bid amount is not revealed to others. This is to prevent

resource brokers from behaving strategically. A resource broker may learn the

bid amount to bid by participating in repeated auctions, but we are not

considering it here. If no one participated in the bidding by the end of the

auction, the above process will be repeated.

For TimeOptimized policy, the resource broker uses its complete amount

allocated to the job for bidding but for BudgetOptimized policy, it calculates

the penalty in execution time by choosing low cost resources. It reduces the

bid money proportional to that. The choosing of a particular auction from set

of auctions for bidding will be explained in the next chapter. After the end of

the current auction, the resource providers will start new auctions for the next

available time slot. The starting time of the next usage is changed in

accordance with the current accepted job. The complete interaction between

users and resource providers is shown in Figure 2.

The complete interaction between users and resource providers can be

summarized as follows. Whenever a job is available to a user, it will submit

the complete job specification to its resource broker. The resource broker will

query GIS for the current auction information. After getting information

from GIS, according to predefined policy specified by the user, the resource

broker will choose one provider and bid for that resource. At the end of the

auction, the resource provider will inform whether it won in the auction or

not. If it won, it will submit the current job to the resource provider. If it did

not win then it again repeats the whole process. At the end of the execution

19

of the current job, the resource provider returns the result to the resource

broker.

Figure 2: Interaction between users and resource providers

3.2. GridSim

We used GridSim [7] for evaluating the proposed user selection policies.

GridSim is a java based discrete event grid simulation toolkit. GridSim toolkit

provides a comprehensive facility for simulation of different classes of

heterogeneous resources, users, applications, resource brokers, and

schedulers. It can be used to simulate application schedulers for single or

multiple administrative domain distributed computing systems such as

clusters and grids [7]. Other features of GridSim include advance reservation

capability, network topology consideration capability, background network

traffic functionality, and support for different time zones.

20

GridSim uses simjava. Simjava is a discrete event simulation package for java.

The main classes in GridSim are GridSim, GridResource, AllocPoilicy,

GridInformationService, and Gridlet. All the entities in the GridSim are derived

from the GridSim class. The GridSim class provides methods for sending and

receiving messages between entities, managing and accessing handles to

various GridSim core entities and recording statistics [7]. The GridResource

class is derived from the GridSim class and act as a grid resource entity. The

GridResource class can be used to create machines with single processor to

multi processor machines and clusters as well. By default the GridResource

class provides two scheduling algorithms, time share and space shared algorithms.

We have to extend the AllocPolicy class to provide our own scheduling

algorithm for scheduling the jobs at the resource end. The

GridInformationService class is a GridSim entity that provides resource

registry, indexing and discovery services. The Gridlet class is a job package

that stores complete information about the job like job length, job deadline,

etc.

The communication between the entities in GridSim is through messages. All

the entities in GridSim are java threads. Simjava maintains the queue of

messages and delivers the message to appropriate entities at the right time.

Users and resource brokers are derived from the GridSim class. A user will

submit jobs to a resource broker and the resource broker will participate in

the auction. Before accepting the job, the user has to participate in the auction

conducted by the resource. Each resource will conduct an auction on its own.

To simulate that, in GridSim, we extended GridResource class to provide the

auction capability into it. The interaction between the user and the resource,

before submitting a job, can be visualized as message exchange between them.

So to provide auction capability into GridResource class we added message

handlers into it. Similarly we modified the resource broker class.

21

In the next chapter, we discuss Random, TimeOptimized, and

BudgetOptimized policies and their results.

22

C h a p t e r 4

RESOURCE SELECTION POLICIES

In this chapter, we first implement three simple policies for resource

allocation - Random, TimeOptimized and BudgetOptimized policies. The

user will specifies a policy for its resource broker and it will choose the

resource according to that policy.

4.1. Resource Selection Policies

• Random policy: In Random policy, a user randomly chooses one

resource for bidding that can complete the job within the deadline

and budget allocated for the job. The pseudocode for Random policy

is shown in Figure 3.

Figure 3: Algorithm for Random policy

S = { NULL };

// Find set of resources who can complete the job within deadline and
budget
for (i=0; i<n; i++){

// minimum time required to execute the job

exec_time = job_length / Ri.speed;

// completion time on Resource i

completion_time = Ri.resource_usage_start_time + exec_time;

if ((budget >=(Ri.price * exec_time)) AND (completion_time<=deadline)){

S = S U Ri;

}
}

select randomly one resource Ri from S;

23

• TimeOptimized policy: In TimeOptimized, a user will always bid for a

resource that can complete the job the earliest within the deadline and

budget allocated for it. It uses the whole budget allocated to the job

for bidding for the selected resource. If it fails in the current auction,

it then chooses the next resource that can complete the job within

deadline and bids for it. This continues until the job either finds a

resource or misses the deadline. The pseudocode for TimeOptimized

policy is shown in Figure 4.

Figure 4: Algorithm for TimeOptimized policy

• BudgetOptimized policy: In BudgetOptimized case, a user will always

bid for a resource that costs less. In BudgetOptimized case it will not

use its whole amount allocated to the job for bidding. Instead, it

calculates the penalty and it will reduce the allocated amount in

proportion to the penalty. Here penalty is the degradation in the

performance a user is getting by choosing a low speed resource. The

penalty is high for low speed resource and it is very low for high

S = { NULL };

// Find set of resources who can complete the job within deadline and
budget
for (i=0; i<n; i++){

// minimum time required to execute the job

exec_time = job_length / Ri.speed;

// completion time on Resource i

completion_time = Ri.resource_usage_start_time + exec_time;

if ((budget >=(Ri.price * exec_time)) AND (completion_time<=deadline)){

S = S U Ri;

}
}
sort S by completion time;

select R1 from S;

24

speed resource. So it bids less for a low speed resource and it bids

higher for a high speed resource. If it fails in the current auction, it

then chooses the next high cost resource which can complete the job

within deadline and bids for it. The pseudocode for BudgetOptimized

policy is shown in Figure 5.

Figure 5: Algorithm for BudgetOptimized policy

S = { NULL };

// Find set of resources who can complete the job within deadline and
budget
for (i=0; i<n; i++){

// minimum time required to execute the job

exec_time = job_length / Ri.speed;

// completion time on Resource i

completion_time = Ri.resource_usage_start_time + exec_time;

if ((budget >=(Ri.price*exec_time)) AND (completion_time<=deadline)){

S = S U Ri;

}
}
sort S by price;

// R1 will be the resource with lowest budget

select R1 from S;

// max_speed is the maximum speed of the resource the user can bid

penalty = R1.speed / max_speed;

// minimum amount needed to complete the job

min_amount_needed = (job_length/R1.speed)*R1.price;

bid_amount = budget – (budget –min_amount_needed)*penalty ;

use bid_amount to bid for R1;

25

4.2. Simulation Results

In this section we have provided simulation based evaluation of the policies

we explained in the previous section.

4.2.1. Experimental Methodology

The simulated grid environment consists of 15 resources and 10 users.

Resources have different processing speeds and reserve prices as given in

Table 1. The processing rates are within the range [400, 2000], which includes

low speed to high speed resources and characterizes real grid environment.

The reserve prices for these machines are in the range [2, 18] and chosen such

a way that price per MI is increasing when we go from low speed resource to

high speed resource. The increase in the amount per MI is the premium paid

to the resource for executing the job faster. If we have given same price per

MI for all resources, then the user always chooses high speed resources only.

We assumed that each machine will execute one job at a time. After

completion of the present job it will again start new auction. There are a total

of 50 jobs for each user.

Incoming jobs for each user will come according to Poisson distribution with

mean -. For all experiments we have kept - constant at 0.01. If we choose

high - then the jobs fail because of high load so we have chosen a low -. A

job should not miss its deadline. The job deadline includes auction

participating time, execution time of job, and waiting time at the resource end.

For each job, deadline is set according to the following expression.

Ji.deadline = Eij + Rand(Ei) + -.

where Ji.deadline is the deadline for job i, Eij is the execution time of Ji on Rj

where Rj is the slowest processor available in the grid. Execution time is

calculated as job length / MIPS of processor, Rand(Ei) is a random value

26

between 1 and Eij, and - is positive constant. This constant is added to

alleviate the effect of time spent on auctions. For all our experiments we kept

- constant at 30. This value is equal to the default auction time.

The budget for each job is distributed uniformly over the interval [-1, -2].

We have taken this approach from [12]. The lower limit -1 of jobs budget

interval is given by the product of the lowest computational time of a job and

lowest reservation price of a resource while the upper limit -2 is given by the

product of highest computational time of a job and the highest reservation

price of a resource.

In TimeOptimized policy, the user uses his entire amount for bidding but in

BudgetOptimized policy, the user does not use his entire amount. Instead he

calculates the penalty in performance he is getting by choosing the low speed

resource instead of high speed ones and reduces the money in proportion to

the amount allocated to it. The bidding amount for a job is calculated as

shown in Figure 5.

4.2.2. TimeOptimized and BudgetOptimized Policies

In the first experiment, we implemented Random, TimeOptimized and

BudgetOptimized policies. The job length in this experiment varies from

10000MI to 20000MI. In TimeOptimized, the user tries to minimize the

average turnaround time of a job. In BudgetOptimized, user will try to

minimize the average budget spent per job. Figure 6 shows the comparison of

the job success rate in TimeOptimized and Random policies. Here success

rate is defined as the number of jobs finishing within their deadline. Figure 7

shows the comparison of average turnaround time per job in TimeOptimized

and Random policies. Figure 8 shows the comparison of the job success rate

in BudgetOptimized policy. Figure 9 shows the comparison of budget spent

per job in BudgetOptimized and Random policies.

27

M/c MIPS Rating 400 800 1200 1600 2000

Cost/Sec 2 6 10 14 18

No of machines 3 3 3 3 3

Table 1: MIPS and cost of each machine

0

100

200

300

400

500

600

Time Optimization Random

Policy

J
o
b
s

Failed

Success

Figure 6: Job success rate in TimeOptimized and Random policies

0

5

10

15

20

25

30

35

Time Optimization Random

Policy

A
v
g
 T
u
rn
 A
ro
u
n
d
 T
im

e
 p
e
r
J
o
b

Figure 7: Average turnaround time per job in TimeOptimized and Random

policies

28

0

100

200

300

400

500

600

Budget Optimization Random

J
o
b
s

Failed

Success

Figure 8: Job success rate in BudgetOptimized and Random policies

100

105

110

115

120

125

Budget Optimization Random

A
v
g
 B
u
d
g
e
t
s
p
e
n
t
p
e
r
J
o
b

Figure 9: Average budget spent per job in BudgetOptimized and Random

policies

From Figure 6 and Figure 7 it is clear that TimeOptimized policy reduces the

average turnaround time but the number of jobs finishing within deadline is

less than in Random policy. Similarly, in BudgetOptimized policy, the average

budget spent per job is less than Random policy but the number of jobs

finishing within deadline is also less in BudgetOptimized policy. The

advantage of Random policy is that as each user selects the resource

randomly, overall there will be less contention for resources, so most of the

29

time the users will win in auctions. In TimeOptimized policy there will be

high contention for high speed resources and only one user wins in auction

and the rest who participated in the auction will fail. These failed jobs again

participate in new auction. This process repeats and eventually they miss the

deadline. A Similar phenomenon happens in BudgetOptimized policy. The

justification for the above policies is explained below.

The probability of a user Ui winning in auction Aj is given by

∑

u

j i k
k = 1

Ρ

(

Α

)

* Β > Β
. Where Bi is the bid of Ui, u is total number of users

participating in the auction and P(Aj) is probability of choosing Auction j. In

the above expression ∑

u

i k
k = 1

Β > Β
refers to the probability of winning in the

auction. If we consider that the budget allocations for users follow the

uniform distribution then the probability of winning in Aj is proportional to

the number of users participating in the grid. In both the policies, the

probability of winning the resource is same but the probability of choosing

the resource varies. In the TimeOptimized policy the probability P(Aj) is

dependent on the capability of resource. Highly capable resources will have

high probability of being chosen as they will complete the jobs earlier. In

random policy the probability P(Aj) of choosing auction j is 1/n (n is the total

number of auctions). Similar explanation holds for BudgetOptimized policy.

Thus the number of jobs finishing within deadline in TimeOptimized and

BudgetOptimized policies is less when compared with the Random policy.

Random selection maximizes chances of winning but the average turnaround

time will be higher than TimeOptimized policy and average budget per job

(cost of acquiring the resources) will be higher than BudgetOptimzied policy.

30

In the next chapter, we propose two new policies. The first one,

NewTimeOptimized policy, tries to minimize the average turnaround time

while increasing the number of jobs finishing within their deadlines. The

second one NewBudgetOptimized policy, tries to minimize the average

budget spent per job while increasing the number of jobs finishing within

their deadlines.

31

C h a p t e r 5

NEWTIMEOPTIMIZED AND
NEWBUDGETOPTIMIZED POLICIES

In this chapter we proposed two policies. The first one, NewTimeOptimized,

tries to minimize the average turnaround time while increasing the number of

jobs finishing within their deadlines. The second one NewBudgetOptimized,

tries to minimize the average budget spent per job while increasing the

number of jobs finishing within their deadlines.

5.1. NewTimeOptimized Policy

In NewTimeOptimized policy we sort the resources according to completion

time and then we select one resource randomly from the top k resources for

bidding. Here the user will specify the value of k. For k = 1 this policy is

equivalent to the TimeOptimized case and for k = n this policy is equal to the

Random policy; where n is the total number of resources in the system. When

we change k from 1 to n, effectively we are moving from TimeOptimized to

Random policy. As k increases, the number of jobs finishing within their

deadline increases, but the average turnaround time also increases. The

pseudocode for this policy is shown in Figure 9.

5.1.1. Experiment Results

We conducted the experiment for three different job lengths, 10000MI to

20000MI, 50000MI to 100000MI and 100000MI to 200000MI. These three

different job lengths reflect jobs with small, medium, and large CPU

requirements. For each experiment, we varied k from 1 to 15 and we

measured the average turnaround time and job success rate. Here success rate

is defined as the number of jobs finishing within their deadline. It shows how

the success rate and average turnaround time varies when we move from

32

TimeOptimized policy to Random policy. Figure 11 and Figure 12 show the

job success rate and average turnaround time respectively for different values

of k and for different job lengths.

Figure 10: Algorithm for NewTimeOptimized policy

From Figure 11 and Figure 12 it is clear that when we go from k = 1 to k =

15 the success rate is increasing and at the same time the average turnaround

time is also increasing. This is because, at k = 1, all users go for high capability

resources and the competition for those resources will be high. Only one user

in the auction will win and the rest of the resources who participated in the

auction will lose, and to complete the job they have to again participate in

S = { NULL };

// Find set of resources who can complete the job within deadline and
budget
for (i=0; i<n; i++){

// minimum time required to execute the job

exec_time = job_length / Ri.speed;

// completion time on Resource i

completion_time = Ri.resource_usage_start_time + exec_time;

if ((budget>=(Ri.price*exec_time)) AND (completion_time <=deadline)){

S = S U Ri;

}
}

sort S by completion_time;

// we will keep top k resources and remove rest of the resources
for (i=k+1; i<S.length; i++)

remove Si;
select randomly one resource Ri from S;

use complete amount allocated to job to bid Ri;

33

another auction. This will repeat and eventually some jobs will miss the

deadline. When we increase k, users will start choosing resources

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

J
o
b
 S
u
c
c
e
s
s
 R
a
te

Avg Job Length = 100MI
Avg Job Length = 500MI
Avg Job Length = 1000MI

Figure 11: Job success rate in NewTimeOptimized policy for different values

of k

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

A
v
g
 T
u
rn
a
ro
u
n
d
 T
im

e
 P
e
r
J
o
b

Avg Job Length = 100MI
Avg Job Length = 500MI
Avg Job Length = 1000MI

Figure 12: Average turnaround time in NewTimeOptimized policy for

different values of k

34

randomly and the competition for resources will become less. At the same

time the average turnaround time is increasing because of choosing lower

capability resources.

At k = 4 the success rate is fairly high than at k = 15. At k = 15 all the users

will choose resources randomly and distribution of jobs is random. Here

distribution of jobs means, resources with high capability can execute more

number of jobs than resources lower capability. Ideally any policy should

distribute more number of jobs to high capable resources and less number of

jobs to low capable resources. But when we follow Random policy, jobs will

not get distributed in the above manner. So the number of jobs executing is

higher at k = 4.

5.2. NewBudgetOptimized Policy

In NewBudgetOptimized policy, we sort resources according to cost and we

select one resource randomly from the top k resources for bidding. At k = 1

this policy is equivalent to BudgetOptimized policy, and at k = n this is equal

to the Random policy. When we change k from 1 to n we are moving from

BudgetOptimized to Random policy. As k increases, the number of jobs

finishing within deadline increases but the average budget spent per job also

increases. The pseudocode for NewBudgetOptimized policy is shown in

Figure 13.

5.2.1. Experiment Results

Similar to NewTimeOptimized policy, we conducted the experiment for three

different job lengths. For each experiment, we changed k from 1 to 15 and we

measured out the average budget spent per job, job success rate, and the

average turnaround time. Figure 14, Figure 15, and Figure 16 shows how the

35

average budget spent per job, success rate, and the average turnaround time

varied when we move from BudgetOptimized policy to Random policy.

Figure 13: Algorithm for the NewBudgetOptimized Policy

From Figure 14, Figure 15, and Figure 16 it is clear that when we go from k

= 1 to k = 15, the budget spent per job will be increased and number of jobs

getting executed will also be increased. Similar to TimeOptimized policy, at k

= 4, the number of jobs is high and at the same time budget spent per job is

S = { NULL };

// Find set of resources who can complete the job within deadline and
budget
for (i=0; i<n; i++){

// minimum time required to execute the job

exec_time = job_length / Ri.speed;

// completion time on Resource i

completion_time = Ri.resource_usage_start_time + exec_time;

if((budget >=(Ri.price * exec_time)) AND (completion_time<=deadline)){

S = S U Ri;

}
}
sort S by price;

max_speed = RS.length;

// we will keep top k resources and remove rest of the resources
for (i = k+1; i < S.length; i++)

remove Si;

select randomly one resource R i from S;

penalty = Ri.speed / max_speed;

// minimum amount needed to complete the job

min_amount_needed = (job_length/R1.speed)*R1.price;

bid_amount = budget – (budget –min_amount_needed)*penalty;

use bid_amount to bid for Ri;

36

less. The reason for this is the same as in NewTimeOptimized policy. As we

increase k, the competition for low cost resources will be decreased, so the

number of jobs getting executed will be increased. As we increase k, we start

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

A
v
g
 B
u
d
g
e
t
S
p
e
n
t
P
e
r
J
o
b

Avg Job Length =100
Avg Job Length = 500
Avg Job Length = 1000

Figure 14: Average budget spent per job in NewBudgetOptimized policy for

different values of k

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

J
o
b
 s
u
c
c
e
s
s
 r
a
te

Avg Job length = 100
Avg Job length = 500
Avg Job length = 1000

Figure 15: Job success rate in NewBudgetOptimized policy for different

value of k

37

choosing resources randomly so the budget spent per job will be increased.

The average turnaround time is very high at k = 1 because of choosing low

cost resources. The cost of resources is proportional to resource speed. When

we increase k, we choose resources randomly so the average turnaround time

will be decreased.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

A
v
g
 T
u
rn
a
ro

u
n
d
 T
im

e

Avg Job Length = 100
Avg Job Length = 500
Avg Job Length = 1000

Figure 16: Average turnaround time in NewBudgetOptimized policy for

different values of k

The above two policies either optimize the average turnaround time or

average budget spent per job but not both. In the next chapter, we combined

above two policies using AHP (Analytic Hierarchy Process) to take into

account user preferences.

38

C h a p t e r 6

RESOURCE SELECTION POLICY USING AHP

In the NewTimeOptimized and NewBudgetOptimized policies, we optimized

only one parameter, either average turnaround time or average budget spent

per job. We next implemented a resource selection policy that tries to

decrease the average turnaround time and average budget spent per job based

on user preference.

A user may not need to use just the TimeOptimized or BudgetOptimized

policies alone. Usually a user wants to achieve a certain performance, but may

also want to save on money spent at the same time. Thus, a user will usually

have some relative preference for speed over time or vice versa. In our case,

the user will specify the preference for time vs. budget. We have used Analytic

Hierarchy Process (AHP) [9, 21] technique to model the user preference.

6.1. Analytic Hierarchy Process

AHP, developed by Saaty [14], is a mathematical technique for multicriteria

decision making. The structure of AHP consists of a hierarchy of criteria and

sub-criteria cascading from the decision objective or goal. By making pairwise

comparisons at each level of the hierarchy, we develop relative weights, called

priorities, to differentiate between the importance of the criteria. Here criteria

are nothing but the parameters on which we want to make our decision. In

our case, we are considering two parameters, time and budget, and the user

will give preference to time vs. budget. As shown in Table 2, we form a

pairwise comparison of each criterion, where the ith row and the jth column

give the relative weight of criteria’s Ci and Cj. The weights are assigned on the

relative scale between 1 and 9; 1 means equal importance and 9 means

extreme important. Full details of the AHP can be found in [15]. The

39

advantage of the AHP is we can combine the qualitative and quantitative

information. Although in our paper we are considering quantitative

information like cost and speed of resources we can also use qualitative

information like reliability of the resource etc. In the rest of this chapter, we

used the term criteria to describe the parameters on which we want to take

decision and alternatives refer to the resources which we want to choose.

 C1 C2 …. Cn

C1 1 C12 …. C1n

C2 1/C12 1 …. C2n

: : : : :

Cn 1/C1n 1/C2n …. 1

Table 2: Example of pairwise comparison matrix

 Budget Time Normalized

Values

Budget 1 1/9 0.16102

Time 9 1 0.83898

Table 3: Preference of time and budget

6.2. Steps in AHP

In this section, we have explained the AHP by taking an example. Let us

assume that there are 3 resources and we have to choose one resource among

them for bidding. Let R1, R2, R3 be the available resources and their cost,

speed and their assigned weights are shown in Table 4. The problem is that

we have to choose one resource for bidding according to user preference.

1. The first step in AHP is to decide the criteria or parameters by which one

is chosen among the alternatives. In this problem, one resource should be

40

selected for bidding based on the average turnaround time and cost of the

resources.

2. The second step is to determine the relative weights of each of the criteria

compared. The relative weights are taken from the scale 1 to 9. 1 means

equal preference and 9 means extremely high preference. The AHP uses

pairwise comparison technique. If user has given time to budget

preference as 9 means, he has given high preference to turnaround time.

The pairwise comparison matrix for our problem is shown in Table 3.

3. The third step is to compare the alternatives based on the each selected

criteria. In our case for each criterion we will compare the resources based

on the average turnaround time and cost.

Resource R1 R2 R3

Budget (rank) 2 (3) 6 (2) 10 (1)

Time (rank) 400 (1) 800 (2) 1200 (3)

Budget weight log(2*WeightRank) 0.77815 0.602059 0.301029

Speed Weight log(2*SpeedRank) 0.301029 0.602059 0.778155

Table 4: Weights assigned to resources

In this problem, the resources are not compared based on the absolute

scale. For example in the case of budget, the resources are not directly

compared based on their cost of the resources. First the resources are

ranked according to the speed and cost of the resources. The highest

speed or the lowest cost resource will get a high rank. Resources with

equal capability will get equal rank. The reason for doing this is as follows.

Suppose that we have resources with speed 400MIPS, 900MIPS, and

3000MIPS. If the resources are compared based on the absolute scale,

3000MIPS resource will get very high preference. To avoid this, we are

considering the resource ranks instead of their absolute values. After this

41

we have taken the logarithmic value of the rank. The advantage of doing

this is that in the logarithmic scale, the slope of the curve will decrease

when we increase the values. In other words, the resources with high

capability will get high preference and it will become less and less as we go

down towards lower capability resources. Table 4 shows the rank and

weight of the resources. After assigning the weights we have to compare

the resources pairwise based on these weights. By comparing the

resources pairwise, we will get the relative importance of one resource

over other. These relative values should be normalized before using.

Table 5 and Table 6 show the pairwise comparison of resources based on

the speed and budget respectively. Let us assume Wsi is the relative weight

of alternative i with respect to speed and Wbi is weight of alternative i

with respect to budget. Mathematically we can express the above as:

Ws = Ws1 + Ws2 + …. + Wsn;

Wb = Wb1 + Wb2+ …. + Wbn;

where

∑

n
i

i
j = 1 j

l o g

(

R s

)

1W s = W s l o g

(

R s

)

with Rsi as the rank of alternative i with respect to speed, and

∑

n
i

i
j = 1 j

l o g

(

R b

)

1W b = W b l o g

(

R b

)

where Rbi is the rank of alternative i with respect to budget.

42

R1 R2 R3

Normalized
Values

R1 1 1.292481 2.584967 0.462843

R2 0.773706 1 2.000003 0.358105

R3 0.386852 0.499999 1 0.179052

Table 5: Pairwise comparison of resources based on speed of the resources

R1 R2 R3

Normalized
Values

R1 1 0.499999 0.38685 0.179051

R2 2.000003 1 0.773701 0.358103

R3 2.584984 1.29249 1 0.462845

Table 6: Pairwise comparison of resources based on budget of the resources

4. The final step is to take the weighted average of the relative weights

obtained in step 2 with the above normalized values. Table 7 shows the

above process for the example we have taken. The resource with the

highest weight is chosen for bidding. Based on the given time to budget

preference, R3 will get the highest weight, meaning that R3 is the most

suitable resource. Instead, if the time to budget preference is 1, then R2

will get the highest weight. The pseudocode for choosing the resources

based on the AHP is explained in Figure 17. In the pseudocode,

Ri.speed_rank refers to rank of resource i based on speed, Ri.cost_rank

refers to rank of resource i based on cost, Ri.speed_weight refers to weight

assigned to resource i based on speed, and Ri.cost_weight refers to weight

assigned to resource i based on cost. Mathematically we can express the

above as:

() ()()Pa = Ws ×UPtb + Wb × 1-UPtbi i i

where Pai is the final weights of alternative i and UPtb is the time to

budget preference.

43

 Cost

Values

Speed

Values

 Attribute

Weights

 Final

Weights

R1 0.462 0.179 = 0.225 0.161

R2 0.358 0.358 0.358

R3 0.179 0.463

X

0.839 0.417

Table 7: Weighted average of cost, speed values with attribute weights

Figure 17: Algorithm for the combined policy

Let S be the set of resources that user can complete the job within deadline
and budget;
Let assume that A be the normalized attribute matrix;

For each Ri in S, find its rank Ri.speed_rank and Ri.cost_rank according to

speed and cost;
for (i=0; i<S.length; i++){

Ri.speed_weight = log(2* Ri.speed_rank);

Ri.cost_weight = log(2* Ri.cost_rank);

total_speed_val += Ri.speed_weight;

total_cost_val += Ri.cost_weight;

}
V = {0};
for (i=0; i<S.length; i++){

V[i][0] = Ri.cost_weight / total_cost_val;

V[i][1] = Ri.speed_weight / total_speed_val;

}

// Multiply the above two matrices and W gives the final weights of
alternatives
W = V x A;

select Ri from S which has maximum weight;

//max_speed is the maximum speed of the resource that the user can bid

penalty = Ri.speed / max_speed;

// minimum amount needed to complete the job

min_amount_needed = (job_length/ Ri.speed)* Ri.price;

bid_amount = budget – (budget –min_amount_needed)*penalty;

use bid_amount to bid for Ri;

44

6.3. Experimental Results

First, the time to budget preference is varied from 9 to 1/9 for all users. The

experiment is conducted for three different job lengths; 10000MI to

20000MI, 50000MI to 100000MI and 100000MI to 200000MI. Time to

budget preference of 9 means there is high preference for the turnaround

time of the resources and time to budget preference of 1 means, there is equal

preference for turnaround time and cost of the resources. When we change

the value from 9 to 1/9, effectively we are moving from TimeOptimized to

BudgetOptimized policy. Figure 18 shows the job success rate with respect to

time to budget preference. Figure 19 shows the average turnaround time of

jobs for different values of time to budget preference. Figure 20 shows the

average budget per job for different values of time to budget preference.

 From Figure 19 it is clear that when the time vs. budget preference is

changing from TimeOptimized to BudgetOptimized policy, the average

turnaround time per job is increasing. This is because as the value is changing

from TimeOptimized to BudgetOptimized policy, we are choosing resources

with lower and lower speeds and the execution time on these low speed

resources will be high which in turn increases the total turnaround time for

the jobs. Figure 20 shows that the average budget spent per job is decreasing

when the value is changing from from TimeOptimized to BudgetOptimized

policy. This is because as the value changes from TimeOptimized to

BudgetOptimized policy, we are choosing low speed resources and the price

per MI will be lower and budget per job will be decreased. Effectively the

resources are chosen according to user choice.

45

0

10

20

30

40

50

60

70

80

90

100

9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

Time vs. Budget Preference

S
u
c
c
e
s
s
 r
a
te

Avg Job Length = 100

Avg Job Length = 500

Avg Job Length = 1000

Figure 18: Job success rate for different values of time vs. budget preferences

0

50

100

150

200

250

300

350

400

450

9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

Time vs. Budget Preference

A
v
g
 T
u
rn

a
ro
u
n
d
 T
im

e
 P
e
r
J
o
b

Avg Job Length = 100
Avg Job Length = 500
Avg Job Length = 1000

Figure 19: Average turnaround time for different values of time vs. budget

preference

46

0

200

400

600

800

1000

1200

1400

1600

9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

Time vs. Budget Preference

A
v
g
 B

u
d
g
e
t
S
p
e
n
t
P
e
r
J
o
b

Avg Job Length = 100
Avg Job Length = 500
Avg Job Length = 1000

Figure 20: Average budget spent per job for different values of time vs.

budget preference

From Figure 18, the job success rate is decreasing when the preference is

changing from TimeOptimized to BudgetOptimized policy. This is because

the execution time on a high speed resource is low so it can execute more

number of jobs when compared with a low speed resource. In other words,

the number of auctions conducted by a high speed resource in some time

interval is more when compared with a low speed resource. So the success

rate is decreasing when the preference is changing from TimeOptimized to

BudgetOptimized policy. Let us assume that three jobs J1, J2, and J3 are

participating in an auction and assume that their job length is 150MI and its

deadline 100 sec. First, assume that all the jobs are participating in the auction

conducted by the 2000MIPS resource and its default auction time is 30 sec.

Let assume that J1 first won in the auction and then J2 and J3. In that case J1

will complete the job by 37.5 sec, J2 will complete the job by 67.5 sec and J3

will complete the job by 97.5 sec. Instead if all participated in the auction

conducted by 400MIPS resource, in that case only J1 and J2 can complete the

job. J3 will miss the deadline. This is because the execution time on the

400MIPS resource will be more and all the jobs will have to wait more time to

get the resource.

47

If TimeOptimized policy is compared with combined policy at the time to

budget preference of 9, except the job success rate, there is not much

difference in the average turnaround time and average budget spent per job.

But the job success rate is increased around 83% in the combined policy as

compared to around 74% in TimeOptimized policy. The difference between

these two can be explained by considering the demand for the resources.

From Table 7, the number of auctions with single user participation is almost

10% higher than TimeOptimized policy and this is the main reason for

increase in the success rate in the combined policy. The reason is, although

time to budget preference of 9 means high importance for turnaround time,

still there is a small percentage of preference we have given to budget and this

is the reason for the difference in the success rate.

No of
Participants

Frequency Cumulative %

1 281 71.50%

2 81 92.11%

3 19 96.95%

4 10 99.49%

5 2 100.00%

6 0 100.00%

Table 8: Percentage of users participating in the auctions in the combined
policy

No of
Participants

Frequency Cumulative
%

1 217 60.78%

2 84 84.31%

3 30 92.72%

4 20 98.32%

5 5 99.72%

6 1 100.00%

Table 9: Percentage of users participating in the auctions in TimeOptimized
policy

At higher job lengths, the ratio of the number of jobs succeeded to the

number of jobs failed at time vs. budget preference of 9 to 1/9 is reduced

48

when compared with lower job lengths. This is because, when the job size is

increased, the advantage of high speed resource as explained in the above will

be reduced if the job size is high.

In the second experiment, we have given different time to budget preferences

for users as shown in Table 9. The job length for this experiment is varied

from 10000MI to 20000MI. This experiment is performed to show that the

user is getting the resource it wants according to its preference. From Figure

21, the average budget spent per job is decreasing when the user chooses low

speed to budget preference. From Figure 22, the average turnaround time per

job is increasing when he chooses low time to budget preference. Figure 23

shows the success rate for users. Unlike our previous experiment, the success

rate is not decreasing when we decrease the time vs. budget preference. The

reason for this is, unlike our previous experiment, all the users are not having

the same preference and there will be less contention for resources.

We can improve the success rate in the above experiments by using the

strategy employed in the NewTimeOptimized and NewBudgetOptimized

policies i.e. we can select one resource from the top k resources randomly.

User Time vs. Budget Preference

User 1 9

User 2 7

User 3 5

User 4 3

User 5 1

User 6 1/3

User 7 1/5

User 8 1/7

User 9 1/9

User 10 1/10

Table 10: Time vs. Budget preference for users

49

100

105

110

115

120

125

130

135

140

145

User

1

User

2

User

3

User

4

User

5

User

6

User

7

User

8

User

9

User

10

Users

A
v
g
 B

u
d
g
e
t
S
p
e
n
t
P
e
r
J
o
b

Figure 21: Average budget spent per job for users with different time vs.

budget preference

10

15

20

25

30

35

40

User

1

User

2

User

3

User

4

User

5

User

6

User

7

User

8

User

9

User

10

Users

A
v
g
 T
u
rn

a
ro

u
n
d
 T
im

e
 P
e
r
J
o
b

Figure 22: Average turnaround time per job for users with different time vs.

budget preference

50

50

55

60

65

70

75

80

85

90

95

100

User

1

User

2

User

3

User

4

User

5

User

6

User

7

User

8

User

9

User

10

Users

S
u
c
c
e
s
s
 R
a
te

Figure 23: Success rate for users with different time vs. budget preference

6.4. Extending to More Than Two Parameters

In our present work, the decision is taken by considering only two

parameters, speed and budget of the resources. It can be extended similarly

for other parameters also. For example we can include available memory in

the above case. The same methodology that is used in the above case can be

used for this also i.e. sort the resources according to available memory and

assign weights to it as explained in the step3 of section 6.2. The next step is to

add one more column and row in the attribute matrix. We have to compare

the speed with memory and budget with memory and finally we will take the

weighted average of attribute matrix with the individual values formed based

on speed, cost, and memory of the resources. In a similar way we can include

other parameters also. In general,

∑ ∑

m n

i i j j
i = 1 j = 1

P = W × U P

51

where Pi is the preference of criteria i, Wij is the relative weight of alternative i

with respect to criteria j.

AHP can be used to combine qualitative and quantitative information easily.

For example assume that we want to include qualitative parameters like

reliability of resources. The same procedure as explained above for qualitative

parameters can be used for reliability of resource with one exception. The

alternatives can not be compared based on qualitative parameter, so we have

to express it in terms of quantitative information. The relative preference of

one alternative over other can be expressed in a scale from 1 to 9.

In the next chapter, we presented one history based technique that considers

the previous success rate for choosing resources.

52

C h a p t e r 7

HISTORY BASED POLICY

In this chapter we presented one history based technique that considers the

previous success rate for choosing resources. Here the user will give

preference in terms of the minimum percentage of jobs that should be

finished within deadline.

7.1. History Based Policy

The main motivation for this policy is, the success rate in

NewTimeOptimized policy is higher than NewBudgetOptimized policy but in

NewTimeOptimized policy the user is not able to save money. In this policy

after getting the minimum success rate we are trying to save money by

shifting to NewBudgetOptimized policy.

Initially we start with NewTimeOptimized policy with k = 4 and when the

success rate exceeds the user specified value we shift to

NewBudgetOptimized policy with k = 4. In NewBudgetOptimized we do not

use our complete budget for a job to bid. So first we are using our complete

amount for bidding in the initial stage, and after getting sufficient success rate

we are shifting to NewBudgetOptimized policy. This policy effectively tries to

reduce the average budget spent per job while maintaining the user

requirements. If the user specifies high success rate then this policy is then

same as NewTimeOptimized policy and if user specifies very low success rate

then this policy is same as NewBudgetOptimized policy.

The pseudocode for this policy is shown in Figure 24. In the algorithm, the

penalty will be very less for NewTimeOptimized policy and we almost use our

complete amount allocated to the job for bidding. But if we use

53

NewBudgetOptimized policy then the penalty will be higher and it will not

use the complete amount allocated for bidding.

Figure 24: Algorithm for history based policy

S = { NULL };

// Find set of resources who can complete the job within deadline and
budget
for (i=0; i<n; i++){

// minimum time required to execute the job

exec_time = job_length / Ri.speed;

// completion time on Resource i

completion_time = Ri.resource_usage_start_time + exec_time;

if((budget >=(Ri.price * exec_time)) AND (completion_time<=deadline)){

S = S U Ri;

}
}

success_rate = no_jobs_finished / total_no_jobs;
if(success_rate <= user_success_rate)

Sort S by completion_time;
else

Sort S by budget;

// we will keep top k resources and remove rest of the resources
for (i = k+1; i < S.length; i++)

remove Si;

select randomly one resource R i from S;

// penalty will be very less if we choose TimeOptimized and we use almost
all the amount for bidding

penalty = Ri.speed / max_speed;

// minimum amount needed to complete the job

min_amount_needed = (job_length/R1.speed)*R1.price;

bid_amount = budget – (budget –min_amount_needed)*penalty;

Use bid_amount to bid for Ri;

54

7.2. Experimental Results

We compared the proposed adaptive policy with NewTimeOptimized policy.

In adaptive policy, we have taken the user specified success rate as 70%,

meaning that the resource broker will initially try to get 70% success rate by

using NewTimeOptimized policy and after getting that, it will shift to

NewBudgetOptimized policy and tries to decrease the total amount spent.

Figure 25 compares the adaptive policy with NewTimeOptimized on the

success rate, turnaround time, and average budget per job for average job

length of 10000MI. Similarly Figure 26 and Figure 27 show the same for

average job length of 50000MI and 100000MI respectively.

From Figure 25, for user specified success rate of 70%, the actual success

rate obtained is around 84%, which is slightly less when compared to

NewTimeOptimized policy but the average budget per job is decreased by

around 12% when compared to NewTimeOptimized policy. This is because,

after getting sufficient success we are switching to NewBudgetOptimized

policy and we are trying to save money after that. With this policy we are

missing some of jobs but at the same time we are reducing the average budget

spent per job.

The same explanation is true for budget 50000MI and for 100000MI job

lengths. But for 100000MI job lengths, the actual success rate is less than the

user specified success rate but it is very close to it. This is because the success

rate for NewTimeOptimized policy is exactly 70% and in our history based

policy the success rate is usually less than NewTimeOptimized. So in this

policy it is slightly reduced.

55

0

20

40

60

80

100

120

140

Success Rate Turnaround Time Avg. Budget Per Job

Adaptive Policy

NewTimeOptimized Policy

Figure 25: Comparison of NewTimeOptimized policy with Adaptive policy

for average job length of 10000MI

0

100

200

300

400

500

600

700

800

Success Rate Turnaround Time Avg. Budget Per Job

Adaptive Policy

NewTimeOptimized Policy

Figure 26: Comparison of NewTimeOptimized policy with Adaptive policy

for average job length of 50000MI

56

0

200

400

600

800

1000

1200

1400

1600

Success Rate Turnaround Time Avg. Budget Per Job

Adaptive Policy

NewTimeOptimized Policy

Figure 27: Comparison of NewTimeOptimized policy with Adaptive policy

for average job length of 100000MI

57

C h a p t e r 8

CONCLUSION & FUTURE WORK

In this thesis, we proposed and evaluated several auction based resource

selection policies for users in grid. In all these policies we tried to optimize the

average turnaround time, the average budget spent per job, and the success

rate. First we proposed simple TimeOptimized, BudgetOptimized, and

Random policies. The success rate of these policies is less than Random

policy but the average turnaround time and average budget spent per job is

more in Random policy. We next proposed NewTimeOptimized and

NewBudgetOptimized policies that tries to increase the number of jobs

getting successful and at the same time it reduces the average turnaround time

and average budget spent per job respectively. Next we proposed a policy that

tries to optimize the average turnaround time and average budget spent per

job simultaneously based on the user preference. Finally we proposed a

history based policy that considers the previous success rate and depending

on that it chooses either NewTimeOptimized or NewBudgetOptimized

policy.

In our work we considered only two parameters, average turnaround time and

average budget spent per job. However, our policies can be easily extended to

include more parameters. In chapter 6, we explained this by taking an

example on how to include more parameters into it. We evaluated each of the

above policies through simulation and presented the results.

In future, we would like to improve the history based policy. At present the

history based policy is not considering the previous bid information for future

bidding. We can find the relative demand of the resources by considering the

previous bid. In this way we can behave more strategically while bidding. We

would like to investigate the scalability of auction for larger number of users

58

& resources and to explore the use of other market mechanisms for resource

allocation in grids.

59

REFERENCES

1. Amir Y., Awerbuch B., and Borgstrom R. S., “A Cost-Benefit Framework
for Online Management of a Metacomputing System”, International
Conference on Information and Computational Economy, Oct. 1998.

2. Amir Y., Awerbuch B., Barak A., Borgstrom R.S., and Keren A., "An

opportunity cost approach for job assignment in a scalable computing
cluster", IEEE Transactions on Parallel and Distributed Systems, Jul. 2000, vol.
11, no. 7, pp. 760--??.

3. Baker M., Buyya R., and Laforenza D., “Grids and Grid Technologies for

Wide-Area Distributed Computing”, Software: Practice and Experience, Dec
2002, vol. 32, no. 15, pp. 1437-1466.

4. Berman F., Hey A. J. G., and Fox G., “Grid Computing: Making the

Global Infrastructure a Reality”, John Wiley & Sons, 2003.

5. Buyya R., Abramson D., Giddy J., and Stockinger H., “Economic Models

for Resource Management and Scheduling in Grid Computing”,
Concurrency and Computation: Practice and Experience (CCPE), Nov 2002, vol.
14, no. 13, pp. 1507-1542.

6. Buyya R., Abramson D., and Giddy J., “Nimrod/G: An Architecture for a

Resource Management and Scheduling System in a Global Computational
Grid”, International Conference on High Performance Computing in Asia-Pacific
Region, May 2000.

7. Buyya R. and Murshed M., “GridSim: A Toolkit for the Modeling and

Simulation of Distributed Resource Management and Scheduling for Grid
Computing”, Concurrency and Computation: Practice and Experience, Nov. 2002,
vol. 14, no. 13, pp. 1175-1220.

8. Chee S.Y., and Rajkumar Buyya R., “A Taxonomy of Market-based

Resource Management Systems for Utility-driven Cluster Computing”,
Software: Practice and Experience, 2005, Wiley Press, USA..

9. Chen M., Yang G., and Liu X., “Gridmarket: A Practical, Efficient Market

Balancing Resource for Grid and P2P Computing”, International Workshop

60

on Grid and Cooperative Computing (GCC 2003), Dec. 2003, Lecture Notes in
Computer Science, vol. 3033, pp. 612–619.

10. Chen C., Maheswaran M., and Toulouse M., “Supporting co-allocation in

an auctioning-based resource allocator for grid systems”, International
Parallel and Distributed Processing Symposium, 2002.

11. Clarke D. and Tangney B., "Microeconomic theory applied to distributed

systems", Technical Report TCD--CS--93--30, 1993, Distributed Systems
Group, University of Dublin.

12. Chunlin L. and Layuan L., "A Utility-Based Two Level Market Solution

for Optimal Resource Allocation in Computational Grid", International
Conference on Parallel Processing (ICPP'05), 2005, pp. 23-30.

13. Das A. and Grosu D., "Combinatorial Auction-Based Protocols for

Resource Allocation in Grids", IEEE International Parallel and Distributed
Processing Symposium (IPDPS'05), 2005.

14. Dumas M., Aldred L., Governatori G., Hofstede A., and Russell N., “A

probabilistic approach to automated bidding in alternative auctions”,
International Conference on World Wide Web, 2002, pp. 99--108.

15. Ernemann C., Hamscher V., and Yahyapour R., “Economic Scheduling in

Grid Computing”. 8th International Workshop on Job Scheduling Strategies For
Parallel Processing, 2002, Lecture Notes In Computer Science, vol. 2537, pp.
128-152.

16. Ferguson D.F., “The Application of Microeconomics to the Design of

Resource Allocation and Control Algorithms in Distributed Systems”,
PhD thesis, Columbia University, 1989.

17. Ferguson D.F., Nikolaou C., Sairamesh J., and Yemini Y., "Economic

Models for Allocating Resources in Computer Systems", Market Based
Control of Distributed Systems, World Scientific Press, 1996.

18. Figueira J., Greco S., and Ehrgott M., “Multiple Criteria Decision Analysis

- State of the Art Surveys”, Springer International Series in Operations Research
and Management Science, vol. 76.

61

19. Foster I., “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations”, International Journal of High Performance Computing
Applications, 2002, vol. 15, no. 3.

20. Foster I., “What Is the Grid? A Three Point Checklist,” GridToday, Jul.

2002, vol. 1, no. 6.

21. Foster I. and Kesselman C., “The Grid: Blueprint for a New Computing

Infrastructure”, Morgan Kaufmann, 2004.

22. Gibbins H., Nadiminti K., Beeson B., Chhabra R., Smith B., and

Rajkumar Buyya, “The Australian BioGrid Portal: Empowering the
Molecular Docking Research Community”, APAC Conference and
Exhibition on Advanced Computing, Grid Applications and eResearch (APAC
2005), Sept. 2005.

23. Gomoluch J., and Schroeder M., "Market-Based Resource Allocation for

Grid Computing: A Model and Simulation", International Workshop on
Middleware for Grid Computing (MGC `03), 2003.

24. Greenwald A. and Stone P., “Autonomous bidding agents in the Trading

Agent Competition”, IEEE Internet Computing, Apr. 2001.

25. Grosu D. and Das A., “Auction-Based Resource Allocation Protocols in

Grids,” International Conference on Parallel and Distributed Computing and
Systems, Nov. 2004, pp. 20–27.

26. Heiser G., Lam F., and Russell S., "Resource management in the mungi

single-address-space operating system", Australian Computer Science
Conference, Feb. 1998, pp. 417-428.

27. Huberman B.A, Hogg T., and Swami A., “Using Unsuccessful Auction

Bids to Identify Latent Demand”, IEEE Conference on Systems, Man and
Cybernetics, 2001, pp. 2911-2916.

28. Kale L. V., Kumar S., Potnuru M., DeSouza J., and Bandhakavi S.,

“Faucets: Efficient Resource Allocation on the Computational Grid”,
International Conference on Parallel Processing (ICPP 2004)”, Aug. 2004, pp.
396–405.

62

29. Kant U., Grosu D., "Double Auction Protocols for Resource Allocation
in Grids", International Conference on Information Technology: Coding and
Computing (ITCC'05), 2005, vol. 1, pp. 366-371.

30. Klemperer P., “Auction Theory: A Guide to the Literature”, Journal of

Economic Surveys, July 1999, vol. 13, no. 3, pp 227 -- 286.

31. Krauter K., R. Buyya R., and Maheswaran M., “A Taxonomy and Survey

of Grid Resource Management Systems”, International Journal of Software:
Practice and Experience, 2002, vol. 32, pp. 135—164.

32. Lai K., Huberman B. A., and Fine L., “Tycoon: A Distributed Market-

based Resource Allocation System”, Apr. 2004, Technical Report, HP Labs,
USA.

33. Mankiw N.G., "Principles of Economics", The Dryden Press, 2003.

34. Nakai J., "Pricing Computing Resources: Reading between the Lines and

Beyond," Technical Report NAS-01-010, NASA Ames Research Center,
Advanced Supercomputing Division, Nov 2001.

35. Nisan N., “Algorithms for Selfish Agents”, 16th Annual Symposium on

Theoretical Aspects of Computer Science (STACS'99), 1999, pp.1 -- 15.

36. Nisan N., London S., Regev O., and Camiel N. “Globally distributed

computation over the internet -- the POPCORN project”, International
Conference on Distributed Computing Systems (ICDCS98), 1998.

37. Nisan N., London S., Regev O., and Camiel N., “Globally distributed

computation over the Internet — the POPCORN project”, International
Conference on Distributed Computing Systems, 1998.

38. Quétier B. and Cappello F., "A survey of Grid research tools: simulators,

emulators and real life platforms", IMACS World Congress (IMACS), 2005.

39. Reeves D.M., Wellman M.P., MacKie-Mason J.K., and Osepayshvili A.,

“Exploring bidding strategies for market-based scheduling”, Decision
Support Systems, 2004.

40. Saaty T. L., “The Analytic Hierarchy Process”, McGrawHill, New York,

1980.

63

41. Sandholm T., “Algorithm for optimal winner determination in
combinatorial auctions”, Artificial Intelligence, Jan. 2002, pp. 135:1—54.

42. Sandholm T., “Making markets and democracy work: A story of

incentives and computing”, International Joint Conference on Artificial
Intelligence (IJCAI), 2003, pages 1649—1671.

43. Schriber T. and Brunner D., "Inside DiscreteEvent Simulation Software:

How It Works and Why It Matters", Simulation Conference, 1998, pp. 77--
86.

44. Varian H., “Economic mechanism design for computerized agents”, First

USENIX Workshop on Electronic Commerce, July 1995.

45. Waldspurger C.A., Hogg T., Huberman B.A., Kephart J.O., and Stornetta

W.S., "Spawn: A Distributed Computational Economy," IEEE
Transactions on Software Engineering, Feb. 1992, vol. 18, no. 2, pp. 103-117.

46. Wellman M.P., "Market-oriented programming: some early lessons",

Market-based control: A paradigm for distributed resource allocation,
World Scientific Publishers, 1996.

47. Wellman M.P., Walsh W.E., Wurman P.R., and MacKie-Mason J.K.,

"Auction protocols for decentralized scheduling", Games and Economic
Behavior, 2001, vol. 35, pp. 271--303.

48. Wolski R., Plank J. S., Brevik J., and Bryan T., “Analyzing Market-Based

Resource Allocation Strategies for the Computational Grid”. International
Journal of High Performance Computing Applications, Aug. 2001, vol. 15, no. 3,
pp. 258-281.

49. Xiao L., Zhu Y., Lionel M., and Xu Z., "GridIS: An Incentive-Based Grid

Scheduling", IEEE International Parallel and Distributed Processing Symposium
(IPDPS'05), 2005.

50. Yeo C.H. and Buyya R., "Pricing for Utility-driven Resource Management

and Allocation in Clusters", International Conference on Advanced Computing
and Communication (ADCOM), 2004.

51. Deardorff's Glossary of International Economics, May 2006,

http://www.personal.umich.edu/~alandear/glossary/m.html.

	1.1. Overview of a Grid
	1.2. Market Economics
	1.3. Motivation of this Work
	1.4. Problem Statement
	1.5. Contributions
	1.6. Organization of the Thesis
	2.1. Different Auction Mechanisms
	2.2. Related Work
	3.1. System Model
	3.2. GridSim
	4.1. Resource Selection Policies
	4.2. Simulation Results
	4.2.1. Experimental Methodology
	4.2.2. TimeOptimized and BudgetOptimized Policies

	5.1. NewTimeOptimized Policy
	5.1.1. Experiment Results
	5.2. NewBudgetOptimized Policy
	5.2.1. Experiment Results
	6.1. Analytic Hierarchy Process
	6.2. Steps in AHP
	6.3. Experimental Results
	6.4. Extending to More Than Two Parameters
	7.1. History Based Policy
	7.2. Experimental Results

